gllm-inference-binary 0.5.28__cp311-cp311-macosx_13_0_x86_64.whl → 0.5.30__cp311-cp311-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gllm-inference-binary might be problematic. Click here for more details.
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +38 -1
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +2 -0
- gllm_inference/lm_invoker/batch/__init__.pyi +3 -0
- gllm_inference/lm_invoker/batch/batch_operations.pyi +76 -0
- gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/google_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/langchain_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/litellm_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/lm_invoker.pyi +9 -1
- gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +1 -0
- gllm_inference/lm_invoker/openai_lm_invoker.pyi +47 -2
- gllm_inference/lm_invoker/schema/anthropic.pyi +6 -0
- gllm_inference/lm_invoker/schema/openai.pyi +13 -0
- gllm_inference/schema/__init__.pyi +3 -2
- gllm_inference/schema/enums.pyi +7 -0
- gllm_inference/schema/lm_output.pyi +4 -0
- gllm_inference/schema/mcp.pyi +31 -0
- gllm_inference.cpython-311-darwin.so +0 -0
- gllm_inference.pyi +9 -1
- {gllm_inference_binary-0.5.28.dist-info → gllm_inference_binary-0.5.30.dist-info}/METADATA +3 -3
- {gllm_inference_binary-0.5.28.dist-info → gllm_inference_binary-0.5.30.dist-info}/RECORD +24 -21
- {gllm_inference_binary-0.5.28.dist-info → gllm_inference_binary-0.5.30.dist-info}/WHEEL +0 -0
- {gllm_inference_binary-0.5.28.dist-info → gllm_inference_binary-0.5.30.dist-info}/top_level.txt +0 -0
|
@@ -5,13 +5,14 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
|
|
|
5
5
|
from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
|
|
6
6
|
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
7
7
|
from gllm_inference.lm_invoker.schema.anthropic import InputType as InputType, Key as Key, OutputType as OutputType
|
|
8
|
-
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
8
|
+
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
9
9
|
from langchain_core.tools import Tool as LangChainTool
|
|
10
10
|
from typing import Any
|
|
11
11
|
|
|
12
12
|
SUPPORTED_ATTACHMENTS: Incomplete
|
|
13
13
|
DEFAULT_MAX_TOKENS: int
|
|
14
14
|
DEFAULT_THINKING_BUDGET: int
|
|
15
|
+
BATCH_STATUS_MAP: Incomplete
|
|
15
16
|
|
|
16
17
|
class AnthropicLMInvoker(BaseLMInvoker):
|
|
17
18
|
'''A language model invoker to interact with Anthropic language models.
|
|
@@ -199,6 +200,41 @@ class AnthropicLMInvoker(BaseLMInvoker):
|
|
|
199
200
|
{"type": "response", "value": "is a good dog breed.", ...}
|
|
200
201
|
```
|
|
201
202
|
|
|
203
|
+
Batch processing:
|
|
204
|
+
The `AnthropicLMInvoker` supports batch processing, which allows the language model to process multiple
|
|
205
|
+
requests in a single call. The batch processing operations include:
|
|
206
|
+
|
|
207
|
+
1. Create a batch job:
|
|
208
|
+
>>> requests = {"request_1": "What color is the sky?", "request_2": "What color is the grass?"}
|
|
209
|
+
>>> batch_id = await lm_invoker.batch.create(requests)
|
|
210
|
+
>>> print(batch_id)
|
|
211
|
+
"batch_123"
|
|
212
|
+
|
|
213
|
+
2. Get the status of a batch job:
|
|
214
|
+
>>> status = await lm_invoker.batch.status(batch_id)
|
|
215
|
+
>>> print(status)
|
|
216
|
+
"finished"
|
|
217
|
+
|
|
218
|
+
3. Retrieve the results of a batch job:
|
|
219
|
+
>>> results = await lm_invoker.batch.retrieve(batch_id)
|
|
220
|
+
>>> print(results)
|
|
221
|
+
{
|
|
222
|
+
"request_1": LMOutput(response="The sky is blue."),
|
|
223
|
+
"request_2": LMOutput(finish_details={"type": "error", "error": {"message": "...", ...}, ...}),
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
4. List the batch jobs:
|
|
227
|
+
>>> batch_jobs = await lm_invoker.batch.list()
|
|
228
|
+
>>> print(batch_jobs)
|
|
229
|
+
[
|
|
230
|
+
{"id": "batch_123", "status": "finished"},
|
|
231
|
+
{"id": "batch_456", "status": "in_progress"},
|
|
232
|
+
{"id": "batch_789", "status": "canceling"},
|
|
233
|
+
]
|
|
234
|
+
|
|
235
|
+
5. Cancel a batch job:
|
|
236
|
+
>>> await lm_invoker.batch.cancel(batch_id)
|
|
237
|
+
|
|
202
238
|
Output types:
|
|
203
239
|
The output of the `AnthropicLMInvoker` can either be:
|
|
204
240
|
1. `str`: The text response if no additional output is needed.
|
|
@@ -219,6 +255,7 @@ class AnthropicLMInvoker(BaseLMInvoker):
|
|
|
219
255
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
220
256
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
221
257
|
Defaults to an empty list.
|
|
258
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
222
259
|
'''
|
|
223
260
|
client: Incomplete
|
|
224
261
|
thinking: Incomplete
|
|
@@ -26,6 +26,7 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
|
|
|
26
26
|
for non-reasoning models. If None, the model will perform medium reasoning effort.
|
|
27
27
|
reasoning_summary (ReasoningSummary | None): The reasoning summary level for reasoning models. Not allowed
|
|
28
28
|
for non-reasoning models. If None, no summary will be generated.
|
|
29
|
+
mcp_servers (list[MCPServer]): The list of MCP servers to enable MCP tool calling.
|
|
29
30
|
code_interpreter (bool): Whether to enable the code interpreter. Currently not supported.
|
|
30
31
|
web_search (bool): Whether to enable the web search. Currently not supported.
|
|
31
32
|
|
|
@@ -218,6 +219,7 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
|
|
|
218
219
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
219
220
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
220
221
|
Defaults to an empty list.
|
|
222
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
221
223
|
'''
|
|
222
224
|
client: Incomplete
|
|
223
225
|
def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None) -> None:
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
from gllm_inference.schema import BatchStatus as BatchStatus, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
class BatchOperations:
|
|
5
|
+
"""Handles batch operations for an LM invoker.
|
|
6
|
+
|
|
7
|
+
This class provides a wrapper around the batch operations of an LM invoker.
|
|
8
|
+
It provides a simple interface for creating, retrieving, and canceling batch jobs.
|
|
9
|
+
|
|
10
|
+
This enables LM invokers to support the following batch operations:
|
|
11
|
+
|
|
12
|
+
Create a batch job:
|
|
13
|
+
>>> batch_id = await lm_invoker.batch.create(...)
|
|
14
|
+
|
|
15
|
+
Get the status of a batch job:
|
|
16
|
+
>>> status = await lm_invoker.batch.status(batch_id)
|
|
17
|
+
|
|
18
|
+
Retrieve the results of a batch job:
|
|
19
|
+
>>> results = await lm_invoker.batch.retrieve(batch_id)
|
|
20
|
+
|
|
21
|
+
List the batch jobs:
|
|
22
|
+
>>> batch_jobs = await lm_invoker.batch.list()
|
|
23
|
+
|
|
24
|
+
Cancel a batch job:
|
|
25
|
+
>>> await lm_invoker.batch.cancel(batch_id)
|
|
26
|
+
"""
|
|
27
|
+
def __init__(self, invoker: BaseLMInvoker) -> None:
|
|
28
|
+
"""Initializes the batch operations.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
invoker (BaseLMInvoker): The LM invoker to use for the batch operations.
|
|
32
|
+
"""
|
|
33
|
+
async def create(self, requests: dict[str, list[Message] | list[MessageContent] | str], hyperparameters: dict[str, Any] | None = None) -> str:
|
|
34
|
+
"""Creates a new batch job.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
requests (dict[str, list[Message] | list[MessageContent] | str]): The dictionary of requests that maps
|
|
38
|
+
request ID to the request. Each request must be a valid input for the language model.
|
|
39
|
+
1. If the request is a list of Message objects, it is used as is.
|
|
40
|
+
2. If the request is a list of MessageContent or a string, it is converted into a user message.
|
|
41
|
+
hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the language model.
|
|
42
|
+
Defaults to None, in which case the default hyperparameters are used.
|
|
43
|
+
|
|
44
|
+
Returns:
|
|
45
|
+
str: The ID of the batch job.
|
|
46
|
+
"""
|
|
47
|
+
async def status(self, batch_id: str) -> BatchStatus:
|
|
48
|
+
"""Gets the status of a batch job.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
batch_id (str): The ID of the batch job to get the status of.
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
BatchStatus: The status of the batch job.
|
|
55
|
+
"""
|
|
56
|
+
async def retrieve(self, batch_id: str) -> dict[str, LMOutput]:
|
|
57
|
+
"""Retrieves the results of a batch job.
|
|
58
|
+
|
|
59
|
+
Args:
|
|
60
|
+
batch_id (str): The ID of the batch job to get the results of.
|
|
61
|
+
|
|
62
|
+
Returns:
|
|
63
|
+
dict[str, LMOutput]: The results of the batch job.
|
|
64
|
+
"""
|
|
65
|
+
async def list(self) -> list[dict[str, Any]]:
|
|
66
|
+
"""Lists the batch jobs.
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
list[dict[str, Any]]: The list of batch jobs.
|
|
70
|
+
"""
|
|
71
|
+
async def cancel(self, batch_id: str) -> None:
|
|
72
|
+
"""Cancels a batch job.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
batch_id (str): The ID of the batch job to cancel.
|
|
76
|
+
"""
|
|
@@ -179,6 +179,7 @@ class BedrockLMInvoker(BaseLMInvoker):
|
|
|
179
179
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
180
180
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
181
181
|
Defaults to an empty list.
|
|
182
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
182
183
|
'''
|
|
183
184
|
session: Incomplete
|
|
184
185
|
client_kwargs: Incomplete
|
|
@@ -119,6 +119,7 @@ class DatasaurLMInvoker(OpenAICompatibleLMInvoker):
|
|
|
119
119
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
120
120
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
121
121
|
Defaults to an empty list.
|
|
122
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
122
123
|
'''
|
|
123
124
|
client: Incomplete
|
|
124
125
|
citations: Incomplete
|
|
@@ -254,6 +254,7 @@ class GoogleLMInvoker(BaseLMInvoker):
|
|
|
254
254
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
255
255
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
256
256
|
Defaults to an empty list.
|
|
257
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
257
258
|
'''
|
|
258
259
|
client_params: Incomplete
|
|
259
260
|
thinking: Incomplete
|
|
@@ -205,6 +205,7 @@ class LangChainLMInvoker(BaseLMInvoker):
|
|
|
205
205
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
206
206
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
207
207
|
Defaults to an empty list.
|
|
208
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
208
209
|
'''
|
|
209
210
|
model: Incomplete
|
|
210
211
|
def __init__(self, model: BaseChatModel | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None) -> None:
|
|
@@ -226,6 +226,7 @@ class LiteLLMLMInvoker(OpenAICompatibleLMInvoker):
|
|
|
226
226
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
227
227
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
228
228
|
Defaults to an empty list.
|
|
229
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
229
230
|
'''
|
|
230
231
|
completion: Incomplete
|
|
231
232
|
def __init__(self, model_id: str, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None) -> None:
|
|
@@ -6,7 +6,8 @@ from gllm_core.schema.tool import Tool
|
|
|
6
6
|
from gllm_core.utils import RetryConfig
|
|
7
7
|
from gllm_inference.constants import DOCUMENT_MIME_TYPES as DOCUMENT_MIME_TYPES, INVOKER_DEFAULT_TIMEOUT as INVOKER_DEFAULT_TIMEOUT
|
|
8
8
|
from gllm_inference.exceptions import BaseInvokerError as BaseInvokerError, convert_to_base_invoker_error as convert_to_base_invoker_error
|
|
9
|
-
from gllm_inference.
|
|
9
|
+
from gllm_inference.lm_invoker.batch import BatchOperations as BatchOperations
|
|
10
|
+
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, MessageRole as MessageRole, ModelId as ModelId, Reasoning as Reasoning, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
|
|
10
11
|
from langchain_core.tools import Tool as LangChainTool
|
|
11
12
|
from typing import Any
|
|
12
13
|
|
|
@@ -93,6 +94,13 @@ class BaseLMInvoker(ABC, metaclass=abc.ABCMeta):
|
|
|
93
94
|
Returns:
|
|
94
95
|
str: The name of the language model.
|
|
95
96
|
"""
|
|
97
|
+
@property
|
|
98
|
+
def batch(self) -> BatchOperations:
|
|
99
|
+
"""The batch operations for the language model.
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
BatchOperations: The batch operations for the language model.
|
|
103
|
+
"""
|
|
96
104
|
def set_tools(self, tools: list[Tool | LangChainTool]) -> None:
|
|
97
105
|
"""Sets the tools for the language model.
|
|
98
106
|
|
|
@@ -230,6 +230,7 @@ class OpenAICompatibleLMInvoker(BaseLMInvoker):
|
|
|
230
230
|
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
|
|
231
231
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
|
|
232
232
|
Defaults to an empty list.
|
|
233
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls. Currently not supported. Defaults to an empty list.
|
|
233
234
|
'''
|
|
234
235
|
client: Incomplete
|
|
235
236
|
def __init__(self, model_name: str, base_url: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None) -> None:
|
|
@@ -5,7 +5,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
|
|
|
5
5
|
from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
|
|
6
6
|
from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
|
|
7
7
|
from gllm_inference.lm_invoker.schema.openai import InputType as InputType, Key as Key, OutputType as OutputType, ReasoningEffort as ReasoningEffort, ReasoningSummary as ReasoningSummary
|
|
8
|
-
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, CodeExecResult as CodeExecResult, EmitDataType as EmitDataType, LMOutput as LMOutput, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
8
|
+
from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, CodeExecResult as CodeExecResult, EmitDataType as EmitDataType, LMOutput as LMOutput, MCPCall as MCPCall, MCPServer as MCPServer, Message as Message, MessageRole as MessageRole, ModelId as ModelId, ModelProvider as ModelProvider, Reasoning as Reasoning, ResponseSchema as ResponseSchema, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
|
|
9
9
|
from gllm_inference.utils import validate_string_enum as validate_string_enum
|
|
10
10
|
from langchain_core.tools import Tool as LangChainTool
|
|
11
11
|
from typing import Any
|
|
@@ -30,6 +30,7 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
30
30
|
for non-reasoning models. If None, the model will perform medium reasoning effort.
|
|
31
31
|
reasoning_summary (ReasoningSummary | None): The reasoning summary level for reasoning models. Not allowed
|
|
32
32
|
for non-reasoning models. If None, no summary will be generated.
|
|
33
|
+
mcp_servers (list[MCPServer]): The list of MCP servers to enable MCP tool calling.
|
|
33
34
|
code_interpreter (bool): Whether to enable the code interpreter.
|
|
34
35
|
web_search (bool): Whether to enable the web search.
|
|
35
36
|
|
|
@@ -202,6 +203,46 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
202
203
|
|
|
203
204
|
Setting reasoning-related parameters for non-reasoning models will raise an error.
|
|
204
205
|
|
|
206
|
+
MCP tool calling:
|
|
207
|
+
The `OpenAILMInvoker` supports MCP tool calling. This feature can be enabled by providing a list of
|
|
208
|
+
MCP servers to the `mcp_servers` parameter. When MCP servers are provided and the model decides to call
|
|
209
|
+
an MCP tool, the MCP calls are stored in the `mcp_calls` attribute in the output.
|
|
210
|
+
|
|
211
|
+
Usage example:
|
|
212
|
+
```python
|
|
213
|
+
from gllm_inference.schema import MCPServer
|
|
214
|
+
mcp_server_1 = MCPServer(
|
|
215
|
+
url="https://mcp_server_1.com",
|
|
216
|
+
name="mcp_server_1",
|
|
217
|
+
)
|
|
218
|
+
lm_invoker = OpenAILMInvoker(..., mcp_servers=[mcp_server_1])
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
Output example:
|
|
222
|
+
```python
|
|
223
|
+
LMOutput(
|
|
224
|
+
response="The result is 10.",
|
|
225
|
+
mcp_calls=[
|
|
226
|
+
MCPCall(
|
|
227
|
+
id="123",
|
|
228
|
+
server_name="mcp_server_1",
|
|
229
|
+
tool_name="mcp_tool_1",
|
|
230
|
+
args={"key": "value"},
|
|
231
|
+
output="The result is 10.",
|
|
232
|
+
),
|
|
233
|
+
],
|
|
234
|
+
)
|
|
235
|
+
```
|
|
236
|
+
|
|
237
|
+
When streaming is enabled, the MCP call activities will be streamed with the `EventType.DATA` event type.
|
|
238
|
+
Streaming output example:
|
|
239
|
+
```python
|
|
240
|
+
{"type": "data", "value": \'{"data_type": "activity", "data_value": "{\\"type\\": \\"mcp_list_tools\\"}", ...}\', ...}
|
|
241
|
+
{"type": "data", "value": \'{"data_type": "activity", "data_value": "{\\"type\\": \\"mcp_call\\"}", ...}\', ...}
|
|
242
|
+
{"type": "response", "value": "The result ", ...}
|
|
243
|
+
{"type": "response", "value": "is 10.", ...}
|
|
244
|
+
```
|
|
245
|
+
|
|
205
246
|
Code interpreter:
|
|
206
247
|
The code interpreter is a feature that allows the language model to write and run Python code in a
|
|
207
248
|
sandboxed environment to solve complex problems in domains like data analysis, coding, and math.
|
|
@@ -319,9 +360,11 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
319
360
|
to cite the relevant sources. Defaults to an empty list.
|
|
320
361
|
2.9. code_exec_results (list[CodeExecResult]): The code execution results, if the code interpreter is
|
|
321
362
|
enabled and the language model decides to execute any codes. Defaults to an empty list.
|
|
363
|
+
2.10. mcp_calls (list[MCPCall]): The MCP calls, if the MCP servers are provided and the language model
|
|
364
|
+
decides to invoke MCP tools. Defaults to an empty list.
|
|
322
365
|
'''
|
|
323
366
|
client: Incomplete
|
|
324
|
-
def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, code_interpreter: bool = False, web_search: bool = False) -> None:
|
|
367
|
+
def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool | LangChainTool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, reasoning_effort: ReasoningEffort | None = None, reasoning_summary: ReasoningSummary | None = None, mcp_servers: list[MCPServer] | None = None, code_interpreter: bool = False, web_search: bool = False) -> None:
|
|
325
368
|
"""Initializes a new instance of the OpenAILMInvoker class.
|
|
326
369
|
|
|
327
370
|
Args:
|
|
@@ -343,6 +386,8 @@ class OpenAILMInvoker(BaseLMInvoker):
|
|
|
343
386
|
for non-reasoning models. If None, the model will perform medium reasoning effort. Defaults to None.
|
|
344
387
|
reasoning_summary (ReasoningSummary | None, optional): The reasoning summary level for reasoning models.
|
|
345
388
|
Not allowed for non-reasoning models. If None, no summary will be generated. Defaults to None.
|
|
389
|
+
mcp_servers (list[MCPServer] | None, optional): The MCP servers containing tools to be accessed by the
|
|
390
|
+
language model. Defaults to None.
|
|
346
391
|
code_interpreter (bool, optional): Whether to enable the code interpreter. Defaults to False.
|
|
347
392
|
web_search (bool, optional): Whether to enable the web search. Defaults to False.
|
|
348
393
|
|
|
@@ -15,6 +15,7 @@ class Key:
|
|
|
15
15
|
ROLE: str
|
|
16
16
|
SIGNATURE: str
|
|
17
17
|
SOURCE: str
|
|
18
|
+
STATUS: str
|
|
18
19
|
STOP_REASON: str
|
|
19
20
|
SYSTEM: str
|
|
20
21
|
TIMEOUT: str
|
|
@@ -38,11 +39,16 @@ class InputType:
|
|
|
38
39
|
|
|
39
40
|
class OutputType:
|
|
40
41
|
"""Defines valid output types in Anthropic."""
|
|
42
|
+
CANCELING: str
|
|
41
43
|
CONTENT_BLOCK_DELTA: str
|
|
42
44
|
CONTENT_BLOCK_START: str
|
|
43
45
|
CONTENT_BLOCK_STOP: str
|
|
46
|
+
ENDED: str
|
|
47
|
+
ERRORED: str
|
|
48
|
+
IN_PROGRESS: str
|
|
44
49
|
MESSAGE_STOP: str
|
|
45
50
|
REDACTED_THINKING: str
|
|
51
|
+
SUCCEEDED: str
|
|
46
52
|
TEXT: str
|
|
47
53
|
TEXT_DELTA: str
|
|
48
54
|
THINKING: str
|
|
@@ -2,6 +2,8 @@ from enum import StrEnum
|
|
|
2
2
|
|
|
3
3
|
class Key:
|
|
4
4
|
"""Defines valid keys in OpenAI."""
|
|
5
|
+
ALLOWED_TOOLS: str
|
|
6
|
+
ARGS: str
|
|
5
7
|
ARGUMENTS: str
|
|
6
8
|
CALL_ID: str
|
|
7
9
|
CONTAINER: str
|
|
@@ -27,13 +29,18 @@ class Key:
|
|
|
27
29
|
REASONING: str
|
|
28
30
|
ROLE: str
|
|
29
31
|
SCHEMA: str
|
|
32
|
+
REQUIRE_APPROVAL: str
|
|
30
33
|
REQUIRED: str
|
|
34
|
+
SERVER_LABEL: str
|
|
35
|
+
SERVER_NAME: str
|
|
36
|
+
SERVER_URL: str
|
|
31
37
|
STATUS: str
|
|
32
38
|
STRICT: str
|
|
33
39
|
SUMMARY: str
|
|
34
40
|
TEXT: str
|
|
35
41
|
TIMEOUT: str
|
|
36
42
|
TITLE: str
|
|
43
|
+
TOOL_NAME: str
|
|
37
44
|
TOOLS: str
|
|
38
45
|
TYPE: str
|
|
39
46
|
|
|
@@ -49,10 +56,14 @@ class InputType:
|
|
|
49
56
|
INPUT_IMAGE: str
|
|
50
57
|
INPUT_TEXT: str
|
|
51
58
|
JSON_SCHEMA: str
|
|
59
|
+
MCP: str
|
|
60
|
+
MCP_CALL: str
|
|
61
|
+
NEVER: str
|
|
52
62
|
NULL: str
|
|
53
63
|
OUTPUT_TEXT: str
|
|
54
64
|
REASONING: str
|
|
55
65
|
SUMMARY_TEXT: str
|
|
66
|
+
WEB_SEARCH_PREVIEW: str
|
|
56
67
|
|
|
57
68
|
class OutputType:
|
|
58
69
|
"""Defines valid output types in OpenAI."""
|
|
@@ -67,6 +78,8 @@ class OutputType:
|
|
|
67
78
|
IMAGE: str
|
|
68
79
|
INCOMPLETE: str
|
|
69
80
|
ITEM_DONE: str
|
|
81
|
+
MCP_CALL: str
|
|
82
|
+
MCP_LIST_TOOLS: str
|
|
70
83
|
MESSAGE: str
|
|
71
84
|
OPEN_PAGE: str
|
|
72
85
|
REASONING: str
|
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
from gllm_inference.schema.attachment import Attachment as Attachment
|
|
2
2
|
from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
|
|
3
3
|
from gllm_inference.schema.config import TruncationConfig as TruncationConfig
|
|
4
|
-
from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
|
|
4
|
+
from gllm_inference.schema.enums import AttachmentType as AttachmentType, BatchStatus as BatchStatus, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
|
|
5
5
|
from gllm_inference.schema.lm_output import LMOutput as LMOutput
|
|
6
|
+
from gllm_inference.schema.mcp import MCPCall as MCPCall, MCPServer as MCPServer
|
|
6
7
|
from gllm_inference.schema.message import Message as Message
|
|
7
8
|
from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
|
|
8
9
|
from gllm_inference.schema.reasoning import Reasoning as Reasoning
|
|
@@ -11,4 +12,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
|
|
|
11
12
|
from gllm_inference.schema.tool_result import ToolResult as ToolResult
|
|
12
13
|
from gllm_inference.schema.type_alias import EMContent as EMContent, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
|
|
13
14
|
|
|
14
|
-
__all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'EMContent', 'EmitDataType', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
|
|
15
|
+
__all__ = ['Attachment', 'AttachmentType', 'BatchStatus', 'CodeExecResult', 'EMContent', 'EmitDataType', 'MCPCall', 'MCPServer', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
|
gllm_inference/schema/enums.pyi
CHANGED
|
@@ -7,6 +7,13 @@ class AttachmentType(StrEnum):
|
|
|
7
7
|
IMAGE = 'image'
|
|
8
8
|
VIDEO = 'video'
|
|
9
9
|
|
|
10
|
+
class BatchStatus(StrEnum):
|
|
11
|
+
"""Defines the status of a batch job."""
|
|
12
|
+
CANCELING = 'canceling'
|
|
13
|
+
IN_PROGRESS = 'in_progress'
|
|
14
|
+
FINISHED = 'finished'
|
|
15
|
+
UNKNOWN = 'unknown'
|
|
16
|
+
|
|
10
17
|
class EmitDataType(StrEnum):
|
|
11
18
|
"""Defines valid data types for emitting events."""
|
|
12
19
|
ACTIVITY = 'activity'
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from gllm_core.schema import Chunk as Chunk
|
|
2
2
|
from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
|
|
3
|
+
from gllm_inference.schema.mcp import MCPCall as MCPCall
|
|
3
4
|
from gllm_inference.schema.reasoning import Reasoning as Reasoning
|
|
4
5
|
from gllm_inference.schema.token_usage import TokenUsage as TokenUsage
|
|
5
6
|
from gllm_inference.schema.tool_call import ToolCall as ToolCall
|
|
@@ -24,6 +25,8 @@ class LMOutput(BaseModel):
|
|
|
24
25
|
citations (list[Chunk]): The citations, if the language model outputs citations. Defaults to an empty list.
|
|
25
26
|
code_exec_results (list[CodeExecResult]): The code execution results, if the language model decides to
|
|
26
27
|
execute code. Defaults to an empty list.
|
|
28
|
+
mcp_calls (list[MCPCall]): The MCP calls, if the language model decides to invoke MCP tools.
|
|
29
|
+
Defaults to an empty list.
|
|
27
30
|
"""
|
|
28
31
|
response: str
|
|
29
32
|
tool_calls: list[ToolCall]
|
|
@@ -34,3 +37,4 @@ class LMOutput(BaseModel):
|
|
|
34
37
|
reasoning: list[Reasoning]
|
|
35
38
|
citations: list[Chunk]
|
|
36
39
|
code_exec_results: list[CodeExecResult]
|
|
40
|
+
mcp_calls: list[MCPCall]
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
from pydantic import BaseModel
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
class MCPServer(BaseModel):
|
|
5
|
+
"""Defines an MCP server.
|
|
6
|
+
|
|
7
|
+
Attributes:
|
|
8
|
+
url (str): The URL of the MCP server.
|
|
9
|
+
name (str): The name of the MCP server.
|
|
10
|
+
allowed_tools (list[str] | None): The allowed tools of the MCP server.
|
|
11
|
+
Defaults to None, in which case all tools are allowed.
|
|
12
|
+
"""
|
|
13
|
+
url: str
|
|
14
|
+
name: str
|
|
15
|
+
allowed_tools: list[str] | None
|
|
16
|
+
|
|
17
|
+
class MCPCall(BaseModel):
|
|
18
|
+
"""Defines an MCP call.
|
|
19
|
+
|
|
20
|
+
Attributes:
|
|
21
|
+
id (str): The ID of the MCP call. Defaults to an empty string.
|
|
22
|
+
server_name (str): The name of the MCP server. Defaults to an empty string.
|
|
23
|
+
tool_name (str): The name of the tool. Defaults to an empty string.
|
|
24
|
+
args (dict[str, Any]): The arguments of the tool. Defaults to an empty dictionary.
|
|
25
|
+
output (str | None): The output of the tool. Defaults to None.
|
|
26
|
+
"""
|
|
27
|
+
id: str
|
|
28
|
+
server_name: str
|
|
29
|
+
tool_name: str
|
|
30
|
+
args: dict[str, Any]
|
|
31
|
+
output: str | None
|
|
Binary file
|
gllm_inference.pyi
CHANGED
|
@@ -83,15 +83,21 @@ import gllm_core.event
|
|
|
83
83
|
import gllm_core.schema
|
|
84
84
|
import gllm_core.schema.tool
|
|
85
85
|
import langchain_core.tools
|
|
86
|
+
import gllm_inference.schema.BatchStatus
|
|
86
87
|
import gllm_inference.schema.EmitDataType
|
|
87
88
|
import gllm_inference.schema.LMOutput
|
|
88
89
|
import gllm_inference.schema.Message
|
|
90
|
+
import gllm_inference.schema.MessageContent
|
|
89
91
|
import gllm_inference.schema.Reasoning
|
|
90
92
|
import gllm_inference.schema.ResponseSchema
|
|
91
93
|
import gllm_inference.schema.TokenUsage
|
|
92
94
|
import gllm_inference.schema.ToolCall
|
|
93
95
|
import gllm_inference.schema.ToolResult
|
|
94
96
|
import anthropic
|
|
97
|
+
import anthropic.types
|
|
98
|
+
import anthropic.types.message_create_params
|
|
99
|
+
import anthropic.types.messages
|
|
100
|
+
import anthropic.types.messages.batch_create_params
|
|
95
101
|
import gllm_inference.schema.MessageRole
|
|
96
102
|
import langchain_core.language_models
|
|
97
103
|
import langchain_core.messages
|
|
@@ -100,9 +106,11 @@ import litellm
|
|
|
100
106
|
import inspect
|
|
101
107
|
import time
|
|
102
108
|
import jsonschema
|
|
103
|
-
import gllm_inference.
|
|
109
|
+
import gllm_inference.lm_invoker.batch.BatchOperations
|
|
104
110
|
import gllm_inference.utils.validate_string_enum
|
|
105
111
|
import gllm_inference.schema.CodeExecResult
|
|
112
|
+
import gllm_inference.schema.MCPCall
|
|
113
|
+
import gllm_inference.schema.MCPServer
|
|
106
114
|
import xai_sdk
|
|
107
115
|
import xai_sdk.chat
|
|
108
116
|
import xai_sdk.search
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: gllm-inference-binary
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.30
|
|
4
4
|
Summary: A library containing components related to model inferences in Gen AI applications.
|
|
5
5
|
Author-email: Henry Wicaksono <henry.wicaksono@gdplabs.id>, Resti Febrina <resti.febrina@gdplabs.id>
|
|
6
6
|
Requires-Python: <3.14,>=3.11
|
|
@@ -23,9 +23,9 @@ Requires-Dist: coverage<8.0.0,>=7.4.4; extra == "dev"
|
|
|
23
23
|
Requires-Dist: mypy<2.0.0,>=1.15.0; extra == "dev"
|
|
24
24
|
Requires-Dist: pre-commit<4.0.0,>=3.7.0; extra == "dev"
|
|
25
25
|
Requires-Dist: pytest<9.0.0,>=8.1.1; extra == "dev"
|
|
26
|
-
Requires-Dist: pytest-asyncio<
|
|
26
|
+
Requires-Dist: pytest-asyncio<0.24.0,>=0.23.6; extra == "dev"
|
|
27
27
|
Requires-Dist: pytest-cov<6.0.0,>=5.0.0; extra == "dev"
|
|
28
|
-
Requires-Dist: ruff<
|
|
28
|
+
Requires-Dist: ruff<0.7.0,>=0.6.7; extra == "dev"
|
|
29
29
|
Provides-Extra: anthropic
|
|
30
30
|
Requires-Dist: anthropic<0.61.0,>=0.60.0; extra == "anthropic"
|
|
31
31
|
Provides-Extra: bedrock
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
gllm_inference.cpython-311-darwin.so,sha256=
|
|
2
|
-
gllm_inference.pyi,sha256=
|
|
1
|
+
gllm_inference.cpython-311-darwin.so,sha256=jnpzH6qgNunrQKEWU8ASU6miA_lORXLWDTL-GoPM3JQ,4571520
|
|
2
|
+
gllm_inference.pyi,sha256=F3Sng0iliny70Fkn-isyrhVcB2lsiNMSPxu_BQqnDwQ,4144
|
|
3
3
|
gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
gllm_inference/constants.pyi,sha256=EFVMtK3xDK2yjGoHp8EL3LeRZWhIefVKClI9jvbfQQ0,267
|
|
5
5
|
gllm_inference/builder/__init__.pyi,sha256=usz2lvfwO4Yk-ZGKXbCWG1cEr3nlQXxMNDNC-2yc1NM,500
|
|
@@ -36,24 +36,26 @@ gllm_inference/exceptions/error_parser.pyi,sha256=IOfa--NpLUW5E9Qq0mwWi6ZpTAbUyy
|
|
|
36
36
|
gllm_inference/exceptions/exceptions.pyi,sha256=Bv996qLa_vju0Qjf4GewMxdkq8CV9LRZb0S6289DldA,5725
|
|
37
37
|
gllm_inference/exceptions/provider_error_map.pyi,sha256=P1WnhWkM103FW6hqMfNZBOmYSWOmsJtll3VQV8DGb8E,1210
|
|
38
38
|
gllm_inference/lm_invoker/__init__.pyi,sha256=NmQSqObPjevEP1KbbrNnaz4GMh175EVPERZ19vK5Emc,1202
|
|
39
|
-
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=
|
|
40
|
-
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=
|
|
41
|
-
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=
|
|
42
|
-
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=
|
|
43
|
-
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=
|
|
44
|
-
gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=
|
|
45
|
-
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=
|
|
46
|
-
gllm_inference/lm_invoker/lm_invoker.pyi,sha256=
|
|
47
|
-
gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=
|
|
48
|
-
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=
|
|
39
|
+
gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=MXvopJfqv-lBhnFFn01yW-D9Hh3JYL3PiFf3cg-dfp0,16542
|
|
40
|
+
gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=EXPFTsPwUk42B12MVDhh98maCFSkdPWfqJeht5Wjpq4,14783
|
|
41
|
+
gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=uZ9wpzOKSOvgu1ICMLqEXcrOE3RIbUmqHmgtuwBekPg,12802
|
|
42
|
+
gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=J_tfnIgVDr-zQ7YE5_TKMyZyA336ly04g1l-ZKnr1As,9315
|
|
43
|
+
gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=4-3CwfBcDh6thxkidRcYbGVp9bCDkQTemat6VBHsUC8,17164
|
|
44
|
+
gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=hnQcScOHs31xx4GB6YI-RnREiNg7r8fvQrmGBscQlu0,13711
|
|
45
|
+
gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=eEPvDOCj55f9wJ0neNl4O9XQWvSI6YWJgHZMHOaYGRk,13240
|
|
46
|
+
gllm_inference/lm_invoker/lm_invoker.pyi,sha256=zlhvzAs2oWX3vv_HcYpl-0qSRqLZ4Tb020CmI4Oixto,8202
|
|
47
|
+
gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=XV-KjulVYAhU0e2giqOdHUGCSCrybXRWsrtzZByqOXI,15050
|
|
48
|
+
gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=PNlhhb_lVk91dNSuha9ZuK6YaRDYVnc94Tbnj3z9wds,21769
|
|
49
49
|
gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=rV8D3E730OUmwK7jELKSziMUl7MnpbfxMAvMuq8-Aew,15687
|
|
50
|
+
gllm_inference/lm_invoker/batch/__init__.pyi,sha256=W4W-_yfk7lL20alREJai6GnwuQvdlKRfwQCX4mQK4XI,127
|
|
51
|
+
gllm_inference/lm_invoker/batch/batch_operations.pyi,sha256=Pf_gORe6Oh6cDT_sJhF0h8I7rEsTbwQZMG85NOQw3xQ,2965
|
|
50
52
|
gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
|
-
gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=
|
|
53
|
+
gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=6lreMyHKRfZzX5NBYKnQf1Z6RzXBjTvqZj2VbMeaTLQ,1098
|
|
52
54
|
gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=FJLY-ZkkLUYDV48pfsLatnot4ev_xxz9xAayLK28CpU,1027
|
|
53
55
|
gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=aA4DhTXIezwLvFzphR24a5ueVln2FCBIloP9Hbt3iz4,230
|
|
54
56
|
gllm_inference/lm_invoker/schema/google.pyi,sha256=AIsNgq0ZZuicHmx4bL7z6q-946T05nWts3HUeA8hhHQ,505
|
|
55
57
|
gllm_inference/lm_invoker/schema/langchain.pyi,sha256=rZcIxuvABI4pKfyVvkRBRqfJJogZ67EFPydpubHt49c,429
|
|
56
|
-
gllm_inference/lm_invoker/schema/openai.pyi,sha256=
|
|
58
|
+
gllm_inference/lm_invoker/schema/openai.pyi,sha256=oju4itbH6mm-yMCqX3m-448XJra4cg6oHHq7abYGM_g,2187
|
|
57
59
|
gllm_inference/lm_invoker/schema/openai_compatible.pyi,sha256=m3bL2hVpxI_crURIi1bGDUqMy1Z5OgKBVU_-BkhX1mg,1166
|
|
58
60
|
gllm_inference/lm_invoker/schema/xai.pyi,sha256=cWnbJmDtllqRH3NXpQbiXgkNBcUXr8ksDSDywcgJebE,632
|
|
59
61
|
gllm_inference/model/__init__.pyi,sha256=qClHIgljqhPPCKlGTKmHsWgYb4_hADybxtC2q1U8a5Q,593
|
|
@@ -81,12 +83,13 @@ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=UkcPi5ao98OGJyNRsqfh
|
|
|
81
83
|
gllm_inference/request_processor/__init__.pyi,sha256=hVnfdNZnkTBJHnmLtN3Na4ANP0yK6AstWdIizVr2Apo,227
|
|
82
84
|
gllm_inference/request_processor/lm_request_processor.pyi,sha256=VnYc8E3Iayyhw-rPnGPfTKuO3ohgFsS8HPrZJeyES5I,5889
|
|
83
85
|
gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=Yu0XPNuHxq1tWBviHTPw1oThojneFwGHepvGjBXxKQA,6382
|
|
84
|
-
gllm_inference/schema/__init__.pyi,sha256=
|
|
86
|
+
gllm_inference/schema/__init__.pyi,sha256=xKwbHrU4AGN-iSnNoAoHd2SsqnVqmhq7sGv8k61nU5k,1606
|
|
85
87
|
gllm_inference/schema/attachment.pyi,sha256=jApuzjOHJDCz4lr4MlHzBgIndh559nbWu2Xp1fk3hso,3297
|
|
86
88
|
gllm_inference/schema/code_exec_result.pyi,sha256=ZTHh6JtRrPIdQ059P1UAiD2L-tAO1_S5YcMsAXfJ5A0,559
|
|
87
89
|
gllm_inference/schema/config.pyi,sha256=rAL_UeXyQeXVk1P2kqd8vFWOMwmKenfpQLtvMP74t9s,674
|
|
88
|
-
gllm_inference/schema/enums.pyi,sha256=
|
|
89
|
-
gllm_inference/schema/lm_output.pyi,sha256=
|
|
90
|
+
gllm_inference/schema/enums.pyi,sha256=XQpohUC7_9nFdEmSZHj_4YmOAwM_C5jvTWw_RN-JiFk,901
|
|
91
|
+
gllm_inference/schema/lm_output.pyi,sha256=15y-M0lpqM_fSlErPKiN1Pj-ikl5NtFBcWLMYsRidt8,2182
|
|
92
|
+
gllm_inference/schema/mcp.pyi,sha256=Vwu8E2BDl6FvvnI42gIyY3Oki1BdwRE3Uh3aV0rmhQU,1014
|
|
90
93
|
gllm_inference/schema/message.pyi,sha256=VP9YppKj2mo1esl9cy6qQO9m2mMHUjTmfGDdyUor880,2220
|
|
91
94
|
gllm_inference/schema/model_id.pyi,sha256=qrr0x4qkd6cGIbc4XATWJb0uckKhd1sAdR_xT7vGIXI,5491
|
|
92
95
|
gllm_inference/schema/reasoning.pyi,sha256=SlTuiDw87GdnAn-I6YOPIJRhEBiwQljM46JohG05guQ,562
|
|
@@ -99,7 +102,7 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
|
|
|
99
102
|
gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
|
|
100
103
|
gllm_inference/utils/validation.pyi,sha256=toxBtRp-VItC_X7sNi-GDd7sjibBdWMrR0q01OI2D7k,385
|
|
101
104
|
gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
|
|
102
|
-
gllm_inference_binary-0.5.
|
|
103
|
-
gllm_inference_binary-0.5.
|
|
104
|
-
gllm_inference_binary-0.5.
|
|
105
|
-
gllm_inference_binary-0.5.
|
|
105
|
+
gllm_inference_binary-0.5.30.dist-info/METADATA,sha256=NX8jJe_24A18KRxeJuRZFQuH_JfgUbENb4SRm2jB2B0,4857
|
|
106
|
+
gllm_inference_binary-0.5.30.dist-info/WHEEL,sha256=s8TBzVnsSJujxqbMe-G5Vh0IPlslLTnVva4BiQ75Hjo,105
|
|
107
|
+
gllm_inference_binary-0.5.30.dist-info/top_level.txt,sha256=FpOjtN80F-qVNgbScXSEyqa0w09FYn6301iq6qt69IQ,15
|
|
108
|
+
gllm_inference_binary-0.5.30.dist-info/RECORD,,
|
|
File without changes
|
{gllm_inference_binary-0.5.28.dist-info → gllm_inference_binary-0.5.30.dist-info}/top_level.txt
RENAMED
|
File without changes
|