gllm-inference-binary 0.4.62__cp312-cp312-win_amd64.whl → 0.5.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

Files changed (85) hide show
  1. gllm_inference/builder/build_lm_request_processor.pyi +1 -4
  2. gllm_inference/catalog/catalog.pyi +34 -38
  3. gllm_inference/catalog/lm_request_processor_catalog.pyi +4 -10
  4. gllm_inference/catalog/prompt_builder_catalog.pyi +25 -37
  5. gllm_inference/constants.pyi +0 -3
  6. gllm_inference/em_invoker/__init__.pyi +1 -4
  7. gllm_inference/em_invoker/em_invoker.pyi +6 -25
  8. gllm_inference/em_invoker/google_em_invoker.pyi +1 -1
  9. gllm_inference/em_invoker/langchain/__init__.pyi +1 -2
  10. gllm_inference/em_invoker/langchain_em_invoker.pyi +2 -12
  11. gllm_inference/em_invoker/openai_em_invoker.pyi +1 -1
  12. gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +2 -18
  13. gllm_inference/em_invoker/voyage_em_invoker.pyi +2 -5
  14. gllm_inference/lm_invoker/__init__.pyi +1 -4
  15. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +7 -29
  16. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +5 -18
  17. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +6 -14
  18. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +7 -14
  19. gllm_inference/lm_invoker/google_lm_invoker.pyi +7 -21
  20. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +8 -21
  21. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +6 -13
  22. gllm_inference/lm_invoker/lm_invoker.pyi +17 -18
  23. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +8 -22
  24. gllm_inference/lm_invoker/openai_lm_invoker.pyi +18 -24
  25. gllm_inference/prompt_builder/__init__.pyi +1 -6
  26. gllm_inference/prompt_builder/prompt_builder.pyi +9 -102
  27. gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi +4 -4
  28. gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi +4 -4
  29. gllm_inference/prompt_formatter/llama_prompt_formatter.pyi +3 -3
  30. gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi +3 -3
  31. gllm_inference/prompt_formatter/openai_prompt_formatter.pyi +4 -4
  32. gllm_inference/prompt_formatter/prompt_formatter.pyi +4 -4
  33. gllm_inference/request_processor/lm_request_processor.pyi +12 -25
  34. gllm_inference/request_processor/uses_lm_mixin.pyi +4 -10
  35. gllm_inference/schema/__init__.pyi +11 -4
  36. gllm_inference/schema/attachment.pyi +76 -0
  37. gllm_inference/schema/code_exec_result.pyi +14 -0
  38. gllm_inference/schema/enums.pyi +9 -9
  39. gllm_inference/schema/lm_output.pyi +36 -0
  40. gllm_inference/schema/message.pyi +52 -0
  41. gllm_inference/schema/model_id.pyi +1 -1
  42. gllm_inference/schema/reasoning.pyi +15 -0
  43. gllm_inference/schema/token_usage.pyi +11 -0
  44. gllm_inference/schema/tool_call.pyi +14 -0
  45. gllm_inference/schema/tool_result.pyi +11 -0
  46. gllm_inference/schema/type_alias.pyi +6 -8
  47. gllm_inference/utils/__init__.pyi +2 -3
  48. gllm_inference/utils/validation.pyi +12 -0
  49. gllm_inference.cp312-win_amd64.pyd +0 -0
  50. gllm_inference.pyi +8 -42
  51. {gllm_inference_binary-0.4.62.dist-info → gllm_inference_binary-0.5.0.dist-info}/METADATA +1 -7
  52. gllm_inference_binary-0.5.0.dist-info/RECORD +93 -0
  53. gllm_inference/builder/model_id.pyi +0 -13
  54. gllm_inference/catalog/component_map.pyi +0 -8
  55. gllm_inference/em_invoker/google_generativeai_em_invoker.pyi +0 -32
  56. gllm_inference/em_invoker/google_vertexai_em_invoker.pyi +0 -34
  57. gllm_inference/em_invoker/langchain/tei_embeddings.pyi +0 -71
  58. gllm_inference/em_invoker/tei_em_invoker.pyi +0 -48
  59. gllm_inference/lm_invoker/google_generativeai_lm_invoker.pyi +0 -51
  60. gllm_inference/lm_invoker/google_vertexai_lm_invoker.pyi +0 -54
  61. gllm_inference/lm_invoker/tgi_lm_invoker.pyi +0 -34
  62. gllm_inference/multimodal_em_invoker/__init__.pyi +0 -4
  63. gllm_inference/multimodal_em_invoker/google_vertexai_multimodal_em_invoker.pyi +0 -52
  64. gllm_inference/multimodal_em_invoker/multimodal_em_invoker.pyi +0 -35
  65. gllm_inference/multimodal_em_invoker/twelvelabs_multimodal_em_invoker.pyi +0 -49
  66. gllm_inference/multimodal_lm_invoker/__init__.pyi +0 -7
  67. gllm_inference/multimodal_lm_invoker/anthropic_multimodal_lm_invoker.pyi +0 -44
  68. gllm_inference/multimodal_lm_invoker/azure_openai_multimodal_lm_invoker.pyi +0 -41
  69. gllm_inference/multimodal_lm_invoker/google_generativeai_multimodal_lm_invoker.pyi +0 -30
  70. gllm_inference/multimodal_lm_invoker/google_vertexai_multimodal_lm_invoker.pyi +0 -67
  71. gllm_inference/multimodal_lm_invoker/multimodal_lm_invoker.pyi +0 -51
  72. gllm_inference/multimodal_lm_invoker/openai_multimodal_lm_invoker.pyi +0 -43
  73. gllm_inference/multimodal_prompt_builder/__init__.pyi +0 -3
  74. gllm_inference/multimodal_prompt_builder/multimodal_prompt_builder.pyi +0 -57
  75. gllm_inference/prompt_builder/agnostic_prompt_builder.pyi +0 -34
  76. gllm_inference/prompt_builder/huggingface_prompt_builder.pyi +0 -44
  77. gllm_inference/prompt_builder/llama_prompt_builder.pyi +0 -41
  78. gllm_inference/prompt_builder/mistral_prompt_builder.pyi +0 -41
  79. gllm_inference/prompt_builder/openai_prompt_builder.pyi +0 -35
  80. gllm_inference/schema/model_io.pyi +0 -178
  81. gllm_inference/utils/openai_multimodal_lm_helper.pyi +0 -36
  82. gllm_inference/utils/retry.pyi +0 -4
  83. gllm_inference/utils/utils.pyi +0 -142
  84. gllm_inference_binary-0.4.62.dist-info/RECORD +0 -115
  85. {gllm_inference_binary-0.4.62.dist-info → gllm_inference_binary-0.5.0.dist-info}/WHEEL +0 -0
@@ -1,41 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.prompt_builder.huggingface_prompt_builder import HuggingFacePromptBuilder as HuggingFacePromptBuilder
3
-
4
- DEPRECATION_MESSAGE: str
5
- LLAMA_MODEL_LIST: Incomplete
6
-
7
- class LlamaPromptBuilder(HuggingFacePromptBuilder):
8
- """A prompt builder for Llama models, ensuring compatibility and formatting of prompts.
9
-
10
- The `LlamaPromptBuilder` class is designed to create prompts compatible with specific Llama models.
11
- It loads the appropriate tokenizer and formats the prompt by injecting placeholder values.
12
-
13
- Attributes:
14
- system_template (str): The system prompt template. May contain placeholders enclosed in curly braces `{}`.
15
- user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
16
- prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
17
- ignore_extra_keys (bool): Whether to ignore extra keys when formatting the prompt.
18
- formatter (HuggingFacePromptFormatter): The formatter to be used to format the prompt into a string in the
19
- `format_as_string` method.
20
-
21
- Note:
22
- If you're trying to access the prompt builder template of a gated model, you'd need to:
23
- 1. Request access to the gated repo using your HuggingFace account.
24
- 2. Login to HuggingFace in your system. This can be done as follows:
25
- 2.1. Install huggingface-hub: ```pip install huggingface-hub```
26
- 2.2. Login to HuggingFace: ```huggingface-cli login```
27
- 2.3. Enter your HuggingFace token.
28
- """
29
- def __init__(self, system_template: str, user_template: str, model_name: str = 'Meta-Llama-3.1-8B-Instruct', ignore_extra_keys: bool = False) -> None:
30
- """Initializes a new instance of the LlamaPromptBuilder class.
31
-
32
- Args:
33
- system_template (str, optional): The system prompt template. May contain placeholders enclosed in curly
34
- braces `{}`. Defaults to an empty string.
35
- user_template (str, optional): The user prompt template. May contain placeholders enclosed in curly
36
- braces `{}`. Defaults to an empty string.
37
- model_name (str, optional): The name of the Llama model tokenizer to be loaded. Defaults to
38
- `Meta-Llama-3.1-8B-Instruct`.
39
- ignore_extra_keys (bool, optional): Whether to ignore extra keys when formatting the prompt.
40
- Defaults to False.
41
- """
@@ -1,41 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.prompt_builder.huggingface_prompt_builder import HuggingFacePromptBuilder as HuggingFacePromptBuilder
3
-
4
- DEPRECATION_MESSAGE: str
5
- MISTRAL_MODEL_LIST: Incomplete
6
-
7
- class MistralPromptBuilder(HuggingFacePromptBuilder):
8
- """A prompt builder for Mistral models, ensuring compatibility and formatting of prompts.
9
-
10
- The `MistralPromptBuilder` class is designed to create prompts compatible with specific Mistral models.
11
- It loads the appropriate tokenizer and formats the prompt by injecting placeholder values.
12
-
13
- Attributes:
14
- system_template (str): The system prompt template. May contain placeholders enclosed in curly braces `{}`.
15
- user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
16
- prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
17
- ignore_extra_keys (bool): Whether to ignore extra keys when formatting the prompt.
18
- formatter (HuggingFacePromptFormatter): The formatter to be used to format the prompt into a string in the
19
- `format_as_string` method.
20
-
21
- Note:
22
- If you're trying to access the prompt builder template of a gated model, you'd need to:
23
- 1. Request access to the gated repo using your HuggingFace account.
24
- 2. Login to HuggingFace in your system. This can be done as follows:
25
- 2.1. Install huggingface-hub: ```pip install huggingface-hub```
26
- 2.2. Login to HuggingFace: ```huggingface-cli login```
27
- 2.3. Enter your HuggingFace token.
28
- """
29
- def __init__(self, system_template: str = '', user_template: str = '', model_name: str = 'Mistral-7B-Instruct-v0.3', ignore_extra_keys: bool = False) -> None:
30
- """Initializes a new instance of the MistralPromptBuilder class.
31
-
32
- Args:
33
- system_template (str, optional): The system prompt template. May contain placeholders enclosed in curly
34
- braces `{}`. Defaults to an empty string.
35
- user_template (str, optional): The user prompt template. May contain placeholders enclosed in curly
36
- braces `{}`. Defaults to an empty string.
37
- model_name (str, optional): The name of the Mistral model tokenizer to be loaded. Defaults to
38
- `Mistral-7B-Instruct-v0.3`.
39
- ignore_extra_keys (bool, optional): Whether to ignore extra keys when formatting the prompt.
40
- Defaults to False.
41
- """
@@ -1,35 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.prompt_builder.prompt_builder import BasePromptBuilder as BasePromptBuilder
3
- from gllm_inference.prompt_formatter import OpenAIPromptFormatter as OpenAIPromptFormatter
4
- from gllm_inference.schema import PromptRole as PromptRole
5
-
6
- DEPRECATION_MESSAGE: str
7
- OPENAI_MODEL_LIST: Incomplete
8
-
9
- class OpenAIPromptBuilder(BasePromptBuilder):
10
- """A prompt builder for OpenAI models, ensuring compatibility and formatting of prompts.
11
-
12
- The `OpenAIPromptBuilder` class is designed to create prompts compatible with specific OpenAI models. It formats
13
- the prompt templates by prefixing each template with its role (converted to title case) and concatenating them
14
- into a single prompt string.
15
-
16
- Attributes:
17
- system_template (str): The system prompt template. May contain placeholders enclosed in curly braces `{}`.
18
- user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
19
- prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
20
- ignore_extra_keys (bool): Whether to ignore extra keys when formatting the prompt.
21
- formatter (OpenAIPromptFormatter): The formatter to be used to format the prompt into a string in the
22
- `format_as_string` method.
23
- """
24
- formatter: Incomplete
25
- def __init__(self, system_template: str = '', user_template: str = '', ignore_extra_keys: bool = False) -> None:
26
- """Initializes a new instance of the OpenAIPromptBuilder class.
27
-
28
- Args:
29
- system_template (str, optional): The system prompt template. May contain placeholders enclosed in curly
30
- braces `{}`. Defaults to an empty string.
31
- user_template (str, optional): The user prompt template. May contain placeholders enclosed in curly
32
- braces `{}`. Defaults to an empty string.
33
- ignore_extra_keys (bool, optional): Whether to ignore extra keys when formatting the prompt.
34
- Defaults to False.
35
- """
@@ -1,178 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_core.schema import Chunk as Chunk
3
- from gllm_inference.constants import DEFAULT_CONTENT_PLACEHOLDER_TYPE as DEFAULT_CONTENT_PLACEHOLDER_TYPE, HEX_REPR_LENGTH as HEX_REPR_LENGTH
4
- from pydantic import BaseModel
5
- from typing import Any
6
-
7
- logger: Incomplete
8
-
9
- class Attachment(BaseModel):
10
- """Defines a file attachment schema.
11
-
12
- Attributes:
13
- data (bytes): The content data of the file attachment.
14
- filename (str): The filename of the file attachment.
15
- mime_type (str): The mime type of the file attachment.
16
- extension (str): The extension of the file attachment.
17
- url (str | None): The URL of the file attachment. Defaults to None.
18
- """
19
- data: bytes
20
- filename: str
21
- mime_type: str
22
- extension: str
23
- url: str | None
24
- @classmethod
25
- def from_bytes(cls, bytes: bytes, filename: str | None = None) -> Attachment:
26
- """Creates an Attachment from bytes.
27
-
28
- Args:
29
- bytes (bytes): The bytes of the file.
30
- filename (str | None, optional): The filename of the file. Defaults to None,
31
- in which case the filename will be derived from the extension.
32
-
33
- Returns:
34
- Attachment: The instantiated Attachment.
35
- """
36
- @classmethod
37
- def from_data_url(cls, data_url: str, filename: str | None = None) -> Attachment:
38
- """Creates an Attachment from a data URL (data:[mime/type];base64,[bytes]).
39
-
40
- Args:
41
- data_url (str): The data URL of the file.
42
- filename (str | None, optional): The filename of the file. Defaults to None,
43
- in which case the filename will be derived from the mime type.
44
-
45
- Returns:
46
- Attachment: The instantiated Attachment.
47
- """
48
- @classmethod
49
- def from_url(cls, url: str, filename: str | None = None) -> Attachment:
50
- """Creates an Attachment from a URL.
51
-
52
- Args:
53
- url (str): The URL of the file.
54
- filename (str | None, optional): The filename of the file. Defaults to None,
55
- in which case the filename will be derived from the URL.
56
-
57
- Returns:
58
- Attachment: The instantiated Attachment.
59
- """
60
- @classmethod
61
- def from_path(cls, path: str, filename: str | None = None) -> Attachment:
62
- """Creates an Attachment from a path.
63
-
64
- Args:
65
- path (str): The path to the file.
66
- filename (str | None, optional): The filename of the file. Defaults to None,
67
- in which case the filename will be derived from the path.
68
-
69
- Returns:
70
- Attachment: The instantiated Attachment.
71
- """
72
- def write_to_file(self, path: str | None = None) -> None:
73
- """Writes the Attachment to a file.
74
-
75
- Args:
76
- path (str | None, optional): The path to the file. Defaults to None,
77
- in which case the filename will be used as the path.
78
- """
79
-
80
- class ContentPlaceholder(BaseModel):
81
- """Defines a content placeholder schema.
82
-
83
- The `ContentPlaceholder` represents a lazy-loaded content to be sent to the language model.
84
- The content must be converted into a supported content type before being sent to the language model.
85
-
86
- Attributes:
87
- type (str): The type of the content placeholder.
88
- metadata (dict[str, Any]): The metadata of the content placeholder.
89
- """
90
- type: str
91
- metadata: dict[str, Any]
92
-
93
- class ToolCall(BaseModel):
94
- """Defines a tool call request when a language model decides to invoke a tool.
95
-
96
- Attributes:
97
- id (str): The ID of the tool call.
98
- name (str): The name of the tool.
99
- args (dict[str, Any]): The arguments of the tool call.
100
- """
101
- id: str
102
- name: str
103
- args: dict[str, Any]
104
-
105
- class ToolResult(BaseModel):
106
- """Defines a tool result to be sent back to the language model.
107
-
108
- Attributes:
109
- id (str): The ID of the tool call.
110
- output (str): The output of the tool call.
111
- """
112
- id: str
113
- output: str
114
-
115
- class Reasoning(BaseModel):
116
- """Defines a reasoning output when a language model is configured to use reasoning.
117
-
118
- Attributes:
119
- id (str): The ID of the reasoning output. Defaults to an empty string.
120
- reasoning (str): The reasoning text. Defaults to an empty string.
121
- type (str): The type of the reasoning output. Defaults to an empty string.
122
- data (str): The additional data of the reasoning output. Defaults to an empty string.
123
- """
124
- id: str
125
- reasoning: str
126
- type: str
127
- data: str
128
-
129
- class CodeExecResult(BaseModel):
130
- """Defines a code execution result when a language model is configured to execute code.
131
-
132
- Attributes:
133
- id (str): The ID of the code execution. Defaults to an empty string.
134
- code (str): The executed code. Defaults to an empty string.
135
- output (list[str | Attachment]): The output of the executed code. Defaults to an empty list.
136
- """
137
- id: str
138
- code: str
139
- output: list[str | Attachment]
140
-
141
- class TokenUsage(BaseModel):
142
- """Defines the token usage data structure of a language model.
143
-
144
- Attributes:
145
- input_tokens (int): The number of input tokens.
146
- output_tokens (int): The number of output tokens.
147
- """
148
- input_tokens: int
149
- output_tokens: int
150
-
151
- class LMOutput(BaseModel):
152
- """Defines the output of a language model.
153
-
154
- Attributes:
155
- response (str): The text response. Defaults to an empty string.
156
- tool_calls (list[ToolCall]): The tool calls, if the language model decides to invoke tools.
157
- Defaults to an empty list.
158
- structured_output (dict[str, Any] | BaseModel | None): The structured output, if a response schema is defined
159
- for the language model. Defaults to None.
160
- token_usage (TokenUsage | None): The token usage analytics, if requested. Defaults to None.
161
- duration (float | None): The duration of the invocation in seconds, if requested. Defaults to None.
162
- finish_details (dict[str, Any]): The details about how the generation finished, if requested.
163
- Defaults to an empty dictionary.
164
- reasoning (list[Reasoning]): The reasoning, if the language model is configured to output reasoning.
165
- Defaults to an empty list.
166
- citations (list[Chunk]): The citations, if the language model outputs citations. Defaults to an empty list.
167
- code_exec_results (list[CodeExecResult]): The code execution results, if the language model decides to
168
- execute code. Defaults to an empty list.
169
- """
170
- response: str
171
- tool_calls: list[ToolCall]
172
- structured_output: dict[str, Any] | BaseModel | None
173
- token_usage: TokenUsage | None
174
- duration: float | None
175
- finish_details: dict[str, Any]
176
- reasoning: list[Reasoning]
177
- citations: list[Chunk]
178
- code_exec_results: list[CodeExecResult]
@@ -1,36 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.utils.utils import get_mime_type as get_mime_type, is_local_file_path as is_local_file_path, is_remote_file_path as is_remote_file_path
3
- from typing import Any
4
-
5
- VALID_EXTENSIONS: Incomplete
6
-
7
- def parse_prompt(prompt: list[tuple[str, list[str | bytes]]]) -> list[dict[str, Any]]:
8
- """Parses the prompt into a list of dictionaries, each representing a message.
9
-
10
- This method is responsible for converting the input prompt into a format that is compatible with OpenAI's API.
11
-
12
- Args:
13
- prompt (list[tuple[str, list[str | bytes]]]): The input prompt as a list of tuples containing
14
- role-content list pairs. Content can be either text strings or image bytes.
15
-
16
- Returns:
17
- list[dict[str, Any]]: A list of dictionaries, each representing a message.
18
- """
19
- def parse_content(content: str | bytes) -> dict[str, Any]:
20
- """Parses the content into a dictionary with the appropriate type and content key.
21
-
22
- Args:
23
- content (str | bytes): The content to parse.
24
-
25
- Returns:
26
- dict[str, Any]: A dictionary with the appropriate type and content key.
27
- """
28
- def validate_content_type(content: Any) -> bool:
29
- """Validates that the content is either a string or bytes.
30
-
31
- Args:
32
- content (Any): The content to validate.
33
-
34
- Returns:
35
- bool: True if the content is either a string or bytes, False otherwise.
36
- """
@@ -1,4 +0,0 @@
1
- from _typeshed import Incomplete
2
-
3
- RetryConfig: Incomplete
4
- retry: Incomplete
@@ -1,142 +0,0 @@
1
- from _typeshed import Incomplete
2
- from enum import StrEnum
3
- from gllm_core.event import EventEmitter as EventEmitter
4
- from typing import Any
5
-
6
- TEMPLATE_VALIDATOR_REGEX: Incomplete
7
- logger: Incomplete
8
-
9
- def get_basic_auth_headers(username: str, password: str) -> dict[str, str] | None:
10
- """Generates the headers required for Basic Authentication.
11
-
12
- This method creates a header dictionary using Basic Authentication scheme. It encodes the username and password
13
- constants into Base64 format and prepares them for HTTP header authentication.
14
-
15
- Returns:
16
- dict[str, str] | None: A dictionary containing the 'Authorization' header with Base64 encoded credentials.
17
- Returns `None` if both `username` and `password` are empty strings.
18
- """
19
- def get_mime_type(content: bytes) -> str:
20
- """Determines the MIME type of the provided content.
21
-
22
- This method determines the MIME type of the provided content by using the `magic` library.
23
-
24
- Args:
25
- content (bytes): The content to determine the MIME type.
26
-
27
- Returns:
28
- str: The MIME type of the content.
29
- """
30
- def get_prompt_keys(template: str) -> set[str]:
31
- """Extracts keys from a template string based on a regex pattern.
32
-
33
- This function searches the template for placeholders enclosed in single curly braces `{}` and ignores
34
- any placeholders within double curly braces `{{}}`. It returns a set of the unique keys found.
35
-
36
- Args:
37
- template (str): The template string containing placeholders.
38
-
39
- Returns:
40
- set[str]: A set of keys extracted from the template.
41
- """
42
- async def invoke_google_multimodal_lm(client: Any, messages: list[dict[str, Any]], hyperparameters: dict[str, Any], event_emitter: EventEmitter | None) -> str:
43
- """Invokes the Google multimodal language model with the provided prompt and hyperparameters.
44
-
45
- This method processes the prompt using the input prompt and hyperparameters. It handles both standard and
46
- streaming invocation. Streaming mode is enabled if an event emitter is provided.
47
-
48
- Args:
49
- client (Any): The Google client instance. This could either be:
50
- 1. A `google.generativeai.GenerativeModel` instance.
51
- 2. A `vertexai.generative_models.GenerativeModel` instance.
52
- messages (list[dict[str, Any]]): The input messages to be sent to the model.
53
- hyperparameters (dict[str, Any]): A dictionary of hyperparameters for the model.
54
- event_emitter (EventEmitter | None): The event emitter for streaming tokens. If provided, streaming
55
- invocation is enabled. Defaults to None.
56
-
57
- Returns:
58
- str: The generated response from the model.
59
- """
60
- def is_local_file_path(content: Any, valid_extensions: set[str]) -> bool:
61
- """Checks if the content is a local file path.
62
-
63
- This method checks if the content is a local file path by verifying that the content:
64
- 1. Is a string.
65
- 2. Is a valid existing file path.
66
- 3. Has a valid extension defined in the `valid_extensions` set.
67
-
68
- Args:
69
- content (Any): The content to check.
70
- valid_extensions (set[str]): The set of valid extensions.
71
-
72
- Returns:
73
- bool: True if the content is a local file path with a valid extension, False otherwise.
74
- """
75
- def is_remote_file_path(content: Any, valid_extensions: set[str]) -> bool:
76
- """Checks if the content is a remote file path.
77
-
78
- This method checks if the content is a remote file path by verifying that the content:
79
- 1. Is a string.
80
- 2. Is a URL with a valid scheme of `http` or `https`.
81
- 3. Has a valid extension defined in the `valid_extensions` set.
82
-
83
- Args:
84
- content (Any): The content to check.
85
- valid_extensions (set[str]): The set of valid extensions.
86
-
87
- Returns:
88
- bool: True if the content is a remote file path with a valid extension, False otherwise.
89
- """
90
- def is_valid_extension(content: str, valid_extensions: set[str]) -> bool:
91
- """Checks if the content has a valid extension.
92
-
93
- Args:
94
- content (str): The content to check.
95
- valid_extensions (set[str]): The set of valid extensions.
96
-
97
- Returns:
98
- bool: True if the content has a valid extension, False otherwise.
99
- """
100
- def load_google_vertexai_project_id(credentials_path: str) -> str:
101
- """Loads the Google Vertex AI project ID from the credentials file.
102
-
103
- Args:
104
- credentials_path (str): The path to the credentials file.
105
-
106
- Returns:
107
- str: The Google Vertex AI project ID.
108
- """
109
- def preprocess_tei_input(texts: list[str], prefix: str) -> list[str]:
110
- """Preprocesses TEI input texts by replacing newline characters with spaces and adding the prefix to the text.
111
-
112
- Args:
113
- texts (list[str]): The list of texts to preprocess.
114
- prefix (str): The prefix to add to the text.
115
-
116
- Returns:
117
- list[str]: The list of preprocessed texts.
118
- """
119
- def validate_prompt_builder_kwargs(prompt_key_set: set[str], ignore_extra_keys: bool = False, **kwargs: Any) -> None:
120
- """Validates that the provided kwargs match the expected prompt keys exactly.
121
-
122
- This helper function checks if the provided kwargs contain all and only the keys required by the prompt templates.
123
- If any required key is missing or there are extra keys, it raises a `ValueError`.
124
-
125
- Args:
126
- prompt_key_set (set[str]): The set of required prompt keys.
127
- ignore_extra_keys (bool, optional): Whether to ignore extra keys. Defaults to False.
128
- **kwargs (Any): The keyword arguments to be validated against the required prompt keys.
129
-
130
- Raises:
131
- ValueError: If any required key is missing from or any extra key is present in the kwargs.
132
- """
133
- def validate_string_enum(enum_type: type[StrEnum], value: str) -> None:
134
- """Validates that the provided value is a valid string enum value.
135
-
136
- Args:
137
- enum_type (type[StrEnum]): The type of the string enum.
138
- value (str): The value to validate.
139
-
140
- Raises:
141
- ValueError: If the provided value is not a valid string enum value.
142
- """
@@ -1,115 +0,0 @@
1
- gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
3
- gllm_inference/builder/build_em_invoker.pyi,sha256=PGRHlmiQ-GUTDC51PwYFjVkXRxeN0immnaSBOI06Uno,5474
4
- gllm_inference/builder/build_lm_invoker.pyi,sha256=6dQha47M19hllF5ID5xUeiNPmbWUpKyNbG9D78qFGck,6618
5
- gllm_inference/builder/build_lm_request_processor.pyi,sha256=Xp1v9u20UYzDgmccL24bWVbVHaZVyqU4VVtPyeTKMGs,4488
6
- gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
7
- gllm_inference/builder/model_id.pyi,sha256=99Upl0mLOQT8pA7XlhUjPuFhLAW0KCYw4C4a00M1tic,429
8
- gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
9
- gllm_inference/catalog/catalog.pyi,sha256=wYRLUWsUXBcPxl__ycMBRV04sFMVY98glrPKOaAWsRs,4760
10
- gllm_inference/catalog/component_map.pyi,sha256=IbnAxu2DT81KuGCVCX-SXXoQ6lw6V18v0UJQeHJglic,1354
11
- gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=5gU62WLAq1hhTGRmaJTaDctwiChz5n3tMb8QwUDtbiM,5463
12
- gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=HNRwdSw5-Ihw6Z1AhUhlWvednFpiTmcv68e_fUOeHn0,3902
13
- gllm_inference/constants.pyi,sha256=_ejABbf_Z-NWYuKLGM5ln2GTTqC1vYRY2aaltxlLo5w,283
14
- gllm_inference/em_invoker/__init__.pyi,sha256=LivY6D0QAoo5k4V8eibJbap0IangA1ign2zthJNq4PI,1285
15
- gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=Qt3w0xtQuTTKrpbcu20Wx_PqA0LSK8fTIahfT5jRZ4A,4553
16
- gllm_inference/em_invoker/em_invoker.pyi,sha256=-czLuNyFJ2xeaLa5IaDGofi2u9L9dVF1JGWQyBcy72I,5451
17
- gllm_inference/em_invoker/google_em_invoker.pyi,sha256=qXQhttDfgRLNEdMxAWXJaasb9CqsJdV_t7QNxnMySCI,6184
18
- gllm_inference/em_invoker/google_generativeai_em_invoker.pyi,sha256=smo8VC3gJxc3zdMJO36qBmBpsnrU5jwoWdpzFmGpOtQ,1984
19
- gllm_inference/em_invoker/google_vertexai_em_invoker.pyi,sha256=2pQE4xm5IFttQ7hvZkq29GOhganfXLqhpWtGQE0_geU,2204
20
- gllm_inference/em_invoker/langchain/__init__.pyi,sha256=8zmLWFh9uwT15iDyP91UQupLY9AozK6xMH0PnuriioY,263
21
- gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=gEX21gJLngUh9fZo8v6Vbh0gpWFFqS2S-dGNZSrDjFQ,2409
22
- gllm_inference/em_invoker/langchain/tei_embeddings.pyi,sha256=Zg4HbhKYignEMmF1LuhOb0w0EPBLe0eSubniRTSxO-w,2753
23
- gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=JLLz5G1eWquzUBS1sH0V6mWrZX626WIkSGP2P75E5Ms,3214
24
- gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=XBwtLoiVO8v7axqaPozGNMb8YH9k2Cri7gyoPclSLu8,4887
25
- gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=CpRPi4E1tQY3Pm_qmpnSxeO4R-klbf-79Y8dUjFvKRA,4148
26
- gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- gllm_inference/em_invoker/schema/twelvelabs.pyi,sha256=E7sl1OumEzx_Dj8SeiJ6i8AFuRKzAmRVGfIRCk3gv_0,349
28
- gllm_inference/em_invoker/schema/voyage.pyi,sha256=mL0D2lqqudL1S-eVF5K4uBt0xuMjvYtVrQzLx0-6gq0,230
29
- gllm_inference/em_invoker/tei_em_invoker.pyi,sha256=k3Lai0E9EFl7SOYmecg8KhBwGF8CYMjdsND3gPpcwZU,3005
30
- gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=ywlH9HeXk58SFgfaRAJknL3Eyl6V9BKoDVwwBZXHnNM,5742
31
- gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=5iQxceXa3-QAI5WJlsTyAhUgYFXtGeq6yG-DjvKD6_c,5187
32
- gllm_inference/exceptions/__init__.pyi,sha256=2F05RytXZIKaOJScb1pD0O0bATIQHVeEAYYNX4y5N2A,981
33
- gllm_inference/exceptions/error_parser.pyi,sha256=ggmh8DJXdwFJInNLrP24WVJt_4raxbAVxzXRQgBpndA,2441
34
- gllm_inference/exceptions/exceptions.pyi,sha256=ViXvIzm7tLcstjqfwC6nPziDg0UAmoUAWZVWrAJyp3w,4763
35
- gllm_inference/lm_invoker/__init__.pyi,sha256=wGT8tJ5kPO2xEERxiT-Jv8tj9sHiGCuS93GkflXm93k,1518
36
- gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=381s9JhhudTEmIy67JLDHE2QjYoINV-Nrz4aG1I6m1Y,16959
37
- gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=qVtQ_yDty92yuUpS8NFoNCs-DUfvAgLY7hv1UL5lHyc,15638
38
- gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=HqHKW7aa8A7GluEEnvjLS1kiYnJ5OJDk9pw284pNacI,12963
39
- gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=TLCnURHgUUJEqNq1QomTqMobhjVE9ZwuK0cFxGg150M,9620
40
- gllm_inference/lm_invoker/google_generativeai_lm_invoker.pyi,sha256=HmqsQWOqY4gNGovzsgSv_mWDoCFG-HRmawJ3yO4HRCE,3950
41
- gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=3cqotnLyoPD94bWmYGSGPjKuoiAe_f7vV9uzzNwkS2s,17858
42
- gllm_inference/lm_invoker/google_vertexai_lm_invoker.pyi,sha256=ZbLPTMIcaPHa-n86RXdnjQsNvFe_rH0OeCtCJIXBIu8,4325
43
- gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=qBdM00PXboVTJFWpJAY9Q5AL4Epleaa5YhVpnuGVgaE,14583
44
- gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=ogZAtOF9lkspzVwtX_YL0qonGa662Wq2CNoLlk6_CV8,13648
45
- gllm_inference/lm_invoker/lm_invoker.pyi,sha256=iXRR7ynYuJw1eRYdgfYWcDIJ21CXhK-WrKETveCSp_c,8115
46
- gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=Pv0h1iMcLERNjunRbrMdAHrDpgodHAxgmrJFhRvSiRM,16057
47
- gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=iiHh5obnEjJ7cq_qDGqKmxH2on9_swEktaI6krqE5HE,20523
48
- gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=MJHHyqMGQgj9tURyewuVlmxHxiAzU9qzmJEiK5IUoWw,1020
50
- gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=H3attoGWhBA725W4FpXw7Mty46N9jHKjw9PT-0lMEJs,975
51
- gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=mEuWs18VO4KQ6ZTcrlW2BJwphoDe4D5iJfn-GAelvCM,202
52
- gllm_inference/lm_invoker/schema/google.pyi,sha256=AJQsFGKzowXfpSvorSco90aWXqgw9N0M8fInn_JN-X4,464
53
- gllm_inference/lm_invoker/schema/langchain.pyi,sha256=qYiQvzUw0xZa4ii-qyRCFTuIY7j0MREY6QgV1_DfkGk,391
54
- gllm_inference/lm_invoker/schema/openai.pyi,sha256=CNkIGljwRyQYx0krONX1ik9hwBiN45t9vBk-ZY45rP4,1989
55
- gllm_inference/lm_invoker/schema/openai_compatible.pyi,sha256=WiWEFoPQ0PEAx6EW-P8Nk6O7RF5I9i_hItEHtOl_F4A,1074
56
- gllm_inference/lm_invoker/tgi_lm_invoker.pyi,sha256=X8drUmvFDEdjEAga4xeIj7QlA8HEppXCsmb2Fu23xsw,2207
57
- gllm_inference/model/__init__.pyi,sha256=JKQB0wVSVYD-_tdRkG7N_oEVAKGCcoBw0BUOUMLieFo,602
58
- gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
- gllm_inference/model/em/google_em.pyi,sha256=c53H-KNdNOK9ppPLyOSkmCA890eF5FsMd05upkPIzF0,487
60
- gllm_inference/model/em/openai_em.pyi,sha256=b6ID1JsLZH9OAo9E37CkbgWNR_eI65eKXK6TYi_0ndA,457
61
- gllm_inference/model/em/twelvelabs_em.pyi,sha256=5R2zkKDiEatdATFzF8TOoKW9XRkOsOoNGY5lORimueo,413
62
- gllm_inference/model/em/voyage_em.pyi,sha256=kTInLttWfPqCNfBX-TK5VMMaFfPxwqqudBw1kz4hnxk,551
63
- gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
- gllm_inference/model/lm/anthropic_lm.pyi,sha256=3rppksDF4nVAR3Konoj6nRi_T8vSaFPxLub1CzJh7Us,578
65
- gllm_inference/model/lm/google_lm.pyi,sha256=yv5nXnLxuCGDUsh7QP9furSx-6sZj6FQi-pJ9lZbHAk,496
66
- gllm_inference/model/lm/openai_lm.pyi,sha256=yj3AJj1xDYRkNIPHX2enw46AJ9wArPZruKsxg1ME9Rg,645
67
- gllm_inference/multimodal_em_invoker/__init__.pyi,sha256=fFgxDCJLa_h3y0x6B_mjkcuQEl32zyNB333Q1_Zmvq0,389
68
- gllm_inference/multimodal_em_invoker/google_vertexai_multimodal_em_invoker.pyi,sha256=k_E81BgnLk94Zko6_F_eLvJnbakSyVXkO5RaROFq1Ms,3125
69
- gllm_inference/multimodal_em_invoker/multimodal_em_invoker.pyi,sha256=xdGGbSuq2ptLnjbZ8RyrZOWya1HfL0mLcKUJVs_wtRE,1544
70
- gllm_inference/multimodal_em_invoker/twelvelabs_multimodal_em_invoker.pyi,sha256=1sA0mEqhk9L7FCclMdtw0TKFIUIO9dMMRKCd9vGUpaQ,2423
71
- gllm_inference/multimodal_lm_invoker/__init__.pyi,sha256=UwKBNHV5r-ls0YPNOCZ1k_NZVLC-CR7WOBTKZpXbcO4,944
72
- gllm_inference/multimodal_lm_invoker/anthropic_multimodal_lm_invoker.pyi,sha256=KgrB6mVNMp8fHX6hYk_nM8CuDdrVmUbFhFLcqJCLyFA,2416
73
- gllm_inference/multimodal_lm_invoker/azure_openai_multimodal_lm_invoker.pyi,sha256=6xhpZwK5ktx_H6l6hhwYaSNLMLweHJ7qenX-9RmpLJA,2448
74
- gllm_inference/multimodal_lm_invoker/google_generativeai_multimodal_lm_invoker.pyi,sha256=z7VXdLi1VYMJgvElFMytV09N1JqmJdzWQcHnJOwkyR8,1767
75
- gllm_inference/multimodal_lm_invoker/google_vertexai_multimodal_lm_invoker.pyi,sha256=Xuc3C4ETksSq_WrK5oqOcjaMIs5aaVOm8_HzqGP_lHE,4203
76
- gllm_inference/multimodal_lm_invoker/multimodal_lm_invoker.pyi,sha256=jbUYyjrMy7GGxHhjJP7HcxBE-0gaKxGseu9o7p9ak3M,2961
77
- gllm_inference/multimodal_lm_invoker/openai_multimodal_lm_invoker.pyi,sha256=hy1kuTPT4ViuQFNi2D2gJtL35lRnsniR-pZU19Qmvd8,2447
78
- gllm_inference/multimodal_prompt_builder/__init__.pyi,sha256=jRh6k6hgqKuFYvoazyR8m0qINAHwdaBReXlU2ZRGcVk,172
79
- gllm_inference/multimodal_prompt_builder/multimodal_prompt_builder.pyi,sha256=0T-yXbU_4TP-rDJlBpHPsRn1LB8C97KuPzXjqguT_kM,3343
80
- gllm_inference/output_parser/__init__.pyi,sha256=dhAeRTBxc6CfS8bhnHjbtrnyqJ1iyffvUZkGp4UrJNM,132
81
- gllm_inference/output_parser/json_output_parser.pyi,sha256=YtgQh8Uzy8W_Tgh8DfuR7VFFS7qvLEasiTwRfaGZZEU,2993
82
- gllm_inference/output_parser/output_parser.pyi,sha256=-Xu5onKCBDqShcO-VrQh5icqAmXdihGc3rkZxL93swg,975
83
- gllm_inference/prompt_builder/__init__.pyi,sha256=uT1kWKNWJSRzoKcdCaiswHApbRYQ_wR_qpDzAfuvPyQ,803
84
- gllm_inference/prompt_builder/agnostic_prompt_builder.pyi,sha256=cQFBpgZZDkzktFwCHjxQC0Fm2xp6MGxIecpXQcVSteU,2174
85
- gllm_inference/prompt_builder/huggingface_prompt_builder.pyi,sha256=ctWD7IcWb2IylpjhGjOav5ljt5pOHTzoCCnfLMallKI,2727
86
- gllm_inference/prompt_builder/llama_prompt_builder.pyi,sha256=W9nTXxsg9inNXQINkO4gpPbYVkB0HymRkJsL8EoHzRM,2530
87
- gllm_inference/prompt_builder/mistral_prompt_builder.pyi,sha256=mlmfw43LS_wCqFhcxq5A2zVgpcAJXbGfeG-HkFt8KSo,2550
88
- gllm_inference/prompt_builder/openai_prompt_builder.pyi,sha256=CV7f15siyuvQ6-B0PJStx_iAVEN0fE6RDylTX2wXM-0,2097
89
- gllm_inference/prompt_builder/prompt_builder.pyi,sha256=28pOBCDO7Eld_HqH1ABHdQRFF2Bmx9qSogfpmB_A3-U,8683
90
- gllm_inference/prompt_formatter/__init__.pyi,sha256=q5sPPrnoCf-4tMGowh7hXxs63uyWfaZyEI-wjLBTGsA,747
91
- gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi,sha256=qUoJ1lmi_UfgmHqswo_LUQ4F-gtFXf7EncrPGUlCJI0,2062
92
- gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi,sha256=YRY3E4P_WaFdsUb7V3dgxZ4SPgbEFNLi_FXSJ2Lo9K4,2779
93
- gllm_inference/prompt_formatter/llama_prompt_formatter.pyi,sha256=CeOTnG3AKGk5J0gH2L6UVM0x_0VrqOvl7EDj_Bc-mss,2904
94
- gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi,sha256=BHWeAQl_Bf_2YX13G_h2eTTUjuDQC-vcVk9Ib3LHabs,2700
95
- gllm_inference/prompt_formatter/openai_prompt_formatter.pyi,sha256=BwT0iDUGdedMn2NDhsHZDm1nxCjBvkE450AYh555_Es,1316
96
- gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=h0jrPTzDxGQOa3o8mkr7Mv4izjynHLHme4OthpTHIL0,1196
97
- gllm_inference/request_processor/__init__.pyi,sha256=giEme2WFQhgyKiBZHhSet0_nKSCHwGy-_2p6NRzg0Zc,231
98
- gllm_inference/request_processor/lm_request_processor.pyi,sha256=RFd06jsCots6_xWlhZnebYoGuMzNbeZkWT1Y4WnB01U,6837
99
- gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=FZv4I0Jg06C4VfGSBWqYD_0YUxuxKk13wyXOI_F3Z0w,2925
100
- gllm_inference/schema/__init__.pyi,sha256=JpJm5c2gMIeygc7hz8X64IystFLafW2wKYuBl2G1xcs,1194
101
- gllm_inference/schema/enums.pyi,sha256=sNUMCJZCaA29GVNCva_5zLcWPXWofge-Hxl8gyuU1D8,627
102
- gllm_inference/schema/model_id.pyi,sha256=6I1ig2PNYu9Hb4gkv5ZoIqmJQwclxzSXygKzGqJ07UA,5374
103
- gllm_inference/schema/model_io.pyi,sha256=j2G6I8146x2vIJxfAeuovD65DUecona_HYlwDOvli1Q,7032
104
- gllm_inference/schema/type_alias.pyi,sha256=gV0v62nywNtty69KAtjaFC7IH1KPU-PmoFV6a7nZ3fA,988
105
- gllm_inference/utils/__init__.pyi,sha256=zbsTZ2vP2nJR5af8W7wm84tYprdpSVj1RIcogOuPboU,1140
106
- gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
107
- gllm_inference/utils/openai_multimodal_lm_helper.pyi,sha256=oolyuXA5S9Njft6E15Th1A2FctC3rScmg19kiyYjcvo,1456
108
- gllm_inference/utils/retry.pyi,sha256=gEHkFUmzX8CCkvFrXPYhFuoZ_iq0a210TBiRU88ZHbA,80
109
- gllm_inference/utils/utils.pyi,sha256=N1fum4TLEsIYsdnK8y6fVxDDF5WT_MnLP9FSJUsjcGQ,6159
110
- gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
111
- gllm_inference.cp312-win_amd64.pyd,sha256=uGM5mwHtQuYHf3vTuZLmcrgBgLYCj43EMk0sdYzKgoU,3446272
112
- gllm_inference.pyi,sha256=mnf0N8LU2LmMGy8so2ZhT59GqLw5ZGuS4WtvSPO35AQ,5030
113
- gllm_inference_binary-0.4.62.dist-info/METADATA,sha256=_2NkG0nqiOli_nrerx5mdrbsgFlQkewk9pS6zIB9OeY,4958
114
- gllm_inference_binary-0.4.62.dist-info/WHEEL,sha256=4N0hGcnWMI_Ty6ATf4qJqqSl-UNI-Ln828iTWGIywmU,98
115
- gllm_inference_binary-0.4.62.dist-info/RECORD,,