gllm-inference-binary 0.5.14__cp312-cp312-win_amd64.whl → 0.5.16__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

@@ -1,5 +1,5 @@
1
1
  from _typeshed import Incomplete
2
- from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, GoogleEMInvoker as GoogleEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
2
+ from gllm_inference.em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker, BedrockEMInvoker as BedrockEMInvoker, GoogleEMInvoker as GoogleEMInvoker, LangChainEMInvoker as LangChainEMInvoker, OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker, OpenAIEMInvoker as OpenAIEMInvoker, TwelveLabsEMInvoker as TwelveLabsEMInvoker, VoyageEMInvoker as VoyageEMInvoker
3
3
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
4
4
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
5
5
  from typing import Any
@@ -9,6 +9,7 @@ logger: Incomplete
9
9
 
10
10
  class Key:
11
11
  """Defines valid keys in the config."""
12
+ ACCESS_KEY_ID: str
12
13
  API_KEY: str
13
14
  AZURE_DEPLOYMENT: str
14
15
  AZURE_ENDPOINT: str
@@ -17,6 +18,7 @@ class Key:
17
18
  MODEL_KWARGS: str
18
19
  MODEL_NAME: str
19
20
  MODEL_CLASS_PATH: str
21
+ SECRET_ACCESS_KEY: str
20
22
 
21
23
  def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any] | None = None, config: dict[str, Any] | None = None) -> BaseEMInvoker:
22
24
  '''Build an embedding model invoker based on the provided configurations.
@@ -41,6 +43,19 @@ def build_em_invoker(model_id: str | ModelId, credentials: str | dict[str, Any]
41
43
  ValueError: If the provider is invalid.
42
44
 
43
45
  Usage examples:
46
+ # Using Bedrock
47
+ ```python
48
+ em_invoker = build_em_invoker(
49
+ model_id="bedrock/cohere.embed-english-v3",
50
+ credentials={
51
+ "access_key_id": "Abc123...",
52
+ "secret_access_key": "Xyz123...",
53
+ },
54
+ )
55
+ ```
56
+ The credentials can also be provided through the `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`
57
+ environment variables.
58
+
44
59
  # Using Google Gen AI (via API key)
45
60
  ```python
46
61
  em_invoker = build_em_invoker(
@@ -1,4 +1,5 @@
1
1
  from gllm_inference.em_invoker.azure_openai_em_invoker import AzureOpenAIEMInvoker as AzureOpenAIEMInvoker
2
+ from gllm_inference.em_invoker.bedrock_em_invoker import BedrockEMInvoker as BedrockEMInvoker
2
3
  from gllm_inference.em_invoker.google_em_invoker import GoogleEMInvoker as GoogleEMInvoker
3
4
  from gllm_inference.em_invoker.langchain_em_invoker import LangChainEMInvoker as LangChainEMInvoker
4
5
  from gllm_inference.em_invoker.openai_compatible_em_invoker import OpenAICompatibleEMInvoker as OpenAICompatibleEMInvoker
@@ -6,4 +7,4 @@ from gllm_inference.em_invoker.openai_em_invoker import OpenAIEMInvoker as OpenA
6
7
  from gllm_inference.em_invoker.twelevelabs_em_invoker import TwelveLabsEMInvoker as TwelveLabsEMInvoker
7
8
  from gllm_inference.em_invoker.voyage_em_invoker import VoyageEMInvoker as VoyageEMInvoker
8
9
 
9
- __all__ = ['AzureOpenAIEMInvoker', 'GoogleEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
10
+ __all__ = ['AzureOpenAIEMInvoker', 'BedrockEMInvoker', 'GoogleEMInvoker', 'LangChainEMInvoker', 'OpenAIEMInvoker', 'OpenAICompatibleEMInvoker', 'TwelveLabsEMInvoker', 'VoyageEMInvoker']
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
3
  from gllm_inference.constants import DEFAULT_AZURE_OPENAI_API_VERSION as DEFAULT_AZURE_OPENAI_API_VERSION, INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
4
4
  from gllm_inference.em_invoker.openai_em_invoker import OpenAIEMInvoker as OpenAIEMInvoker
5
5
  from gllm_inference.em_invoker.schema.openai import Key as Key
6
- from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider
6
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig
7
7
  from typing import Any
8
8
 
9
9
  class AzureOpenAIEMInvoker(OpenAIEMInvoker):
@@ -16,6 +16,7 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
16
16
  client (AsyncAzureOpenAI): The client for the Azure OpenAI API.
17
17
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
18
18
  retry_config (RetryConfig): The retry configuration for the embedding model.
19
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
19
20
 
20
21
  Input types:
21
22
  The `AzureOpenAIEMInvoker` only supports text inputs.
@@ -68,7 +69,7 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
68
69
  ```
69
70
  '''
70
71
  client: Incomplete
71
- def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
72
+ def __init__(self, azure_endpoint: str, azure_deployment: str, api_key: str | None = None, api_version: str = ..., model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
72
73
  """Initializes a new instance of the AzureOpenAIEMInvoker class.
73
74
 
74
75
  Args:
@@ -83,4 +84,6 @@ class AzureOpenAIEMInvoker(OpenAIEMInvoker):
83
84
  Defaults to None.
84
85
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
85
86
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
87
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
88
+ Defaults to None, in which case no truncation is applied.
86
89
  """
@@ -0,0 +1,104 @@
1
+ from _typeshed import Incomplete
2
+ from enum import StrEnum
3
+ from gllm_core.utils.retry import RetryConfig as RetryConfig
4
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
+ from gllm_inference.em_invoker.schema.bedrock import InputType as InputType, Key as Key, OutputType as OutputType
6
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
7
+ from typing import Any
8
+
9
+ class ModelType(StrEnum):
10
+ """Defines the type of the Bedrock embedding model."""
11
+ COHERE = 'cohere'
12
+ TITAN = 'titan'
13
+
14
+ SUPPORTED_ATTACHMENTS: Incomplete
15
+
16
+ class BedrockEMInvoker(BaseEMInvoker):
17
+ '''An embedding model invoker to interact with AWS Bedrock embedding models.
18
+
19
+ Attributes:
20
+ model_id (str): The model ID of the embedding model.
21
+ model_provider (str): The provider of the embedding model.
22
+ model_name (str): The name of the embedding model.
23
+ session (Session): The Bedrock client session.
24
+ client_kwargs (dict[str, Any]): The Bedrock client kwargs.
25
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
26
+ retry_config (RetryConfig): The retry configuration for the embedding model.
27
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
28
+
29
+ Input types:
30
+ The `BedrockEMInvoker` only supports text inputs.
31
+
32
+ Output format:
33
+ The `BedrockEMInvoker` can embed either:
34
+ 1. A single content.
35
+ 1. A single content is a single text.
36
+ 2. The output will be a `Vector`, representing the embedding of the content.
37
+
38
+ # Example 1: Embedding a text content.
39
+ ```python
40
+ text = "This is a text"
41
+ result = await em_invoker.invoke(text)
42
+ ```
43
+
44
+ The above examples will return a `Vector` with a size of (embedding_size,).
45
+
46
+ 2. A list of contents.
47
+ 1. A list of contents is a list of texts.
48
+ 2. The output will be a `list[Vector]`, where each element is a `Vector` representing the
49
+ embedding of each single content.
50
+
51
+ # Example: Embedding a list of contents.
52
+ ```python
53
+ text1 = "This is a text"
54
+ text2 = "This is another text"
55
+ text3 = "This is yet another text"
56
+ result = await em_invoker.invoke([text1, text2, text3])
57
+ ```
58
+
59
+ The above examples will return a `list[Vector]` with a size of (3, embedding_size).
60
+
61
+ Retry and timeout:
62
+ The `BedrockEMInvoker` supports retry and timeout configuration.
63
+ By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
64
+ They can be customized by providing a custom `RetryConfig` object to the `retry_config` parameter.
65
+
66
+ Retry config examples:
67
+ ```python
68
+ retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
69
+ retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
70
+ retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
71
+ retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
72
+ ```
73
+
74
+ Usage example:
75
+ ```python
76
+ em_invoker = BedrockEMInvoker(..., retry_config=retry_config)
77
+ ```
78
+ '''
79
+ session: Incomplete
80
+ client_kwargs: Incomplete
81
+ def __init__(self, model_name: str, access_key_id: str | None = None, secret_access_key: str | None = None, region_name: str = 'us-east-1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
82
+ '''Initializes a new instance of the BedrockEMInvoker class.
83
+
84
+ Args:
85
+ model_name (str): The name of the Bedrock embedding model to be used.
86
+ access_key_id (str | None, optional): The AWS access key ID. Defaults to None, in which case
87
+ the `AWS_ACCESS_KEY_ID` environment variable will be used.
88
+ secret_access_key (str | None, optional): The AWS secret access key. Defaults to None, in which case
89
+ the `AWS_SECRET_ACCESS_KEY` environment variable will be used.
90
+ region_name (str, optional): The AWS region name. Defaults to "us-east-1".
91
+ model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the Bedrock client.
92
+ Defaults to None.
93
+ default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
94
+ Defaults to None.
95
+ retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
96
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
97
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
98
+ Defaults to None, in which case no truncation is applied.
99
+
100
+ Raises:
101
+ ValueError: If the model name is not supported.
102
+ ValueError: If `access_key_id` or `secret_access_key` is neither provided nor set in the
103
+ `AWS_ACCESS_KEY_ID` or `AWS_SECRET_ACCESS_KEY` environment variables, respectively.
104
+ '''
@@ -4,7 +4,7 @@ from abc import ABC
4
4
  from gllm_core.utils.retry import RetryConfig
5
5
  from gllm_inference.constants import DOCUMENT_MIME_TYPES as DOCUMENT_MIME_TYPES, INVOKER_DEFAULT_TIMEOUT as INVOKER_DEFAULT_TIMEOUT
6
6
  from gllm_inference.exceptions import parse_error_message as parse_error_message
7
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, Vector as Vector
7
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, TruncateSide as TruncateSide, TruncationConfig as TruncationConfig, Vector as Vector
8
8
  from typing import Any
9
9
 
10
10
  class BaseEMInvoker(ABC, metaclass=abc.ABCMeta):
@@ -16,12 +16,17 @@ class BaseEMInvoker(ABC, metaclass=abc.ABCMeta):
16
16
  model_id (str): The model ID of the embedding model.
17
17
  model_provider (str): The provider of the embedding model.
18
18
  model_name (str): The name of the embedding model.
19
- default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
19
+ default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the
20
+ embedding model. Defaults to None, in which case an empty dictionary is used.
20
21
  retry_config (RetryConfig): The retry configuration for the embedding model.
22
+ Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
23
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
24
+ Defaults to None, in which case no truncation is applied.
21
25
  """
22
26
  default_hyperparameters: Incomplete
23
27
  retry_config: Incomplete
24
- def __init__(self, model_id: ModelId, default_hyperparameters: dict[str, Any] | None = None, supported_attachments: set[str] | None = None, retry_config: RetryConfig | None = None) -> None:
28
+ truncation_config: Incomplete
29
+ def __init__(self, model_id: ModelId, default_hyperparameters: dict[str, Any] | None = None, supported_attachments: set[str] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
25
30
  """Initializes a new instance of the BaseEMInvoker class.
26
31
 
27
32
  Args:
@@ -32,6 +37,8 @@ class BaseEMInvoker(ABC, metaclass=abc.ABCMeta):
32
37
  in which case an empty set is used (indicating that no attachments are supported).
33
38
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
34
39
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
40
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
41
+ Defaults to None, in which case no truncation is applied.
35
42
  """
36
43
  @property
37
44
  def model_id(self) -> str:
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
3
  from gllm_inference.constants import GOOGLE_SCOPES as GOOGLE_SCOPES, SECONDS_TO_MILLISECONDS as SECONDS_TO_MILLISECONDS
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.google import Key as Key
6
- from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
6
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
7
7
  from typing import Any
8
8
 
9
9
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -17,7 +17,8 @@ class GoogleEMInvoker(BaseEMInvoker):
17
17
  model_name (str): The name of the embedding model.
18
18
  client_params (dict[str, Any]): The Google client instance init parameters.
19
19
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
20
- retry_config (RetryConfig | None): The retry configuration for the language model.
20
+ retry_config (RetryConfig): The retry configuration for the embedding model.
21
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
21
22
 
22
23
  Initialization:
23
24
  The `GoogleEMInvoker` can use either Google Gen AI or Google Vertex AI.
@@ -98,7 +99,7 @@ class GoogleEMInvoker(BaseEMInvoker):
98
99
  ```
99
100
  '''
100
101
  client_params: Incomplete
101
- def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
102
+ def __init__(self, model_name: str, api_key: str | None = None, credentials_path: str | None = None, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
102
103
  '''Initializes a new instance of the GoogleEMInvoker class.
103
104
 
104
105
  Args:
@@ -117,6 +118,8 @@ class GoogleEMInvoker(BaseEMInvoker):
117
118
  Defaults to None.
118
119
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
119
120
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
121
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
122
+ Defaults to None, in which case no truncation is applied.
120
123
 
121
124
  Note:
122
125
  If neither `api_key` nor `credentials_path` is provided, Google Gen AI will be used by default.
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig
3
3
  from gllm_inference.constants import INVOKER_DEFAULT_TIMEOUT as INVOKER_DEFAULT_TIMEOUT, INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.langchain import Key as Key
6
- from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
6
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
7
7
  from gllm_inference.utils import load_langchain_model as load_langchain_model, parse_model_data as parse_model_data
8
8
  from langchain_core.embeddings import Embeddings as Embeddings
9
9
  from typing import Any
@@ -19,9 +19,10 @@ class LangChainEMInvoker(BaseEMInvoker):
19
19
  model_name (str): The name of the embedding model.
20
20
  em (Embeddings): The instance to interact with an embedding model defined using LangChain's Embeddings.
21
21
  retry_config (RetryConfig): The retry configuration for the embedding model.
22
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
22
23
  """
23
24
  model: Incomplete
24
- def __init__(self, model: Embeddings | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
25
+ def __init__(self, model: Embeddings | None = None, model_class_path: str | None = None, model_name: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
25
26
  '''Initializes a new instance of the LangChainEMInvoker class.
26
27
 
27
28
  Args:
@@ -38,4 +39,6 @@ class LangChainEMInvoker(BaseEMInvoker):
38
39
  Defaults to None.
39
40
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
40
41
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
42
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
43
+ Defaults to None, in which case no truncation is applied.
41
44
  '''
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
3
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
4
4
  from gllm_inference.em_invoker.openai_em_invoker import OpenAIEMInvoker as OpenAIEMInvoker
5
5
  from gllm_inference.em_invoker.schema.openai_compatible import Key as Key
6
- from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider
6
+ from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig
7
7
  from typing import Any
8
8
 
9
9
  class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
@@ -16,6 +16,8 @@ class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
16
16
  client (AsyncOpenAI): The OpenAI client instance.
17
17
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
18
18
  retry_config (RetryConfig): The retry configuration for the embedding model.
19
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
20
+
19
21
 
20
22
  When to use:
21
23
  The `OpenAICompatibleEMInvoker` is designed to interact with endpoints that are compatible with OpenAI\'s
@@ -76,7 +78,7 @@ class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
76
78
  ```
77
79
  '''
78
80
  client: Incomplete
79
- def __init__(self, model_name: str, base_url: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
81
+ def __init__(self, model_name: str, base_url: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
80
82
  """Initializes a new instance of the OpenAICompatibleEMInvoker class.
81
83
 
82
84
  Args:
@@ -89,4 +91,6 @@ class OpenAICompatibleEMInvoker(OpenAIEMInvoker):
89
91
  Defaults to None.
90
92
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
91
93
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
94
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
95
+ Defaults to None, in which case no truncation is applied.
92
96
  """
@@ -4,6 +4,7 @@ from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_P
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.openai import Key as Key
6
6
  from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
7
+ from gllm_inference.schema.config import TruncationConfig as TruncationConfig
7
8
  from typing import Any
8
9
 
9
10
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -18,6 +19,7 @@ class OpenAIEMInvoker(BaseEMInvoker):
18
19
  client (AsyncOpenAI): The client for the OpenAI API.
19
20
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
20
21
  retry_config (RetryConfig): The retry configuration for the embedding model.
22
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
21
23
 
22
24
  Input types:
23
25
  The `OpenAIEMInvoker` only supports text inputs.
@@ -70,7 +72,7 @@ class OpenAIEMInvoker(BaseEMInvoker):
70
72
  ```
71
73
  '''
72
74
  client: Incomplete
73
- def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
75
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
74
76
  """Initializes a new instance of the OpenAIEMInvoker class.
75
77
 
76
78
  Args:
@@ -83,4 +85,6 @@ class OpenAIEMInvoker(BaseEMInvoker):
83
85
  Defaults to None.
84
86
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
85
87
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
88
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
89
+ Defaults to None, in which case no truncation is applied.
86
90
  """
@@ -0,0 +1,20 @@
1
+ class Key:
2
+ """Defines valid keys in Bedrock."""
3
+ ACCEPT: str
4
+ CONTENT_TYPE: str
5
+ INPUT_TEXT: str
6
+ INPUT_TYPE: str
7
+ MODEL_ID: str
8
+ TEXTS: str
9
+
10
+ class InputType:
11
+ """Defines valid input types in Bedrock."""
12
+ APPLICATION_JSON: str
13
+ SEARCH_DOCUMENT: str
14
+ SEARCH_QUERY: str
15
+
16
+ class OutputType:
17
+ """Defines valid output types in Bedrock."""
18
+ BODY: str
19
+ EMBEDDING: str
20
+ EMBEDDINGS: str
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
3
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.twelvelabs import InputType as InputType, Key as Key, OutputType as OutputType
6
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
6
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
7
7
  from typing import Any
8
8
 
9
9
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -18,6 +18,7 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
18
18
  client (Client): The client for the TwelveLabs API.
19
19
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
20
20
  retry_config (RetryConfig): The retry configuration for the embedding model.
21
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
21
22
 
22
23
  Input types:
23
24
  The `TwelveLabsEMInvoker` supports the following input types: text, audio, and image.
@@ -83,7 +84,7 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
83
84
  ```
84
85
  '''
85
86
  client: Incomplete
86
- def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
87
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
87
88
  """Initializes a new instance of the TwelveLabsEMInvoker class.
88
89
 
89
90
  Args:
@@ -96,4 +97,6 @@ class TwelveLabsEMInvoker(BaseEMInvoker):
96
97
  Defaults to None.
97
98
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
98
99
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
100
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
101
+ Defaults to None, in which case no truncation is applied.
99
102
  """
@@ -3,7 +3,7 @@ from gllm_core.utils.retry import RetryConfig as RetryConfig
3
3
  from gllm_inference.constants import INVOKER_PROPAGATED_MAX_RETRIES as INVOKER_PROPAGATED_MAX_RETRIES
4
4
  from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
5
5
  from gllm_inference.em_invoker.schema.voyage import InputType as InputType, Key as Key
6
- from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
6
+ from gllm_inference.schema import Attachment as Attachment, AttachmentType as AttachmentType, EMContent as EMContent, ModelId as ModelId, ModelProvider as ModelProvider, TruncationConfig as TruncationConfig, Vector as Vector
7
7
  from typing import Any
8
8
 
9
9
  SUPPORTED_ATTACHMENTS: Incomplete
@@ -19,6 +19,7 @@ class VoyageEMInvoker(BaseEMInvoker):
19
19
  client (Client): The client for the Voyage API.
20
20
  default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
21
21
  retry_config (RetryConfig): The retry configuration for the embedding model.
22
+ truncation_config (TruncationConfig | None): The truncation configuration for the embedding model.
22
23
 
23
24
  Input types:
24
25
  The `VoyageEMInvoker` supports the following input types: text, image, and a tuple containing text and image.
@@ -85,7 +86,7 @@ class VoyageEMInvoker(BaseEMInvoker):
85
86
  ```
86
87
  '''
87
88
  client: Incomplete
88
- def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None) -> None:
89
+ def __init__(self, model_name: str, api_key: str | None = None, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, retry_config: RetryConfig | None = None, truncation_config: TruncationConfig | None = None) -> None:
89
90
  """Initializes a new instance of the VoyageEMInvoker class.
90
91
 
91
92
  Args:
@@ -98,4 +99,6 @@ class VoyageEMInvoker(BaseEMInvoker):
98
99
  Defaults to None.
99
100
  retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
100
101
  Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used.
102
+ truncation_config (TruncationConfig | None, optional): Configuration for text truncation behavior.
103
+ Defaults to None, in which case no truncation is applied.
101
104
  """
@@ -1,6 +1,7 @@
1
1
  from gllm_inference.schema.attachment import Attachment as Attachment
2
2
  from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
- from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, MessageRole as MessageRole
3
+ from gllm_inference.schema.config import TruncationConfig as TruncationConfig
4
+ from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, MessageRole as MessageRole, TruncateSide as TruncateSide
4
5
  from gllm_inference.schema.lm_output import LMOutput as LMOutput
5
6
  from gllm_inference.schema.message import Message as Message
6
7
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
@@ -10,4 +11,4 @@ from gllm_inference.schema.tool_call import ToolCall as ToolCall
10
11
  from gllm_inference.schema.tool_result import ToolResult as ToolResult
11
12
  from gllm_inference.schema.type_alias import EMContent as EMContent, ErrorResponse as ErrorResponse, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
12
13
 
13
- __all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'EMContent', 'EmitDataType', 'ErrorResponse', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'Vector']
14
+ __all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'EMContent', 'EmitDataType', 'ErrorResponse', 'InputTokenDetails', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'OutputTokenDetails', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'TruncateSide', 'TruncationConfig', 'Vector']
@@ -0,0 +1,15 @@
1
+ from gllm_inference.schema.enums import TruncateSide as TruncateSide
2
+ from pydantic import BaseModel
3
+
4
+ class TruncationConfig(BaseModel):
5
+ """Configuration for text truncation behavior.
6
+
7
+ Attributes:
8
+ max_length (int): Maximum length of text content. Required.
9
+ truncate_side (TruncateSide | None): Side to truncate from when max_length is exceeded.
10
+ 1. TruncateSide.RIGHT: Keep the beginning of the text, truncate from the end (default)
11
+ 2. TruncateSide.LEFT: Keep the end of the text, truncate from the beginning
12
+ If None, defaults to TruncateSide.RIGHT
13
+ """
14
+ max_length: int
15
+ truncate_side: TruncateSide | None
@@ -22,3 +22,8 @@ class MessageRole(StrEnum):
22
22
  SYSTEM = 'system'
23
23
  USER = 'user'
24
24
  ASSISTANT = 'assistant'
25
+
26
+ class TruncateSide(StrEnum):
27
+ """Enumeration for truncation sides."""
28
+ RIGHT = 'RIGHT'
29
+ LEFT = 'LEFT'
Binary file
gllm_inference.pyi CHANGED
@@ -13,6 +13,7 @@ import typing
13
13
  import gllm_core
14
14
  import gllm_core.utils
15
15
  import gllm_inference.em_invoker.AzureOpenAIEMInvoker
16
+ import gllm_inference.em_invoker.BedrockEMInvoker
16
17
  import gllm_inference.em_invoker.GoogleEMInvoker
17
18
  import gllm_inference.em_invoker.LangChainEMInvoker
18
19
  import gllm_inference.em_invoker.OpenAICompatibleEMInvoker
@@ -41,17 +42,21 @@ import gllm_inference.request_processor.LMRequestProcessor
41
42
  import gllm_core.utils.imports
42
43
  import gllm_inference.schema.ModelId
43
44
  import gllm_inference.schema.ModelProvider
45
+ import gllm_inference.schema.TruncationConfig
44
46
  import openai
47
+ import asyncio
48
+ import enum
49
+ import gllm_inference.schema.Vector
50
+ import aioboto3
45
51
  import gllm_inference.exceptions.parse_error_message
46
52
  import gllm_inference.schema.Attachment
47
53
  import gllm_inference.schema.AttachmentType
48
54
  import gllm_inference.schema.EMContent
49
- import gllm_inference.schema.Vector
55
+ import gllm_inference.schema.TruncateSide
50
56
  import google
51
57
  import google.auth
52
58
  import google.genai
53
59
  import google.genai.types
54
- import asyncio
55
60
  import concurrent
56
61
  import concurrent.futures
57
62
  import concurrent.futures.ThreadPoolExecutor
@@ -68,7 +73,6 @@ import voyageai
68
73
  import voyageai.client_async
69
74
  import asyncio.CancelledError
70
75
  import asyncio.TimeoutError
71
- import enum
72
76
  import http
73
77
  import http.HTTPStatus
74
78
  import aiohttp
@@ -88,7 +92,6 @@ import gllm_inference.schema.TokenUsage
88
92
  import gllm_inference.schema.ToolCall
89
93
  import gllm_inference.schema.ToolResult
90
94
  import anthropic
91
- import aioboto3
92
95
  import gllm_inference.schema.MessageRole
93
96
  import langchain_core.language_models
94
97
  import langchain_core.messages
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gllm-inference-binary
3
- Version: 0.5.14
3
+ Version: 0.5.16
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author: Henry Wicaksono
6
6
  Author-email: henry.wicaksono@gdplabs.id
@@ -1,6 +1,6 @@
1
1
  gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
3
- gllm_inference/builder/build_em_invoker.pyi,sha256=PGRHlmiQ-GUTDC51PwYFjVkXRxeN0immnaSBOI06Uno,5474
3
+ gllm_inference/builder/build_em_invoker.pyi,sha256=cBqifw0frhYZinDndeCjqDVqv7oeW728-i5nH4JMyhk,6010
4
4
  gllm_inference/builder/build_lm_invoker.pyi,sha256=uVHupv0yAP8WGUqu1fTSSrvIV9KK8UvYydXI-hMCqlU,7037
5
5
  gllm_inference/builder/build_lm_request_processor.pyi,sha256=0pJINCP4nnXVwuhIbhsaiwzjX8gohQt2oqXFZhTFSUs,4584
6
6
  gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
@@ -9,24 +9,26 @@ gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZE
9
9
  gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=GemCEjFRHNChtNOfbyXSVsJiA3klOCAe_X11fnymhYs,5540
10
10
  gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=iViWB4SaezzjQY4UY1YxeoXUNxqxa2cTJGaD9JSx4Q8,3279
11
11
  gllm_inference/constants.pyi,sha256=kvYdaD0afopdfvijkyTSq1e5dsUKiN232wA9KlcPGs8,325
12
- gllm_inference/em_invoker/__init__.pyi,sha256=eZifmg3ZS3YdFUwbGPTurrfF4oV_MAPvqErJe7oTpZI,882
13
- gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=QimqPII-KN9OgsfH1Iubn_tCHhtWjPQ5rilZoT6Ir-U,4688
14
- gllm_inference/em_invoker/em_invoker.pyi,sha256=KX4i0xBWR5j6z14nEL6T8at3StKfdf3miQ4xixtYhZk,4424
15
- gllm_inference/em_invoker/google_em_invoker.pyi,sha256=c0XJuLS4ji-Y9aHmbb8PRLwrbH6QA2WtdS1-2HbWFq8,6306
12
+ gllm_inference/em_invoker/__init__.pyi,sha256=pmbsjmsqXwfe4WPykMnrmasKrYuylJWnf2s0pbo0ioM,997
13
+ gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=g1I3Aexg5VeDeU_zbZWCVgca2fhrUztVrpbzS5GBBYI,5072
14
+ gllm_inference/em_invoker/bedrock_em_invoker.pyi,sha256=EbXyj_U0NK9QSnq9HSeCHJ1Hw7xg2Twqj4wcbkHuvng,5560
15
+ gllm_inference/em_invoker/em_invoker.pyi,sha256=l_jnFRrfoVatVwKawpPA018bM0U6wMc8j_DVxkL8T4s,5133
16
+ gllm_inference/em_invoker/google_em_invoker.pyi,sha256=DH_ddq07EfUgv5L0OTZVOhg-p3CqEpcWAjmCYJsSljM,6684
16
17
  gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4Sq-g2z9ArfGqNW7QyEs,151
17
18
  gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=gEX21gJLngUh9fZo8v6Vbh0gpWFFqS2S-dGNZSrDjFQ,2409
18
- gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=sFmsRE89MIdnD8g0VSMsdLvtfZL6dfPkUtDhH_WfgLc,2823
19
- gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=S5lRg3MeLoenOkeAG079I22kPaFXAFrltSoWcQSDK4I,5070
20
- gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=1WTuPtu5RlZCUcBHMXR5xEkAufWCHshKA8_JW7oFakE,4321
19
+ gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=vQO5yheucM5eb7xWcwb4U7eGXASapwgOFC_SZdyysHA,3207
20
+ gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=zEYOBDXKQhvcMGer9DYDu50_3KRDjYyN8-JgpBIFPOI,5456
21
+ gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=0TDIQa-5UwsPcVxgkze-QJJWrt-ToakAKbuAk9TW5SM,4746
21
22
  gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ gllm_inference/em_invoker/schema/bedrock.pyi,sha256=6xP5T5jxane_Ecrb-6zf_X678Tj3svQUNy0SgHQArRM,443
22
24
  gllm_inference/em_invoker/schema/google.pyi,sha256=lPzJ-f18qVar6dctdN4eQWrxWrOFHC9zJ4cuLXXMytw,153
23
25
  gllm_inference/em_invoker/schema/langchain.pyi,sha256=JPEqA6naKL64jpW8NEKsEP-V9STY2h8wvyDsFtFEHos,96
24
26
  gllm_inference/em_invoker/schema/openai.pyi,sha256=rNRqN62y5wHOKlr4T0n0m41ikAnSrD72CTnoHxo6kEM,146
25
27
  gllm_inference/em_invoker/schema/openai_compatible.pyi,sha256=A9MOeBhI-IPuvewOk4YYOAGtgyKohERx6-9cEYtbwvs,157
26
28
  gllm_inference/em_invoker/schema/twelvelabs.pyi,sha256=D3F9_1F-UTzE6Ymxj6u0IFdL6OFVGlc7noZJr3iuA6I,389
27
29
  gllm_inference/em_invoker/schema/voyage.pyi,sha256=Aqvu6mhFkNb01aXAI5mChLKIgEnFnr-jNKq1lVWB54M,304
28
- gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=YGWQNxv3AJ9BpN6HrQSnATiW_p0dRakkqy-JgxNIlf4,5165
29
- gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=R8IPBOEhIN84ukof-VkTPxPNbmbkwR_imTa5u6Qyjt0,5235
30
+ gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=l_3AUwhPlEE9gheq4sqI3o8OATt-kHwemQGdCSwaXfg,5549
31
+ gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=vdB_qS8QKrCcb-HtXwKZS4WW1R1wGzpMBFmOKC39sjU,5619
30
32
  gllm_inference/exceptions/__init__.pyi,sha256=2F05RytXZIKaOJScb1pD0O0bATIQHVeEAYYNX4y5N2A,981
31
33
  gllm_inference/exceptions/error_parser.pyi,sha256=ggmh8DJXdwFJInNLrP24WVJt_4raxbAVxzXRQgBpndA,2441
32
34
  gllm_inference/exceptions/exceptions.pyi,sha256=ViXvIzm7tLcstjqfwC6nPziDg0UAmoUAWZVWrAJyp3w,4763
@@ -76,10 +78,11 @@ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=hAc6rxWc6JSYdD-OypLi
76
78
  gllm_inference/request_processor/__init__.pyi,sha256=giEme2WFQhgyKiBZHhSet0_nKSCHwGy-_2p6NRzg0Zc,231
77
79
  gllm_inference/request_processor/lm_request_processor.pyi,sha256=0fy1HyILCVDw6y46E-7tLnQTRYx4ppeRMe0QP6t9Jyw,5990
78
80
  gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=znBG4AWWm_H70Qqrc1mO4ohmWotX9id81Fqe-x9Qa6Q,2371
79
- gllm_inference/schema/__init__.pyi,sha256=Mg9aKyvShNaB4XmqLWcZZ0arSNJhT2g1hhIqP1IBuaM,1376
81
+ gllm_inference/schema/__init__.pyi,sha256=bYdXkfqkNAKEr48xaOKKQTbt2zLcCPiLCdSl2UTEIfE,1521
80
82
  gllm_inference/schema/attachment.pyi,sha256=9zgAjGXBjLfzPGaKi68FMW6b5mXdEA352nDe-ynOSvY,3385
81
83
  gllm_inference/schema/code_exec_result.pyi,sha256=WQ-ARoGM9r6nyRX-A0Ro1XKiqrc9R3jRYXZpu_xo5S4,573
82
- gllm_inference/schema/enums.pyi,sha256=SQ9mXt8j7uK333uUnUHRs-mkRxf0Z5NCtkAkgQZPIb4,629
84
+ gllm_inference/schema/config.pyi,sha256=NVmjQK6HipIE0dKSfx12hgIC0O-S1HEcAc-TWlXAF5A,689
85
+ gllm_inference/schema/enums.pyi,sha256=XmvxE7A-A8bX6hTikiAo_v66Z3hjMvhJGau1OUy9QDk,746
83
86
  gllm_inference/schema/lm_output.pyi,sha256=WP2LQrY0D03OJtFoaW_dGoJ_-yFUh2HbVlllgjzpYv4,1992
84
87
  gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
85
88
  gllm_inference/schema/model_id.pyi,sha256=BIteIsEM19VIj_6wBkwKl_xd_iUpe21C7FIKh5BRC5I,5628
@@ -92,8 +95,8 @@ gllm_inference/utils/__init__.pyi,sha256=RBTWDu1TDPpTd17fixcPYFv2L_vp4-IAOX0Isxg
92
95
  gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
93
96
  gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
94
97
  gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
95
- gllm_inference.cp312-win_amd64.pyd,sha256=76d3CDbd78P0BlLkJBygbVt3C3PUie0HSPkFBCpuw2Y,2850304
96
- gllm_inference.pyi,sha256=Ho74MJb64Q0MQI7xTOf7pmM675HXs3ZQfLKg2kmusDg,3520
97
- gllm_inference_binary-0.5.14.dist-info/METADATA,sha256=_PX1mmZ2KxIQu7Tp9zlYLjTwSBl0UzG9ewo8UPe5y6w,4608
98
- gllm_inference_binary-0.5.14.dist-info/WHEEL,sha256=4N0hGcnWMI_Ty6ATf4qJqqSl-UNI-Ln828iTWGIywmU,98
99
- gllm_inference_binary-0.5.14.dist-info/RECORD,,
98
+ gllm_inference.cp312-win_amd64.pyd,sha256=RjDwfn8-SqBMWK5aJqRz0lBsqSep-k8S1K3PLWCbj0I,2940416
99
+ gllm_inference.pyi,sha256=0PMbN8u5rnM8r9fZQFDM9V_UuvlYu3fpX6iLH4NKioA,3658
100
+ gllm_inference_binary-0.5.16.dist-info/METADATA,sha256=Hjc4sS2zCgCUwhPEkaUTql8XLPjSdAArBYoTFKqv-nE,4608
101
+ gllm_inference_binary-0.5.16.dist-info/WHEEL,sha256=4N0hGcnWMI_Ty6ATf4qJqqSl-UNI-Ln828iTWGIywmU,98
102
+ gllm_inference_binary-0.5.16.dist-info/RECORD,,