gllm-inference-binary 0.5.20__cp313-cp313-manylinux_2_31_x86_64.whl → 0.5.22__cp313-cp313-manylinux_2_31_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -160,17 +160,17 @@ class AzureOpenAILMInvoker(OpenAILMInvoker):
160
160
  ```
161
161
 
162
162
  Reasoning:
163
- Azure OpenAI\'s o-series models are classified as reasoning models. Reasoning models think before they answer,
164
- producing a long internal chain of thought before responding to the user. Reasoning models excel in
165
- complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
163
+ Azure OpenAI\'s GPT-5 models and o-series models are classified as reasoning models. Reasoning models think
164
+ before they answer, producing a long internal chain of thought before responding to the user. Reasoning models
165
+ excel in complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
166
166
 
167
167
  The reasoning effort of reasoning models can be set via the `reasoning_effort` parameter. This parameter
168
- will guide the models on how many reasoning tokens it should generate before creating a response to the prompt.
168
+ will guide the models on how many reasoning tokens it should generate before creating a response.
169
169
  Available options include:
170
- 1. "low": Favors speed and economical token usage.
171
- 2. "medium": Favors a balance between speed and reasoning accuracy.
172
- 3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
173
- When not set, the reasoning effort will be equivalent to `medium` by default.
170
+ 1. "minimal": Favors the least amount of reasoning, only supported for GPT-5 models onwards.
171
+ 2. "low": Favors speed and economical token usage.
172
+ 3. "medium": Favors a balance between speed and reasoning accuracy.
173
+ 4. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
174
174
 
175
175
  Azure OpenAI doesn\'t expose the raw reasoning tokens. However, the summary of the reasoning tokens can still be
176
176
  generated. The summary level can be set via the `reasoning_summary` parameter. Available options include:
@@ -159,16 +159,17 @@ class OpenAILMInvoker(BaseLMInvoker):
159
159
  ```
160
160
 
161
161
  Reasoning:
162
- OpenAI\'s o-series models are classified as reasoning models. Reasoning models think before they answer,
163
- producing a long internal chain of thought before responding to the user. Reasoning models excel in
164
- complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
162
+ OpenAI\'s GPT-5 models and o-series models are classified as reasoning models. Reasoning models think before
163
+ they answer, producing a long internal chain of thought before responding to the user. Reasoning models
164
+ excel in complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
165
165
 
166
166
  The reasoning effort of reasoning models can be set via the `reasoning_effort` parameter. This parameter
167
167
  will guide the models on how many reasoning tokens it should generate before creating a response.
168
168
  Available options include:
169
- 1. "low": Favors speed and economical token usage.
170
- 2. "medium": Favors a balance between speed and reasoning accuracy.
171
- 3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
169
+ 1. "minimal": Favors the least amount of reasoning, only supported for GPT-5 models onwards.
170
+ 2. "low": Favors speed and economical token usage.
171
+ 3. "medium": Favors a balance between speed and reasoning accuracy.
172
+ 4. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
172
173
  When not set, the reasoning effort will be equivalent to `medium` by default.
173
174
 
174
175
  OpenAI doesn\'t expose the raw reasoning tokens. However, the summary of the reasoning tokens can still be
@@ -83,6 +83,7 @@ class ReasoningEffort(StrEnum):
83
83
  HIGH = 'high'
84
84
  MEDIUM = 'medium'
85
85
  LOW = 'low'
86
+ MINIMAL = 'minimal'
86
87
 
87
88
  class ReasoningSummary(StrEnum):
88
89
  """Defines the reasoning summary for reasoning models."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.20
3
+ Version: 0.5.22
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author: Henry Wicaksono
6
6
  Author-email: henry.wicaksono@gdplabs.id
@@ -23,7 +23,7 @@ Requires-Dist: aiohttp (>=3.12.14,<4.0.0)
23
23
  Requires-Dist: anthropic (>=0.60.0,<0.61.0) ; extra == "anthropic"
24
24
  Requires-Dist: filetype (>=1.2.0,<2.0.0)
25
25
  Requires-Dist: gllm-core-binary (>=0.3.0,<0.4.0)
26
- Requires-Dist: google-genai (==1.20.0) ; extra == "google"
26
+ Requires-Dist: google-genai (>=1.26.0,<2.0.0) ; extra == "google"
27
27
  Requires-Dist: httpx (>=0.28.0,<0.29.0)
28
28
  Requires-Dist: huggingface-hub (>=0.30.0,<0.31.0) ; extra == "huggingface"
29
29
  Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
@@ -34,7 +34,7 @@ gllm_inference/exceptions/error_parser.pyi,sha256=4RkVfS2Fl9kjz_h2bK9eoAeI-Y-VkH
34
34
  gllm_inference/exceptions/exceptions.pyi,sha256=5YRackwVNvyOJjOtiVszqu8q87s8ioXTa-XwaYmeiC4,4643
35
35
  gllm_inference/lm_invoker/__init__.pyi,sha256=NmQSqObPjevEP1KbbrNnaz4GMh175EVPERZ19vK5Emc,1202
36
36
  gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=MsF3OmDo0L9aEHuTJYTgsoDILi2B_IgKtPpDcDMduWc,14925
37
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=AoEC8GdPW2LAyiCfH7CoSGHRTlVUcteVx0WTIwkBljI,14527
37
+ gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=94SgOYmMW-hI3TeGRMslplC5xZPxKs3M7CMcAuAZyO0,14545
38
38
  gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=IuLxgCThOSBHx1AXqnhL6yVu5_JV6hAeGBWWm5P1JCo,12423
39
39
  gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=QS84w3WpD3Oyl5HdxrucsadCmsHE8gn6Ewl3l01DCgI,9203
40
40
  gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=aPOlaw2rexUDhbMFaXnuKqOT7lqeKxjfeToe9LjwEUw,16787
@@ -42,14 +42,14 @@ gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=skcbX34ZosGMFli3SLmGIT
42
42
  gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=_c56ewpEQ-Ywj5ofFzRYBvQgefR7Q_WkcQt97lnIFgg,13128
43
43
  gllm_inference/lm_invoker/lm_invoker.pyi,sha256=uKKNom4kjH7xUnOsqh9DBRumo244U-f6EjR5kLncEys,7823
44
44
  gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=_hOAde_Faph3JoGYh7zLch6BRc2Lam8PXZvi5-PkL-E,14938
45
- gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=y9IiSvffDVA7cQh24nFZa2qbl-YOBT8A0rBWUcH8I6c,19531
45
+ gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=wPTJr5DkXpoXpxw3MoaqEnzAOUanBRGUu954KdKDaVU,19649
46
46
  gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
47
  gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=zNbm4RV454dBEEUUN-Vyl_4cO628wUMPZyrO27O_DfM,991
48
48
  gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=FOUMZkBi6KRa__mYoy3FNJ5sP0EC6rgLuhoijnwelIg,927
49
49
  gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=aA4DhTXIezwLvFzphR24a5ueVln2FCBIloP9Hbt3iz4,230
50
50
  gllm_inference/lm_invoker/schema/google.pyi,sha256=AIsNgq0ZZuicHmx4bL7z6q-946T05nWts3HUeA8hhHQ,505
51
51
  gllm_inference/lm_invoker/schema/langchain.pyi,sha256=l2kHU7S3vmG3-NCt8B26krp_i4Br3waES_CekkgrKSA,409
52
- gllm_inference/lm_invoker/schema/openai.pyi,sha256=w_XSzOohX_7vnR81hVXdgDbBqk737LmMAN_AvODGk2I,1902
52
+ gllm_inference/lm_invoker/schema/openai.pyi,sha256=9KjOJMnDyPs4hsysD8qFEMObUkbnxp6U9PmRIiUa3h4,1926
53
53
  gllm_inference/lm_invoker/schema/openai_compatible.pyi,sha256=m3bL2hVpxI_crURIi1bGDUqMy1Z5OgKBVU_-BkhX1mg,1166
54
54
  gllm_inference/lm_invoker/schema/xai.pyi,sha256=cWnbJmDtllqRH3NXpQbiXgkNBcUXr8ksDSDywcgJebE,632
55
55
  gllm_inference/lm_invoker/xai_lm_invoker.pyi,sha256=wPzjSLLiPb4DB1gJjtCs6URPUN0JCDcIxeNRsmD6tbo,15420
@@ -96,8 +96,8 @@ gllm_inference/utils/io_utils.pyi,sha256=7kUTacHAVRYoemFUOjCH7-Qmw-YsQGd6rGYxjf_
96
96
  gllm_inference/utils/langchain.pyi,sha256=VluQiHkGigDdqLUbhB6vnXiISCP5hHqV0qokYY6dC1A,1164
97
97
  gllm_inference/utils/validation.pyi,sha256=toxBtRp-VItC_X7sNi-GDd7sjibBdWMrR0q01OI2D7k,385
98
98
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
99
- gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=jwwiGpOGCRVrW31cK29huqEf_dxu0n9CAPNl3EMKsmM,4367528
99
+ gllm_inference.cpython-313-x86_64-linux-gnu.so,sha256=hm1eT48i51NCfmmEu05NArSwwkFBUu516r2GAW_O5lY,4367528
100
100
  gllm_inference.pyi,sha256=uxl1voKdn19LurAHKEZLWbq9ryPO4UkJ1Nk1MM8IL34,3636
101
- gllm_inference_binary-0.5.20.dist-info/METADATA,sha256=Uq49Bd6PIOb23ezYyti27LutHIe-fqCtcpC9rbv2PNE,4608
102
- gllm_inference_binary-0.5.20.dist-info/WHEEL,sha256=qGYSeeDMRvGsNMRKS15OK05VQRV6Z0DMQkqDjYiypg0,110
103
- gllm_inference_binary-0.5.20.dist-info/RECORD,,
101
+ gllm_inference_binary-0.5.22.dist-info/METADATA,sha256=cYrD49wnleGgC4XFM7sECpvEUXxaoewJ9DOBqCCQdwc,4615
102
+ gllm_inference_binary-0.5.22.dist-info/WHEEL,sha256=qGYSeeDMRvGsNMRKS15OK05VQRV6Z0DMQkqDjYiypg0,110
103
+ gllm_inference_binary-0.5.22.dist-info/RECORD,,