gllm-inference-binary 0.4.62__cp311-cp311-win_amd64.whl → 0.5.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

Files changed (85) hide show
  1. gllm_inference/builder/build_lm_request_processor.pyi +1 -4
  2. gllm_inference/catalog/catalog.pyi +34 -38
  3. gllm_inference/catalog/lm_request_processor_catalog.pyi +4 -10
  4. gllm_inference/catalog/prompt_builder_catalog.pyi +25 -37
  5. gllm_inference/constants.pyi +0 -3
  6. gllm_inference/em_invoker/__init__.pyi +1 -4
  7. gllm_inference/em_invoker/em_invoker.pyi +6 -25
  8. gllm_inference/em_invoker/google_em_invoker.pyi +1 -1
  9. gllm_inference/em_invoker/langchain/__init__.pyi +1 -2
  10. gllm_inference/em_invoker/langchain_em_invoker.pyi +2 -12
  11. gllm_inference/em_invoker/openai_em_invoker.pyi +1 -1
  12. gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +2 -18
  13. gllm_inference/em_invoker/voyage_em_invoker.pyi +2 -5
  14. gllm_inference/lm_invoker/__init__.pyi +1 -4
  15. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +7 -29
  16. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +5 -18
  17. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +6 -14
  18. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +7 -14
  19. gllm_inference/lm_invoker/google_lm_invoker.pyi +7 -21
  20. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +8 -21
  21. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +6 -13
  22. gllm_inference/lm_invoker/lm_invoker.pyi +17 -18
  23. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +8 -22
  24. gllm_inference/lm_invoker/openai_lm_invoker.pyi +18 -24
  25. gllm_inference/prompt_builder/__init__.pyi +1 -6
  26. gllm_inference/prompt_builder/prompt_builder.pyi +9 -102
  27. gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi +4 -4
  28. gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi +4 -4
  29. gllm_inference/prompt_formatter/llama_prompt_formatter.pyi +3 -3
  30. gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi +3 -3
  31. gllm_inference/prompt_formatter/openai_prompt_formatter.pyi +4 -4
  32. gllm_inference/prompt_formatter/prompt_formatter.pyi +4 -4
  33. gllm_inference/request_processor/lm_request_processor.pyi +12 -25
  34. gllm_inference/request_processor/uses_lm_mixin.pyi +4 -10
  35. gllm_inference/schema/__init__.pyi +11 -4
  36. gllm_inference/schema/attachment.pyi +76 -0
  37. gllm_inference/schema/code_exec_result.pyi +14 -0
  38. gllm_inference/schema/enums.pyi +9 -9
  39. gllm_inference/schema/lm_output.pyi +36 -0
  40. gllm_inference/schema/message.pyi +52 -0
  41. gllm_inference/schema/model_id.pyi +1 -1
  42. gllm_inference/schema/reasoning.pyi +15 -0
  43. gllm_inference/schema/token_usage.pyi +11 -0
  44. gllm_inference/schema/tool_call.pyi +14 -0
  45. gllm_inference/schema/tool_result.pyi +11 -0
  46. gllm_inference/schema/type_alias.pyi +6 -8
  47. gllm_inference/utils/__init__.pyi +2 -3
  48. gllm_inference/utils/validation.pyi +12 -0
  49. gllm_inference.cp311-win_amd64.pyd +0 -0
  50. gllm_inference.pyi +8 -42
  51. {gllm_inference_binary-0.4.62.dist-info → gllm_inference_binary-0.5.0.dist-info}/METADATA +1 -7
  52. gllm_inference_binary-0.5.0.dist-info/RECORD +93 -0
  53. gllm_inference/builder/model_id.pyi +0 -13
  54. gllm_inference/catalog/component_map.pyi +0 -8
  55. gllm_inference/em_invoker/google_generativeai_em_invoker.pyi +0 -32
  56. gllm_inference/em_invoker/google_vertexai_em_invoker.pyi +0 -34
  57. gllm_inference/em_invoker/langchain/tei_embeddings.pyi +0 -71
  58. gllm_inference/em_invoker/tei_em_invoker.pyi +0 -48
  59. gllm_inference/lm_invoker/google_generativeai_lm_invoker.pyi +0 -51
  60. gllm_inference/lm_invoker/google_vertexai_lm_invoker.pyi +0 -54
  61. gllm_inference/lm_invoker/tgi_lm_invoker.pyi +0 -34
  62. gllm_inference/multimodal_em_invoker/__init__.pyi +0 -4
  63. gllm_inference/multimodal_em_invoker/google_vertexai_multimodal_em_invoker.pyi +0 -52
  64. gllm_inference/multimodal_em_invoker/multimodal_em_invoker.pyi +0 -35
  65. gllm_inference/multimodal_em_invoker/twelvelabs_multimodal_em_invoker.pyi +0 -49
  66. gllm_inference/multimodal_lm_invoker/__init__.pyi +0 -7
  67. gllm_inference/multimodal_lm_invoker/anthropic_multimodal_lm_invoker.pyi +0 -44
  68. gllm_inference/multimodal_lm_invoker/azure_openai_multimodal_lm_invoker.pyi +0 -41
  69. gllm_inference/multimodal_lm_invoker/google_generativeai_multimodal_lm_invoker.pyi +0 -30
  70. gllm_inference/multimodal_lm_invoker/google_vertexai_multimodal_lm_invoker.pyi +0 -67
  71. gllm_inference/multimodal_lm_invoker/multimodal_lm_invoker.pyi +0 -51
  72. gllm_inference/multimodal_lm_invoker/openai_multimodal_lm_invoker.pyi +0 -43
  73. gllm_inference/multimodal_prompt_builder/__init__.pyi +0 -3
  74. gllm_inference/multimodal_prompt_builder/multimodal_prompt_builder.pyi +0 -57
  75. gllm_inference/prompt_builder/agnostic_prompt_builder.pyi +0 -34
  76. gllm_inference/prompt_builder/huggingface_prompt_builder.pyi +0 -44
  77. gllm_inference/prompt_builder/llama_prompt_builder.pyi +0 -41
  78. gllm_inference/prompt_builder/mistral_prompt_builder.pyi +0 -41
  79. gllm_inference/prompt_builder/openai_prompt_builder.pyi +0 -35
  80. gllm_inference/schema/model_io.pyi +0 -178
  81. gllm_inference/utils/openai_multimodal_lm_helper.pyi +0 -36
  82. gllm_inference/utils/retry.pyi +0 -4
  83. gllm_inference/utils/utils.pyi +0 -142
  84. gllm_inference_binary-0.4.62.dist-info/RECORD +0 -115
  85. {gllm_inference_binary-0.4.62.dist-info → gllm_inference_binary-0.5.0.dist-info}/WHEEL +0 -0
@@ -1,13 +1,8 @@
1
- import abc
2
1
  from _typeshed import Incomplete
3
- from abc import ABC
4
- from gllm_inference.constants import MESSAGE_TUPLE_LENGTH as MESSAGE_TUPLE_LENGTH
5
- from gllm_inference.schema import Attachment as Attachment, MultimodalContent as MultimodalContent, MultimodalPrompt as MultimodalPrompt, PromptRole as PromptRole
6
- from gllm_inference.utils import get_prompt_keys as get_prompt_keys, validate_prompt_builder_kwargs as validate_prompt_builder_kwargs
2
+ from gllm_inference.schema import Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
7
3
  from typing import Any
8
4
 
9
- __ALL__: str
10
- DEPRECATION_MESSAGE: str
5
+ KEY_EXTRACTOR_REGEX: Incomplete
11
6
 
12
7
  class PromptBuilder:
13
8
  """A prompt builder class used in Gen AI applications.
@@ -36,111 +31,23 @@ class PromptBuilder:
36
31
  Raises:
37
32
  ValueError: If both `system_template` and `user_template` are empty.
38
33
  """
39
- def format(self, history: MultimodalPrompt | None = None, extra_contents: list[MultimodalContent] | None = None, attachments: list[Attachment] | None = None, **kwargs: Any) -> MultimodalPrompt:
40
- """Formats the prompt templates into a `MultimodalPrompt`.
34
+ def format(self, history: list[Message] | None = None, extra_contents: list[MessageContent] | None = None, **kwargs: Any) -> list[Message]:
35
+ """Formats the prompt templates into a list of messages.
41
36
 
42
37
  This method processes each prompt template, replacing the placeholders in the template content with the
43
38
  corresponding values from `kwargs`. If any required key is missing from `kwargs`, it raises a `ValueError`.
44
- It also handles the provided history and extra contents. It formats the prompt as a `MultimodalPrompt`.
39
+ It also handles the provided history and extra contents. It formats the prompt as a list of messages.
45
40
 
46
41
  Args:
47
- history (MultimodalPrompt | None, optional): The optional history to be included in the prompt.
48
- Defaults to None.
49
- extra_contents (list[MultimodalContent] | None, optional): The optional extra contents to be included in
50
- the user message. Defaults to None.
51
- attachments (list[Attachment] | None, optional): Deprecated parameter to handle attachments.
52
- Will be removed in v0.5.0. Defaults to None.
42
+ history (list[Message] | None, optional): The history to be included in the prompt. Defaults to None.
43
+ extra_contents (list[MessageContent] | None, optional): The extra contents to be included in the user
44
+ message. Defaults to None.
53
45
  **kwargs (Any): A dictionary of placeholder values to be injected into the prompt templates.
54
46
  Values must be either a string or an object that can be serialized to a string.
55
47
 
56
48
  Returns:
57
- MultimodalPrompt: A multimodal prompt.
49
+ list[Message]: A formatted list of messages.
58
50
 
59
51
  Raises:
60
52
  ValueError: If a required key for the prompt template is missing from `kwargs`.
61
53
  """
62
-
63
- class BasePromptBuilder(ABC, metaclass=abc.ABCMeta):
64
- """A base class for prompt builders used in Gen AI applications.
65
-
66
- Attributes:
67
- system_template (str): The system prompt template. May contain placeholders enclosed in curly braces `{}`.
68
- user_template (str): The user prompt template. May contain placeholders enclosed in curly braces `{}`.
69
- prompt_key_set (set[str]): A set of expected keys that must be present in the prompt templates.
70
- ignore_extra_keys (bool): Whether to ignore extra keys when formatting the prompt.
71
- """
72
- system_template: Incomplete
73
- user_template: Incomplete
74
- prompt_key_set: Incomplete
75
- ignore_extra_keys: Incomplete
76
- logger: Incomplete
77
- def __init__(self, system_template: str = '', user_template: str = '', ignore_extra_keys: bool = False) -> None:
78
- """Initializes a new instance of the BasePromptBuilder class.
79
-
80
- Args:
81
- system_template (str, optional): The system prompt template. May contain placeholders enclosed in curly
82
- braces `{}`. Defaults to an empty string.
83
- user_template (str, optional): The user prompt template. May contain placeholders enclosed in curly
84
- braces `{}`. Defaults to an empty string.
85
- ignore_extra_keys (bool, optional): Whether to ignore extra keys when formatting the prompt.
86
- Defaults to False.
87
-
88
- Raises:
89
- ValueError: If both `system_template` and `user_template` are empty.
90
- """
91
- def format_as_message_list(self, history: list[tuple[PromptRole, list[Any] | str]] | None = None, attachments: list[Attachment] | None = None, system_multimodal_contents: list[Any] | None = None, user_multimodal_contents: list[Any] | None = None, is_multimodal: bool | None = None, **kwargs: Any) -> list[tuple[PromptRole, list[Any] | str]]:
92
- """Formats the prompt templates as a list of message tuples (role, formatted content).
93
-
94
- This method processes each prompt template, replacing the placeholders in the template content with the
95
- corresponding values from `kwargs`. If a required key is missing from `kwargs`, it raises a `ValueError`. It
96
- returns a list of tuples, where each tuple consists of a role and the corresponding formatted prompt content.
97
-
98
- Args:
99
- history (list[tuple[PromptRole, list[Any] | str]] | None, optional): The optional chat history to be
100
- included in the prompt. Defaults to None.
101
- attachments (list[Attachment] | None, optional): The optional attachments to be included in the prompt.
102
- Defaults to None.
103
- system_multimodal_contents (list[Any] | None, optional): Deprecated parameter to handle attachments.
104
- Will be removed in v0.5.0. Defaults to None.
105
- user_multimodal_contents (list[Any] | None, optional): Deprecated parameter to handle attachments.
106
- Will be removed in v0.5.0. Defaults to None.
107
- is_multimodal (bool | None, optional): Whether the prompt supports multimodal inputs. Will be deprecated in
108
- v0.5.0, in which multimodality will always be True. Defaults to None.
109
- **kwargs (Any): A dictionary of placeholder values to be injected into the prompt templates.
110
-
111
- Returns:
112
- list[tuple[PromptRole, list[Any] | str]]: A list of tuples, each containing a role and the corresponding
113
- formatted prompt content.
114
-
115
- Raises:
116
- ValueError: If a required key for the prompt template is missing from `kwargs`.
117
- ValueError: If multimodal contents are provided when `is_multimodal` is False.
118
- """
119
- def format_as_string(self, history: list[tuple[PromptRole, str]] | None = None, **kwargs: Any) -> str:
120
- """Formats the prompt as a string.
121
-
122
- This method formats the prompt as a string by first converting the prompt templates to a list of messages and
123
- then formatting the message list as a string.
124
-
125
- Args:
126
- history (list[tuple[PromptRole, str]] | None, optional): The optional chat history to be included in the
127
- prompt. Defaults to None.
128
- **kwargs (Any): A dictionary of placeholder values to be injected into the prompt templates.
129
-
130
- Returns:
131
- str: The formatted prompt with the placeholders replaced by the provided values.
132
-
133
- Raises:
134
- ValueError: If any required key is missing or there are extra keys in the kwargs.
135
- """
136
- @property
137
- def compatible_model_list(self) -> list[str]:
138
- '''Returns the list of compatible models for the prompt builder.
139
-
140
- This property returns the set of models that the prompt builder is compatible with. If the builder is
141
- model-specific, it returns the list of models in `_compatible_model_list`. Otherwise, it returns a list
142
- containing `"All"` to indicate compatibility with all models.
143
-
144
- Returns:
145
- list[str]: A list of compatible model names, or `["All"]` if the prompt builder is not model-specific.
146
- '''
@@ -1,6 +1,6 @@
1
1
  from _typeshed import Incomplete
2
2
  from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
3
- from gllm_inference.schema import PromptRole as PromptRole
3
+ from gllm_inference.schema import MessageRole as MessageRole
4
4
 
5
5
  class AgnosticPromptFormatter(BasePromptFormatter):
6
6
  '''A prompt formatter that formats prompt without any specific model formatting.
@@ -19,9 +19,9 @@ class AgnosticPromptFormatter(BasePromptFormatter):
19
19
  Usage example:
20
20
  ```python
21
21
  prompt = [
22
- (PromptRole.USER, ["Hello", "how are you?"]),
23
- (PromptRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
- (PromptRole.USER, ["What is the capital of France?"]),
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
25
  ]
26
26
  prompt_formatter = AgnosticPromptFormatter(
27
27
  message_separator="\\n###\\n",
@@ -1,5 +1,5 @@
1
1
  from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
2
- from gllm_inference.schema import PromptRole as PromptRole
2
+ from gllm_inference.schema import MessageRole as MessageRole
3
3
 
4
4
  TOKENIZER_LOAD_ERROR_MESSAGE: str
5
5
 
@@ -22,9 +22,9 @@ class HuggingFacePromptFormatter(BasePromptFormatter):
22
22
  Usage example:
23
23
  ```python
24
24
  prompt = [
25
- (PromptRole.USER, ["Hello", "how are you?"]),
26
- (PromptRole.ASSISTANT, ["I\'m fine", "thank you!"]),
27
- (PromptRole.USER, ["What is the capital of France?"]),
25
+ (MessageRole.USER, ["Hello", "how are you?"]),
26
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
27
+ (MessageRole.USER, ["What is the capital of France?"]),
28
28
  ]
29
29
  prompt_formatter = HuggingFacePromptFormatter(
30
30
  model_name_or_path="mistralai/Mistral-7B-Instruct-v0.1",
@@ -19,9 +19,9 @@ class LlamaPromptFormatter(HuggingFacePromptFormatter):
19
19
  Usage example:
20
20
  ```python
21
21
  prompt = [
22
- (PromptRole.USER, ["Hello", "how are you?"]),
23
- (PromptRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
- (PromptRole.USER, ["What is the capital of France?"]),
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
25
  ]
26
26
  prompt_formatter = LlamaPromptFormatter(
27
27
  model_name_or_path="meta-llama/Meta-Llama-3.1-8B-Instruct",
@@ -19,9 +19,9 @@ class MistralPromptFormatter(HuggingFacePromptFormatter):
19
19
  Usage example:
20
20
  ```python
21
21
  prompt = [
22
- (PromptRole.USER, ["Hello", "how are you?"]),
23
- (PromptRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
- (PromptRole.USER, ["What is the capital of France?"]),
22
+ (MessageRole.USER, ["Hello", "how are you?"]),
23
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
24
+ (MessageRole.USER, ["What is the capital of France?"]),
25
25
  ]
26
26
  prompt_formatter = MistralPromptFormatter(
27
27
  model_name_or_path="mistralai/Mistral-7B-Instruct-v0.1",
@@ -1,5 +1,5 @@
1
1
  from gllm_inference.prompt_formatter.prompt_formatter import BasePromptFormatter as BasePromptFormatter
2
- from gllm_inference.schema import PromptRole as PromptRole
2
+ from gllm_inference.schema import MessageRole as MessageRole
3
3
 
4
4
  class OpenAIPromptFormatter(BasePromptFormatter):
5
5
  '''A prompt formatter that formats prompt with OpenAI\'s specific formatting.
@@ -16,9 +16,9 @@ class OpenAIPromptFormatter(BasePromptFormatter):
16
16
  Usage example:
17
17
  ```python
18
18
  prompt = [
19
- (PromptRole.USER, ["Hello", "how are you?"]),
20
- (PromptRole.ASSISTANT, ["I\'m fine", "thank you!"]),
21
- (PromptRole.USER, ["What is the capital of France?"]),
19
+ (MessageRole.USER, ["Hello", "how are you?"]),
20
+ (MessageRole.ASSISTANT, ["I\'m fine", "thank you!"]),
21
+ (MessageRole.USER, ["What is the capital of France?"]),
22
22
  ]
23
23
  prompt_formatter = OpenAIPromptFormatter(
24
24
  content_separator="---"
@@ -1,7 +1,7 @@
1
1
  import abc
2
2
  from _typeshed import Incomplete
3
3
  from abc import ABC
4
- from gllm_inference.schema import MultimodalContent as MultimodalContent, MultimodalPrompt as MultimodalPrompt, PromptRole as PromptRole
4
+ from gllm_inference.schema import Message as Message, MessageContent as MessageContent, MessageRole as MessageRole
5
5
 
6
6
  class BasePromptFormatter(ABC, metaclass=abc.ABCMeta):
7
7
  """A base class for prompt formatters used in Gen AI applications.
@@ -19,12 +19,12 @@ class BasePromptFormatter(ABC, metaclass=abc.ABCMeta):
19
19
  content_separator (str, optional): The separator to be used between the string in a single message.
20
20
  Defaults to "\\n".
21
21
  '''
22
- def format(self, prompt: MultimodalPrompt) -> str:
22
+ def format(self, messages: list[Message]) -> str:
23
23
  """Formats the prompt as a string.
24
24
 
25
25
  Args:
26
- prompt (MultimodalPrompt): The prompt to be formatted as a string.
26
+ messages (list[Message]): The messages to be formatted as a string.
27
27
 
28
28
  Returns:
29
- str: The formatted prompt as a string.
29
+ str: The formatted messages as a string.
30
30
  """
@@ -1,11 +1,9 @@
1
1
  from _typeshed import Incomplete
2
2
  from gllm_core.event import EventEmitter as EventEmitter
3
3
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
4
- from gllm_inference.multimodal_lm_invoker.multimodal_lm_invoker import BaseMultimodalLMInvoker as BaseMultimodalLMInvoker
5
- from gllm_inference.multimodal_prompt_builder import MultimodalPromptBuilder as MultimodalPromptBuilder
6
4
  from gllm_inference.output_parser.output_parser import BaseOutputParser as BaseOutputParser
7
- from gllm_inference.prompt_builder.prompt_builder import BasePromptBuilder as BasePromptBuilder, PromptBuilder as PromptBuilder
8
- from gllm_inference.schema import Attachment as Attachment, LMOutput as LMOutput, MultimodalContent as MultimodalContent, MultimodalOutput as MultimodalOutput, MultimodalPrompt as MultimodalPrompt, PromptRole as PromptRole, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
5
+ from gllm_inference.prompt_builder.prompt_builder import PromptBuilder as PromptBuilder
6
+ from gllm_inference.schema import LMOutput as LMOutput, Message as Message, MessageContent as MessageContent, ResponseSchema as ResponseSchema, ToolCall as ToolCall, ToolResult as ToolResult
9
7
  from langchain_core.tools import Tool as Tool
10
8
  from typing import Any
11
9
 
@@ -17,10 +15,8 @@ class LMRequestProcessor:
17
15
  the inference process in Gen AI applications.
18
16
 
19
17
  Attributes:
20
- prompt_builder (PromptBuilder | BasePromptBuilder | MultimodalPromptBuilder): The prompt builder used to
21
- format the prompt.
22
- lm_invoker (BaseLMInvoker | BaseMultimodalLMInvoker): The language model invoker that handles the model
23
- inference.
18
+ prompt_builder (PromptBuilder): The prompt builder used to format the prompt.
19
+ lm_invoker (BaseLMInvoker): The language model invoker that handles the model inference.
24
20
  output_parser (BaseOutputParser | None): The optional parser to process the model's output, if any.
25
21
  tool_dict (dict[str, Tool]): A dictionary of tools provided to the language model to enable tool calling,
26
22
  if any. The dictionary maps the tool name to the tools themselves.
@@ -29,18 +25,14 @@ class LMRequestProcessor:
29
25
  lm_invoker: Incomplete
30
26
  output_parser: Incomplete
31
27
  tool_dict: Incomplete
32
- def __init__(self, prompt_builder: PromptBuilder | BasePromptBuilder | MultimodalPromptBuilder, lm_invoker: BaseLMInvoker | BaseMultimodalLMInvoker, output_parser: BaseOutputParser | None = None) -> None:
28
+ def __init__(self, prompt_builder: PromptBuilder, lm_invoker: BaseLMInvoker, output_parser: BaseOutputParser | None = None) -> None:
33
29
  """Initializes a new instance of the LMRequestProcessor class.
34
30
 
35
31
  Args:
36
- prompt_builder (PromptBuilder | BasePromptBuilder | MultimodalPromptBuilder): The prompt builder used to
37
- format the prompt.
38
- lm_invoker (BaseLMInvoker | BaseMultimodalLMInvoker): The language model invoker that handles the model
39
- inference.
32
+ prompt_builder (PromptBuilder): The prompt builder used to format the prompt.
33
+ lm_invoker (BaseLMInvoker): The language model invoker that handles the model inference.
40
34
  output_parser (BaseOutputParser, optional): An optional parser to process the model's output.
41
35
  Defaults to None.
42
-
43
- WARNING: Support for MultimodalPromptBuilder is deprecated and will be removed in version 0.5.0.
44
36
  """
45
37
  def set_tools(self, tools: list[Tool]) -> None:
46
38
  """Sets the tools for the LM invoker.
@@ -68,7 +60,7 @@ class LMRequestProcessor:
68
60
 
69
61
  This method clears the response schema for the LM invoker.
70
62
  """
71
- async def process(self, prompt_kwargs: dict[str, Any], history: MultimodalPrompt | None = None, extra_contents: list[MultimodalContent] | None = None, hyperparameters: dict[str, Any] | None = None, event_emitter: EventEmitter | None = None, attachments: list[Attachment] | None = None, system_multimodal_contents: list[Any] | None = None, user_multimodal_contents: list[Any] | None = None, auto_execute_tools: bool = True, max_lm_calls: int = 5) -> Any:
63
+ async def process(self, prompt_kwargs: dict[str, Any] | None = None, history: list[Message] | None = None, extra_contents: list[MessageContent] | None = None, hyperparameters: dict[str, Any] | None = None, event_emitter: EventEmitter | None = None, auto_execute_tools: bool = True, max_lm_calls: int = 5) -> Any:
72
64
  """Processes a language model inference request.
73
65
 
74
66
  This method processes the language model inference request as follows:
@@ -80,21 +72,16 @@ class LMRequestProcessor:
80
72
  LMOutput object, the output parser will process the `response` attribute of the LMOutput object.
81
73
 
82
74
  Args:
83
- prompt_kwargs (dict[str, Any]): A dictionary of arguments used to format the prompt.
84
- history (MultimodalPrompt | None, optional): A list of conversation history to be included in the prompt.
75
+ prompt_kwargs (dict[str, Any], optional): A dictionary of arguments used to format the prompt.
76
+ Defaults to None, in which case no arguments will be passed to the prompt builder.
77
+ history (list[Message] | None, optional): A list of conversation history to be included in the prompt.
85
78
  Defaults to None.
86
- extra_contents (list[MultimodalContent] | None, optional): A list of extra contents to be included in the
79
+ extra_contents (list[MessageContent] | None, optional): A list of extra contents to be included in the
87
80
  user message. Defaults to None.
88
81
  hyperparameters (dict[str, Any] | None, optional): A dictionary of hyperparameters for the model invocation.
89
82
  Defaults to None.
90
83
  event_emitter (EventEmitter | None, optional): An event emitter for streaming model outputs.
91
84
  Defaults to None.
92
- attachments (list[Attachment] | None, optional): Deprecated parameter to handle attachments.
93
- Will be removed in v0.5.0. Defaults to None.
94
- system_multimodal_contents (list[Any] | None, optional): Deprecated parameter to handle attachments.
95
- Will be removed in v0.5.0. Defaults to None.
96
- user_multimodal_contents (list[Any] | None, optional): Deprecated parameter to handle attachments.
97
- Will be removed in v0.5.0. Defaults to None.
98
85
  auto_execute_tools (bool, optional): Whether to automatically execute tools if the LM invokes output
99
86
  tool calls. Defaults to True.
100
87
  max_lm_calls (int, optional): The maximum number of times the language model can be invoked
@@ -1,8 +1,6 @@
1
1
  from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker as BaseLMInvoker
2
- from gllm_inference.multimodal_lm_invoker.multimodal_lm_invoker import BaseMultimodalLMInvoker as BaseMultimodalLMInvoker
3
- from gllm_inference.multimodal_prompt_builder import MultimodalPromptBuilder as MultimodalPromptBuilder
4
2
  from gllm_inference.output_parser.output_parser import BaseOutputParser as BaseOutputParser
5
- from gllm_inference.prompt_builder.prompt_builder import BasePromptBuilder as BasePromptBuilder, PromptBuilder as PromptBuilder
3
+ from gllm_inference.prompt_builder.prompt_builder import PromptBuilder as PromptBuilder
6
4
  from gllm_inference.request_processor.lm_request_processor import LMRequestProcessor as LMRequestProcessor
7
5
  from typing import Any
8
6
 
@@ -35,22 +33,18 @@ class UsesLM:
35
33
  first argument.
36
34
  '''
37
35
  @classmethod
38
- def from_lm_components(cls, prompt_builder: PromptBuilder | BasePromptBuilder | MultimodalPromptBuilder, lm_invoker: BaseLMInvoker | BaseMultimodalLMInvoker, output_parser: BaseOutputParser | None = None, **kwargs: Any):
36
+ def from_lm_components(cls, prompt_builder: PromptBuilder, lm_invoker: BaseLMInvoker, output_parser: BaseOutputParser | None = None, **kwargs: Any):
39
37
  """Creates an instance by initializing LMRequestProcessor with given components.
40
38
 
41
39
  This method is a shortcut to initialize the class by providing the LMRequestProcessor components directly.
42
40
 
43
41
  Args:
44
- prompt_builder (PromptBuilder | BasePromptBuilder | MultimodalPromptBuilder): The prompt builder used to
45
- format the prompt.
46
- lm_invoker (BaseLMInvoker | BaseMultimodalLMInvoker): The language model invoker that handles the model
47
- inference.
42
+ prompt_builder (PromptBuilder): The prompt builder used to format the prompt.
43
+ lm_invoker (BaseLMInvoker): The language model invoker that handles the model inference.
48
44
  output_parser (BaseOutputParser, optional): An optional parser to process the model's output.
49
45
  Defaults to None.
50
46
  **kwargs (Any): Additional keyword arguments to be passed to the class constructor.
51
47
 
52
48
  Returns:
53
49
  An instance of the class that mixes in this mixin.
54
-
55
- WARNING: Support for MultimodalPromptBuilder is deprecated and will be removed in version 0.5.0.
56
50
  """
@@ -1,6 +1,13 @@
1
- from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, PromptRole as PromptRole
1
+ from gllm_inference.schema.attachment import Attachment as Attachment
2
+ from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
+ from gllm_inference.schema.enums import AttachmentType as AttachmentType, EmitDataType as EmitDataType, MessageRole as MessageRole
4
+ from gllm_inference.schema.lm_output import LMOutput as LMOutput
5
+ from gllm_inference.schema.message import Message as Message
2
6
  from gllm_inference.schema.model_id import ModelId as ModelId, ModelProvider as ModelProvider
3
- from gllm_inference.schema.model_io import Attachment as Attachment, CodeExecResult as CodeExecResult, ContentPlaceholder as ContentPlaceholder, LMOutput as LMOutput, Reasoning as Reasoning, TokenUsage as TokenUsage, ToolCall as ToolCall, ToolResult as ToolResult
4
- from gllm_inference.schema.type_alias import EMContent as EMContent, ErrorResponse as ErrorResponse, MultimodalContent as MultimodalContent, MultimodalOutput as MultimodalOutput, MultimodalPrompt as MultimodalPrompt, ResponseSchema as ResponseSchema, UnimodalContent as UnimodalContent, UnimodalPrompt as UnimodalPrompt, Vector as Vector
7
+ from gllm_inference.schema.reasoning import Reasoning as Reasoning
8
+ from gllm_inference.schema.token_usage import TokenUsage as TokenUsage
9
+ from gllm_inference.schema.tool_call import ToolCall as ToolCall
10
+ from gllm_inference.schema.tool_result import ToolResult as ToolResult
11
+ from gllm_inference.schema.type_alias import EMContent as EMContent, ErrorResponse as ErrorResponse, MessageContent as MessageContent, ResponseSchema as ResponseSchema, Vector as Vector
5
12
 
6
- __all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'ContentPlaceholder', 'EMContent', 'EmitDataType', 'ErrorResponse', 'LMOutput', 'ModelId', 'ModelProvider', 'MultimodalContent', 'MultimodalOutput', 'MultimodalPrompt', 'PromptRole', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'UnimodalContent', 'UnimodalPrompt', 'Vector']
13
+ __all__ = ['Attachment', 'AttachmentType', 'CodeExecResult', 'EMContent', 'EmitDataType', 'ErrorResponse', 'MessageContent', 'LMOutput', 'ModelId', 'ModelProvider', 'Message', 'MessageRole', 'Reasoning', 'ResponseSchema', 'TokenUsage', 'ToolCall', 'ToolResult', 'Vector']
@@ -0,0 +1,76 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_inference.constants import HEX_REPR_LENGTH as HEX_REPR_LENGTH
3
+ from pydantic import BaseModel
4
+
5
+ logger: Incomplete
6
+
7
+ class Attachment(BaseModel):
8
+ """Defines a file attachment schema.
9
+
10
+ Attributes:
11
+ data (bytes): The content data of the file attachment.
12
+ filename (str): The filename of the file attachment.
13
+ mime_type (str): The mime type of the file attachment.
14
+ extension (str): The extension of the file attachment.
15
+ url (str | None): The URL of the file attachment. Defaults to None.
16
+ """
17
+ data: bytes
18
+ filename: str
19
+ mime_type: str
20
+ extension: str
21
+ url: str | None
22
+ @classmethod
23
+ def from_bytes(cls, bytes: bytes, filename: str | None = None) -> Attachment:
24
+ """Creates an Attachment from bytes.
25
+
26
+ Args:
27
+ bytes (bytes): The bytes of the file.
28
+ filename (str | None, optional): The filename of the file. Defaults to None,
29
+ in which case the filename will be derived from the extension.
30
+
31
+ Returns:
32
+ Attachment: The instantiated Attachment.
33
+ """
34
+ @classmethod
35
+ def from_data_url(cls, data_url: str, filename: str | None = None) -> Attachment:
36
+ """Creates an Attachment from a data URL (data:[mime/type];base64,[bytes]).
37
+
38
+ Args:
39
+ data_url (str): The data URL of the file.
40
+ filename (str | None, optional): The filename of the file. Defaults to None,
41
+ in which case the filename will be derived from the mime type.
42
+
43
+ Returns:
44
+ Attachment: The instantiated Attachment.
45
+ """
46
+ @classmethod
47
+ def from_url(cls, url: str, filename: str | None = None) -> Attachment:
48
+ """Creates an Attachment from a URL.
49
+
50
+ Args:
51
+ url (str): The URL of the file.
52
+ filename (str | None, optional): The filename of the file. Defaults to None,
53
+ in which case the filename will be derived from the URL.
54
+
55
+ Returns:
56
+ Attachment: The instantiated Attachment.
57
+ """
58
+ @classmethod
59
+ def from_path(cls, path: str, filename: str | None = None) -> Attachment:
60
+ """Creates an Attachment from a path.
61
+
62
+ Args:
63
+ path (str): The path to the file.
64
+ filename (str | None, optional): The filename of the file. Defaults to None,
65
+ in which case the filename will be derived from the path.
66
+
67
+ Returns:
68
+ Attachment: The instantiated Attachment.
69
+ """
70
+ def write_to_file(self, path: str | None = None) -> None:
71
+ """Writes the Attachment to a file.
72
+
73
+ Args:
74
+ path (str | None, optional): The path to the file. Defaults to None,
75
+ in which case the filename will be used as the path.
76
+ """
@@ -0,0 +1,14 @@
1
+ from gllm_inference.schema.attachment import Attachment as Attachment
2
+ from pydantic import BaseModel
3
+
4
+ class CodeExecResult(BaseModel):
5
+ """Defines a code execution result when a language model is configured to execute code.
6
+
7
+ Attributes:
8
+ id (str): The ID of the code execution. Defaults to an empty string.
9
+ code (str): The executed code. Defaults to an empty string.
10
+ output (list[str | Attachment]): The output of the executed code. Defaults to an empty list.
11
+ """
12
+ id: str
13
+ code: str
14
+ output: list[str | Attachment]
@@ -1,5 +1,12 @@
1
1
  from enum import StrEnum
2
2
 
3
+ class AttachmentType(StrEnum):
4
+ """Defines valid attachment types."""
5
+ AUDIO = 'audio'
6
+ DOCUMENT = 'document'
7
+ IMAGE = 'image'
8
+ VIDEO = 'video'
9
+
3
10
  class EmitDataType(StrEnum):
4
11
  """Defines valid data types for emitting events."""
5
12
  ACTIVITY = 'activity'
@@ -10,15 +17,8 @@ class EmitDataType(StrEnum):
10
17
  THINKING_START = 'thinking_start'
11
18
  THINKING_END = 'thinking_end'
12
19
 
13
- class PromptRole(StrEnum):
14
- """Defines valid prompt roles."""
20
+ class MessageRole(StrEnum):
21
+ """Defines valid message roles."""
15
22
  SYSTEM = 'system'
16
23
  USER = 'user'
17
24
  ASSISTANT = 'assistant'
18
-
19
- class AttachmentType(StrEnum):
20
- """Defines valid attachment types."""
21
- AUDIO = 'audio'
22
- DOCUMENT = 'document'
23
- IMAGE = 'image'
24
- VIDEO = 'video'
@@ -0,0 +1,36 @@
1
+ from gllm_core.schema import Chunk as Chunk
2
+ from gllm_inference.schema.code_exec_result import CodeExecResult as CodeExecResult
3
+ from gllm_inference.schema.reasoning import Reasoning as Reasoning
4
+ from gllm_inference.schema.token_usage import TokenUsage as TokenUsage
5
+ from gllm_inference.schema.tool_call import ToolCall as ToolCall
6
+ from pydantic import BaseModel
7
+ from typing import Any
8
+
9
+ class LMOutput(BaseModel):
10
+ """Defines the output of a language model.
11
+
12
+ Attributes:
13
+ response (str): The text response. Defaults to an empty string.
14
+ tool_calls (list[ToolCall]): The tool calls, if the language model decides to invoke tools.
15
+ Defaults to an empty list.
16
+ structured_output (dict[str, Any] | BaseModel | None): The structured output, if a response schema is defined
17
+ for the language model. Defaults to None.
18
+ token_usage (TokenUsage | None): The token usage analytics, if requested. Defaults to None.
19
+ duration (float | None): The duration of the invocation in seconds, if requested. Defaults to None.
20
+ finish_details (dict[str, Any]): The details about how the generation finished, if requested.
21
+ Defaults to an empty dictionary.
22
+ reasoning (list[Reasoning]): The reasoning, if the language model is configured to output reasoning.
23
+ Defaults to an empty list.
24
+ citations (list[Chunk]): The citations, if the language model outputs citations. Defaults to an empty list.
25
+ code_exec_results (list[CodeExecResult]): The code execution results, if the language model decides to
26
+ execute code. Defaults to an empty list.
27
+ """
28
+ response: str
29
+ tool_calls: list[ToolCall]
30
+ structured_output: dict[str, Any] | BaseModel | None
31
+ token_usage: TokenUsage | None
32
+ duration: float | None
33
+ finish_details: dict[str, Any]
34
+ reasoning: list[Reasoning]
35
+ citations: list[Chunk]
36
+ code_exec_results: list[CodeExecResult]
@@ -0,0 +1,52 @@
1
+ from gllm_inference.schema.enums import MessageRole as MessageRole
2
+ from gllm_inference.schema.type_alias import MessageContent as MessageContent
3
+ from pydantic import BaseModel
4
+ from typing import Any
5
+
6
+ class Message(BaseModel):
7
+ """Defines a message schema to be used as inputs for a language model.
8
+
9
+ Attributes:
10
+ role (MessageRole): The role of the message.
11
+ contents (list[MessageContent]): The contents of the message.
12
+ metadata (dict[str, Any]): The metadata of the message.
13
+ """
14
+ role: MessageRole
15
+ contents: list[MessageContent]
16
+ metadata: dict[str, Any]
17
+ @classmethod
18
+ def system(cls, contents: MessageContent | list[MessageContent], metadata: dict[str, Any] | None = None) -> Message:
19
+ """Create a system message.
20
+
21
+ Args:
22
+ contents (MessageContent | list[MessageContent]): The message contents.
23
+ If a single content is provided, it will be wrapped in a list.
24
+ metadata (dict[str, Any], optional): Additional metadata for the message. Defaults to None.
25
+
26
+ Returns:
27
+ Message: A new message with SYSTEM role.
28
+ """
29
+ @classmethod
30
+ def user(cls, contents: MessageContent | list[MessageContent], metadata: dict[str, Any] | None = None) -> Message:
31
+ """Create a user message.
32
+
33
+ Args:
34
+ contents (MessageContent | list[MessageContent]): The message contents.
35
+ If a single content is provided, it will be wrapped in a list.
36
+ metadata (dict[str, Any], optional): Additional metadata for the message. Defaults to None.
37
+
38
+ Returns:
39
+ Message: A new message with USER role.
40
+ """
41
+ @classmethod
42
+ def assistant(cls, contents: MessageContent | list[MessageContent], metadata: dict[str, Any] | None = None) -> Message:
43
+ """Create an assistant message.
44
+
45
+ Args:
46
+ contents (MessageContent | list[MessageContent]): The message contents.
47
+ If a single content is provided, it will be wrapped in a list.
48
+ metadata (dict[str, Any], optional): Additional metadata for the message. Defaults to None.
49
+
50
+ Returns:
51
+ Message: A new message with ASSISTANT role.
52
+ """
@@ -1,5 +1,5 @@
1
1
  from enum import StrEnum
2
- from gllm_inference.utils.utils import validate_string_enum as validate_string_enum
2
+ from gllm_inference.utils import validate_string_enum as validate_string_enum
3
3
  from pydantic import BaseModel
4
4
 
5
5
  PROVIDER_SEPARATOR: str
@@ -0,0 +1,15 @@
1
+ from pydantic import BaseModel
2
+
3
+ class Reasoning(BaseModel):
4
+ """Defines a reasoning output when a language model is configured to use reasoning.
5
+
6
+ Attributes:
7
+ id (str): The ID of the reasoning output. Defaults to an empty string.
8
+ reasoning (str): The reasoning text. Defaults to an empty string.
9
+ type (str): The type of the reasoning output. Defaults to an empty string.
10
+ data (str): The additional data of the reasoning output. Defaults to an empty string.
11
+ """
12
+ id: str
13
+ reasoning: str
14
+ type: str
15
+ data: str