gllm-inference-binary 0.4.61__cp312-cp312-win_amd64.whl → 0.5.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gllm-inference-binary might be problematic. Click here for more details.

Files changed (85) hide show
  1. gllm_inference/builder/build_lm_request_processor.pyi +1 -4
  2. gllm_inference/catalog/catalog.pyi +34 -38
  3. gllm_inference/catalog/lm_request_processor_catalog.pyi +11 -14
  4. gllm_inference/catalog/prompt_builder_catalog.pyi +25 -37
  5. gllm_inference/constants.pyi +0 -3
  6. gllm_inference/em_invoker/__init__.pyi +1 -4
  7. gllm_inference/em_invoker/em_invoker.pyi +6 -25
  8. gllm_inference/em_invoker/google_em_invoker.pyi +1 -1
  9. gllm_inference/em_invoker/langchain/__init__.pyi +1 -2
  10. gllm_inference/em_invoker/langchain_em_invoker.pyi +2 -12
  11. gllm_inference/em_invoker/openai_em_invoker.pyi +1 -1
  12. gllm_inference/em_invoker/twelevelabs_em_invoker.pyi +2 -18
  13. gllm_inference/em_invoker/voyage_em_invoker.pyi +2 -5
  14. gllm_inference/lm_invoker/__init__.pyi +1 -4
  15. gllm_inference/lm_invoker/anthropic_lm_invoker.pyi +7 -29
  16. gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi +5 -18
  17. gllm_inference/lm_invoker/bedrock_lm_invoker.pyi +6 -14
  18. gllm_inference/lm_invoker/datasaur_lm_invoker.pyi +7 -14
  19. gllm_inference/lm_invoker/google_lm_invoker.pyi +7 -21
  20. gllm_inference/lm_invoker/langchain_lm_invoker.pyi +8 -21
  21. gllm_inference/lm_invoker/litellm_lm_invoker.pyi +6 -13
  22. gllm_inference/lm_invoker/lm_invoker.pyi +17 -18
  23. gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi +8 -22
  24. gllm_inference/lm_invoker/openai_lm_invoker.pyi +18 -24
  25. gllm_inference/prompt_builder/__init__.pyi +1 -6
  26. gllm_inference/prompt_builder/prompt_builder.pyi +9 -102
  27. gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi +4 -4
  28. gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi +4 -4
  29. gllm_inference/prompt_formatter/llama_prompt_formatter.pyi +3 -3
  30. gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi +3 -3
  31. gllm_inference/prompt_formatter/openai_prompt_formatter.pyi +4 -4
  32. gllm_inference/prompt_formatter/prompt_formatter.pyi +4 -4
  33. gllm_inference/request_processor/lm_request_processor.pyi +12 -25
  34. gllm_inference/request_processor/uses_lm_mixin.pyi +4 -10
  35. gllm_inference/schema/__init__.pyi +11 -4
  36. gllm_inference/schema/attachment.pyi +76 -0
  37. gllm_inference/schema/code_exec_result.pyi +14 -0
  38. gllm_inference/schema/enums.pyi +9 -9
  39. gllm_inference/schema/lm_output.pyi +36 -0
  40. gllm_inference/schema/message.pyi +52 -0
  41. gllm_inference/schema/model_id.pyi +1 -1
  42. gllm_inference/schema/reasoning.pyi +15 -0
  43. gllm_inference/schema/token_usage.pyi +11 -0
  44. gllm_inference/schema/tool_call.pyi +14 -0
  45. gllm_inference/schema/tool_result.pyi +11 -0
  46. gllm_inference/schema/type_alias.pyi +6 -8
  47. gllm_inference/utils/__init__.pyi +2 -3
  48. gllm_inference/utils/validation.pyi +12 -0
  49. gllm_inference.cp312-win_amd64.pyd +0 -0
  50. gllm_inference.pyi +8 -42
  51. {gllm_inference_binary-0.4.61.dist-info → gllm_inference_binary-0.5.0.dist-info}/METADATA +1 -7
  52. gllm_inference_binary-0.5.0.dist-info/RECORD +93 -0
  53. gllm_inference/builder/model_id.pyi +0 -13
  54. gllm_inference/catalog/component_map.pyi +0 -8
  55. gllm_inference/em_invoker/google_generativeai_em_invoker.pyi +0 -32
  56. gllm_inference/em_invoker/google_vertexai_em_invoker.pyi +0 -34
  57. gllm_inference/em_invoker/langchain/tei_embeddings.pyi +0 -71
  58. gllm_inference/em_invoker/tei_em_invoker.pyi +0 -48
  59. gllm_inference/lm_invoker/google_generativeai_lm_invoker.pyi +0 -51
  60. gllm_inference/lm_invoker/google_vertexai_lm_invoker.pyi +0 -54
  61. gllm_inference/lm_invoker/tgi_lm_invoker.pyi +0 -34
  62. gllm_inference/multimodal_em_invoker/__init__.pyi +0 -4
  63. gllm_inference/multimodal_em_invoker/google_vertexai_multimodal_em_invoker.pyi +0 -52
  64. gllm_inference/multimodal_em_invoker/multimodal_em_invoker.pyi +0 -35
  65. gllm_inference/multimodal_em_invoker/twelvelabs_multimodal_em_invoker.pyi +0 -49
  66. gllm_inference/multimodal_lm_invoker/__init__.pyi +0 -7
  67. gllm_inference/multimodal_lm_invoker/anthropic_multimodal_lm_invoker.pyi +0 -44
  68. gllm_inference/multimodal_lm_invoker/azure_openai_multimodal_lm_invoker.pyi +0 -41
  69. gllm_inference/multimodal_lm_invoker/google_generativeai_multimodal_lm_invoker.pyi +0 -30
  70. gllm_inference/multimodal_lm_invoker/google_vertexai_multimodal_lm_invoker.pyi +0 -67
  71. gllm_inference/multimodal_lm_invoker/multimodal_lm_invoker.pyi +0 -51
  72. gllm_inference/multimodal_lm_invoker/openai_multimodal_lm_invoker.pyi +0 -43
  73. gllm_inference/multimodal_prompt_builder/__init__.pyi +0 -3
  74. gllm_inference/multimodal_prompt_builder/multimodal_prompt_builder.pyi +0 -57
  75. gllm_inference/prompt_builder/agnostic_prompt_builder.pyi +0 -34
  76. gllm_inference/prompt_builder/huggingface_prompt_builder.pyi +0 -44
  77. gllm_inference/prompt_builder/llama_prompt_builder.pyi +0 -41
  78. gllm_inference/prompt_builder/mistral_prompt_builder.pyi +0 -41
  79. gllm_inference/prompt_builder/openai_prompt_builder.pyi +0 -35
  80. gllm_inference/schema/model_io.pyi +0 -178
  81. gllm_inference/utils/openai_multimodal_lm_helper.pyi +0 -36
  82. gllm_inference/utils/retry.pyi +0 -4
  83. gllm_inference/utils/utils.pyi +0 -142
  84. gllm_inference_binary-0.4.61.dist-info/RECORD +0 -115
  85. {gllm_inference_binary-0.4.61.dist-info → gllm_inference_binary-0.5.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,11 @@
1
+ from pydantic import BaseModel
2
+
3
+ class TokenUsage(BaseModel):
4
+ """Defines the token usage data structure of a language model.
5
+
6
+ Attributes:
7
+ input_tokens (int): The number of input tokens.
8
+ output_tokens (int): The number of output tokens.
9
+ """
10
+ input_tokens: int
11
+ output_tokens: int
@@ -0,0 +1,14 @@
1
+ from pydantic import BaseModel
2
+ from typing import Any
3
+
4
+ class ToolCall(BaseModel):
5
+ """Defines a tool call request when a language model decides to invoke a tool.
6
+
7
+ Attributes:
8
+ id (str): The ID of the tool call.
9
+ name (str): The name of the tool.
10
+ args (dict[str, Any]): The arguments of the tool call.
11
+ """
12
+ id: str
13
+ name: str
14
+ args: dict[str, Any]
@@ -0,0 +1,11 @@
1
+ from pydantic import BaseModel
2
+
3
+ class ToolResult(BaseModel):
4
+ """Defines a tool result to be sent back to the language model.
5
+
6
+ Attributes:
7
+ id (str): The ID of the tool call.
8
+ output (str): The output of the tool call.
9
+ """
10
+ id: str
11
+ output: str
@@ -1,17 +1,15 @@
1
1
  from aiohttp import ClientResponse
2
- from gllm_inference.schema.enums import PromptRole as PromptRole
3
- from gllm_inference.schema.model_io import Attachment as Attachment, ContentPlaceholder as ContentPlaceholder, LMOutput as LMOutput, Reasoning as Reasoning, ToolCall as ToolCall, ToolResult as ToolResult
2
+ from gllm_inference.schema.code_exec_result import Attachment as Attachment
3
+ from gllm_inference.schema.reasoning import Reasoning as Reasoning
4
+ from gllm_inference.schema.tool_call import ToolCall as ToolCall
5
+ from gllm_inference.schema.tool_result import ToolResult as ToolResult
4
6
  from httpx import Response as HttpxResponse
5
7
  from pydantic import BaseModel
6
8
  from requests import Response
7
9
  from typing import Any
8
10
 
11
+ ErrorResponse = Response | HttpxResponse | ClientResponse | str | dict[str, Any]
9
12
  ResponseSchema = dict[str, Any] | type[BaseModel]
10
- MultimodalContent = str | Attachment | bytes | ToolCall | ToolResult | Reasoning | ContentPlaceholder
11
- MultimodalPrompt = list[tuple[PromptRole, list[MultimodalContent]]]
12
- MultimodalOutput = str | LMOutput
13
+ MessageContent = str | Attachment | ToolCall | ToolResult | Reasoning
13
14
  EMContent = str | Attachment | tuple[str | Attachment, ...]
14
15
  Vector = list[float]
15
- UnimodalContent = str | list[str | ToolCall] | list[ToolResult]
16
- UnimodalPrompt = list[tuple[PromptRole, UnimodalContent]]
17
- ErrorResponse = Response | HttpxResponse | ClientResponse | str | dict[str, Any]
@@ -1,5 +1,4 @@
1
1
  from gllm_inference.utils.langchain import load_langchain_model as load_langchain_model, parse_model_data as parse_model_data
2
- from gllm_inference.utils.retry import RetryConfig as RetryConfig, retry as retry
3
- from gllm_inference.utils.utils import get_basic_auth_headers as get_basic_auth_headers, get_mime_type as get_mime_type, get_prompt_keys as get_prompt_keys, invoke_google_multimodal_lm as invoke_google_multimodal_lm, is_local_file_path as is_local_file_path, is_remote_file_path as is_remote_file_path, is_valid_extension as is_valid_extension, load_google_vertexai_project_id as load_google_vertexai_project_id, preprocess_tei_input as preprocess_tei_input, validate_prompt_builder_kwargs as validate_prompt_builder_kwargs, validate_string_enum as validate_string_enum
2
+ from gllm_inference.utils.validation import validate_string_enum as validate_string_enum
4
3
 
5
- __all__ = ['RetryConfig', 'get_basic_auth_headers', 'get_mime_type', 'get_prompt_keys', 'invoke_google_multimodal_lm', 'is_local_file_path', 'is_remote_file_path', 'is_valid_extension', 'load_google_vertexai_project_id', 'load_langchain_model', 'parse_model_data', 'preprocess_tei_input', 'retry', 'validate_prompt_builder_kwargs', 'validate_string_enum']
4
+ __all__ = ['load_langchain_model', 'parse_model_data', 'validate_string_enum']
@@ -0,0 +1,12 @@
1
+ from enum import StrEnum
2
+
3
+ def validate_string_enum(enum_type: type[StrEnum], value: str) -> None:
4
+ """Validates that the provided value is a valid string enum value.
5
+
6
+ Args:
7
+ enum_type (type[StrEnum]): The type of the string enum.
8
+ value (str): The value to validate.
9
+
10
+ Raises:
11
+ ValueError: If the provided value is not a valid string enum value.
12
+ """
Binary file
gllm_inference.pyi CHANGED
@@ -34,19 +34,6 @@ import json
34
34
  import abc
35
35
  import pandas
36
36
  import pydantic
37
- import gllm_inference.lm_invoker.GoogleGenerativeAILMInvoker
38
- import gllm_inference.lm_invoker.GoogleVertexAILMInvoker
39
- import gllm_inference.lm_invoker.TGILMInvoker
40
- import gllm_inference.multimodal_lm_invoker.AnthropicMultimodalLMInvoker
41
- import gllm_inference.multimodal_lm_invoker.GoogleGenerativeAIMultimodalLMInvoker
42
- import gllm_inference.multimodal_lm_invoker.GoogleVertexAIMultimodalLMInvoker
43
- import gllm_inference.multimodal_lm_invoker.OpenAIMultimodalLMInvoker
44
- import gllm_inference.multimodal_prompt_builder.MultimodalPromptBuilder
45
- import gllm_inference.prompt_builder.AgnosticPromptBuilder
46
- import gllm_inference.prompt_builder.HuggingFacePromptBuilder
47
- import gllm_inference.prompt_builder.LlamaPromptBuilder
48
- import gllm_inference.prompt_builder.MistralPromptBuilder
49
- import gllm_inference.prompt_builder.OpenAIPromptBuilder
50
37
  import re
51
38
  import gllm_core.utils.retry
52
39
  import gllm_inference.request_processor.LMRequestProcessor
@@ -54,9 +41,6 @@ import gllm_core.utils.imports
54
41
  import gllm_inference.schema.ModelId
55
42
  import gllm_inference.schema.ModelProvider
56
43
  import openai
57
- import importlib
58
- import langchain_core
59
- import langchain_core.embeddings
60
44
  import gllm_inference.exceptions.parse_error_message
61
45
  import gllm_inference.schema.Attachment
62
46
  import gllm_inference.schema.AttachmentType
@@ -70,13 +54,10 @@ import asyncio
70
54
  import concurrent
71
55
  import concurrent.futures
72
56
  import concurrent.futures.ThreadPoolExecutor
73
- import typing_extensions
74
- import gllm_inference.utils.preprocess_tei_input
75
- import huggingface_hub
57
+ import langchain_core
58
+ import langchain_core.embeddings
76
59
  import gllm_inference.utils.load_langchain_model
77
60
  import gllm_inference.utils.parse_model_data
78
- import gllm_inference.em_invoker.langchain.TEIEmbeddings
79
- import gllm_inference.utils.get_basic_auth_headers
80
61
  import io
81
62
  import twelvelabs
82
63
  import base64
@@ -99,7 +80,7 @@ import langchain_core.utils
99
80
  import langchain_core.utils.function_calling
100
81
  import gllm_inference.schema.EmitDataType
101
82
  import gllm_inference.schema.LMOutput
102
- import gllm_inference.schema.MultimodalPrompt
83
+ import gllm_inference.schema.Message
103
84
  import gllm_inference.schema.Reasoning
104
85
  import gllm_inference.schema.ResponseSchema
105
86
  import gllm_inference.schema.TokenUsage
@@ -108,36 +89,21 @@ import gllm_inference.schema.ToolResult
108
89
  import anthropic
109
90
  import aioboto3
110
91
  import gllm_core.schema
111
- import gllm_inference.schema.PromptRole
92
+ import gllm_inference.schema.MessageRole
112
93
  import langchain_core.language_models
113
94
  import langchain_core.messages
114
- import gllm_inference.schema.MultimodalOutput
115
95
  import litellm
116
- import pathlib
117
96
  import time
118
97
  import jsonschema
119
- import gllm_inference.schema.ContentPlaceholder
120
- import gllm_inference.schema.MultimodalContent
121
- import gllm_inference.utils.is_local_file_path
122
- import gllm_inference.utils.is_remote_file_path
98
+ import gllm_inference.schema.MessageContent
123
99
  import gllm_inference.utils.validate_string_enum
124
100
  import gllm_inference.schema.CodeExecResult
125
- import gllm_inference.utils.get_mime_type
126
- import gllm_inference.utils.load_google_vertexai_project_id
127
- import vertexai
128
- import vertexai.vision_models
129
- import gllm_inference.utils.invoke_google_multimodal_lm
130
- import vertexai.generative_models
131
- import gllm_inference.utils.get_prompt_keys
132
- import gllm_inference.utils.validate_prompt_builder_kwargs
133
- import gllm_inference.prompt_formatter.AgnosticPromptFormatter
134
- import gllm_inference.prompt_formatter.HuggingFacePromptFormatter
135
- import gllm_inference.prompt_formatter.OpenAIPromptFormatter
136
101
  import transformers
102
+ import gllm_inference.prompt_formatter.HuggingFacePromptFormatter
137
103
  import gllm_core.utils.logger_manager
138
104
  import mimetypes
139
105
  import uuid
106
+ import pathlib
140
107
  import filetype
141
108
  import magic
142
- import urllib
143
- import urllib.parse
109
+ import importlib
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gllm-inference-binary
3
- Version: 0.4.61
3
+ Version: 0.5.0
4
4
  Summary: A library containing components related to model inferences in Gen AI applications.
5
5
  Author: Henry Wicaksono
6
6
  Author-email: henry.wicaksono@gdplabs.id
@@ -12,8 +12,6 @@ Provides-Extra: anthropic
12
12
  Provides-Extra: bedrock
13
13
  Provides-Extra: datasaur
14
14
  Provides-Extra: google
15
- Provides-Extra: google-genai
16
- Provides-Extra: google-vertexai
17
15
  Provides-Extra: huggingface
18
16
  Provides-Extra: litellm
19
17
  Provides-Extra: openai
@@ -30,10 +28,6 @@ Requires-Dist: huggingface-hub (>=0.30.0,<0.31.0) ; extra == "huggingface"
30
28
  Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
31
29
  Requires-Dist: jsonschema (>=4.24.0,<5.0.0)
32
30
  Requires-Dist: langchain (>=0.3.0,<0.4.0)
33
- Requires-Dist: langchain-google-genai (==2.0.8) ; extra == "google-genai"
34
- Requires-Dist: langchain-google-vertexai (==2.0.21) ; extra == "google-vertexai"
35
- Requires-Dist: langchain-openai (>=0.3.12,<0.4.0) ; extra == "openai"
36
- Requires-Dist: langchain-voyageai (>=0.1.6,<0.2.0) ; (python_version < "3.13") and (extra == "voyage")
37
31
  Requires-Dist: libmagic (>=1.0,<2.0) ; sys_platform == "win32"
38
32
  Requires-Dist: litellm (>=1.69.2,<2.0.0) ; extra == "litellm"
39
33
  Requires-Dist: openai (>=1.98.0,<2.0.0) ; extra == "datasaur" or extra == "openai"
@@ -0,0 +1,93 @@
1
+ gllm_inference/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ gllm_inference/builder/__init__.pyi,sha256=-bw1uDx7CAM7pkvjvb1ZXku9zXlQ7aEAyC83KIn3bz8,506
3
+ gllm_inference/builder/build_em_invoker.pyi,sha256=PGRHlmiQ-GUTDC51PwYFjVkXRxeN0immnaSBOI06Uno,5474
4
+ gllm_inference/builder/build_lm_invoker.pyi,sha256=6dQha47M19hllF5ID5xUeiNPmbWUpKyNbG9D78qFGck,6618
5
+ gllm_inference/builder/build_lm_request_processor.pyi,sha256=1fyvGMeza_c4hXnrETNFawYYUINyvaaBsVPJY0LnlkU,4183
6
+ gllm_inference/builder/build_output_parser.pyi,sha256=sgSTrzUmSRxPzUUum0fDU7A3NXYoYhpi6bEx4Q2XMnA,965
7
+ gllm_inference/catalog/__init__.pyi,sha256=HWgPKWIzprpMHRKe_qN9BZSIQhVhrqiyjLjIXwvj1ho,291
8
+ gllm_inference/catalog/catalog.pyi,sha256=eWPqgQKi-SJGHabi_XOTEKpAj96OSRypKsb5ZEC1VWU,4911
9
+ gllm_inference/catalog/lm_request_processor_catalog.pyi,sha256=ymRYDQ0VY3Pmh--IeZBIZPkNqY76YoPrakLryU_txF8,4699
10
+ gllm_inference/catalog/prompt_builder_catalog.pyi,sha256=ONWUArce7jNA1SmQWixYf-mTfVpD4kCARxiTqitQlB0,3244
11
+ gllm_inference/constants.pyi,sha256=RkQRpsKwIZEUKg97VbHe1q51QJHWU5yOzW7GvZGAgE4,196
12
+ gllm_inference/em_invoker/__init__.pyi,sha256=eZifmg3ZS3YdFUwbGPTurrfF4oV_MAPvqErJe7oTpZI,882
13
+ gllm_inference/em_invoker/azure_openai_em_invoker.pyi,sha256=Qt3w0xtQuTTKrpbcu20Wx_PqA0LSK8fTIahfT5jRZ4A,4553
14
+ gllm_inference/em_invoker/em_invoker.pyi,sha256=xM7NRSk-kajUlO1qa7QgZnpQCfbxuU_uUYU_9RR7qOA,4367
15
+ gllm_inference/em_invoker/google_em_invoker.pyi,sha256=qjQzqW26Yjg-os4o4MIW3BbCkdeQee2ImlkUqsR5Kxg,6185
16
+ gllm_inference/em_invoker/langchain/__init__.pyi,sha256=aOTlRvS9aG1tBErjsmhe75s4Sq-g2z9ArfGqNW7QyEs,151
17
+ gllm_inference/em_invoker/langchain/em_invoker_embeddings.pyi,sha256=gEX21gJLngUh9fZo8v6Vbh0gpWFFqS2S-dGNZSrDjFQ,2409
18
+ gllm_inference/em_invoker/langchain_em_invoker.pyi,sha256=twHLZsHzQroCiCv23aNaHZm9mC40VfFWWreY6CnUBbQ,2611
19
+ gllm_inference/em_invoker/openai_compatible_em_invoker.pyi,sha256=XBwtLoiVO8v7axqaPozGNMb8YH9k2Cri7gyoPclSLu8,4887
20
+ gllm_inference/em_invoker/openai_em_invoker.pyi,sha256=qI9xscX5Uj1iMRfn7jRfXs0nFj6BZCHC1yY2PO_Iwcg,4149
21
+ gllm_inference/em_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ gllm_inference/em_invoker/schema/twelvelabs.pyi,sha256=E7sl1OumEzx_Dj8SeiJ6i8AFuRKzAmRVGfIRCk3gv_0,349
23
+ gllm_inference/em_invoker/schema/voyage.pyi,sha256=mL0D2lqqudL1S-eVF5K4uBt0xuMjvYtVrQzLx0-6gq0,230
24
+ gllm_inference/em_invoker/twelevelabs_em_invoker.pyi,sha256=iWkWHeJcnkfpLr8fLEqjWQ_Yk31tmYLuwQLm1lJFzDQ,5057
25
+ gllm_inference/em_invoker/voyage_em_invoker.pyi,sha256=2ggFjDHRO3lSzY1qK8Bi26Q9QBaNQcU01oe1v8t7meI,5127
26
+ gllm_inference/exceptions/__init__.pyi,sha256=2F05RytXZIKaOJScb1pD0O0bATIQHVeEAYYNX4y5N2A,981
27
+ gllm_inference/exceptions/error_parser.pyi,sha256=ggmh8DJXdwFJInNLrP24WVJt_4raxbAVxzXRQgBpndA,2441
28
+ gllm_inference/exceptions/exceptions.pyi,sha256=ViXvIzm7tLcstjqfwC6nPziDg0UAmoUAWZVWrAJyp3w,4763
29
+ gllm_inference/lm_invoker/__init__.pyi,sha256=g-wu6W6ly_WAVPLDWKjt4J5cMo-CJ1x5unuObVSUnug,1115
30
+ gllm_inference/lm_invoker/anthropic_lm_invoker.pyi,sha256=QPS-qtKoILxLei1TLrVEINX54R-q5QEFRyN1mukJPYs,14930
31
+ gllm_inference/lm_invoker/azure_openai_lm_invoker.pyi,sha256=sUhN3ZSjQTv0zs2Nu7Tzx5A2lwYpH0Ur-32R8_wb6rE,14653
32
+ gllm_inference/lm_invoker/bedrock_lm_invoker.pyi,sha256=lDMaiplHlDS2NLYKoosBdym8qYmNo6nCmRioAJI-isA,12525
33
+ gllm_inference/lm_invoker/datasaur_lm_invoker.pyi,sha256=-BlIPdxzR1TUYKKOcKgF_Pcv1cTAzlP2oI7K88I1i_E,9209
34
+ gllm_inference/lm_invoker/google_lm_invoker.pyi,sha256=vDmrGVVcyhlnA2eVHjU7JhIRU2Fsyj6iVftUWHgUG9s,16697
35
+ gllm_inference/lm_invoker/langchain_lm_invoker.pyi,sha256=woQHlUi0FqzbWP5gCizMY9GW9uyymzRWfE0vPimWjs0,13268
36
+ gllm_inference/lm_invoker/litellm_lm_invoker.pyi,sha256=1cJkcOnmAl1NwJjzHEltNTlLiauJKW9Y2j5PJyK7-U8,13278
37
+ gllm_inference/lm_invoker/lm_invoker.pyi,sha256=F7T_UORX5BDLNmrxCbsX49dW3pxVZKTD2R6Tn7Y4IPU,7697
38
+ gllm_inference/lm_invoker/openai_compatible_lm_invoker.pyi,sha256=Kk0v73-Wq-hHlKtHDI7L-DLaI8qwbO_TDg_OimKIS3Q,14909
39
+ gllm_inference/lm_invoker/openai_lm_invoker.pyi,sha256=-_wsmnMvGYNOK_vLwDVbybwpgJreOoYW9usZnORmPhM,19679
40
+ gllm_inference/lm_invoker/schema/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
+ gllm_inference/lm_invoker/schema/anthropic.pyi,sha256=MJHHyqMGQgj9tURyewuVlmxHxiAzU9qzmJEiK5IUoWw,1020
42
+ gllm_inference/lm_invoker/schema/bedrock.pyi,sha256=H3attoGWhBA725W4FpXw7Mty46N9jHKjw9PT-0lMEJs,975
43
+ gllm_inference/lm_invoker/schema/datasaur.pyi,sha256=mEuWs18VO4KQ6ZTcrlW2BJwphoDe4D5iJfn-GAelvCM,202
44
+ gllm_inference/lm_invoker/schema/google.pyi,sha256=AJQsFGKzowXfpSvorSco90aWXqgw9N0M8fInn_JN-X4,464
45
+ gllm_inference/lm_invoker/schema/langchain.pyi,sha256=qYiQvzUw0xZa4ii-qyRCFTuIY7j0MREY6QgV1_DfkGk,391
46
+ gllm_inference/lm_invoker/schema/openai.pyi,sha256=CNkIGljwRyQYx0krONX1ik9hwBiN45t9vBk-ZY45rP4,1989
47
+ gllm_inference/lm_invoker/schema/openai_compatible.pyi,sha256=WiWEFoPQ0PEAx6EW-P8Nk6O7RF5I9i_hItEHtOl_F4A,1074
48
+ gllm_inference/model/__init__.pyi,sha256=JKQB0wVSVYD-_tdRkG7N_oEVAKGCcoBw0BUOUMLieFo,602
49
+ gllm_inference/model/em/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
+ gllm_inference/model/em/google_em.pyi,sha256=c53H-KNdNOK9ppPLyOSkmCA890eF5FsMd05upkPIzF0,487
51
+ gllm_inference/model/em/openai_em.pyi,sha256=b6ID1JsLZH9OAo9E37CkbgWNR_eI65eKXK6TYi_0ndA,457
52
+ gllm_inference/model/em/twelvelabs_em.pyi,sha256=5R2zkKDiEatdATFzF8TOoKW9XRkOsOoNGY5lORimueo,413
53
+ gllm_inference/model/em/voyage_em.pyi,sha256=kTInLttWfPqCNfBX-TK5VMMaFfPxwqqudBw1kz4hnxk,551
54
+ gllm_inference/model/lm/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
+ gllm_inference/model/lm/anthropic_lm.pyi,sha256=3rppksDF4nVAR3Konoj6nRi_T8vSaFPxLub1CzJh7Us,578
56
+ gllm_inference/model/lm/google_lm.pyi,sha256=yv5nXnLxuCGDUsh7QP9furSx-6sZj6FQi-pJ9lZbHAk,496
57
+ gllm_inference/model/lm/openai_lm.pyi,sha256=yj3AJj1xDYRkNIPHX2enw46AJ9wArPZruKsxg1ME9Rg,645
58
+ gllm_inference/output_parser/__init__.pyi,sha256=dhAeRTBxc6CfS8bhnHjbtrnyqJ1iyffvUZkGp4UrJNM,132
59
+ gllm_inference/output_parser/json_output_parser.pyi,sha256=YtgQh8Uzy8W_Tgh8DfuR7VFFS7qvLEasiTwRfaGZZEU,2993
60
+ gllm_inference/output_parser/output_parser.pyi,sha256=-Xu5onKCBDqShcO-VrQh5icqAmXdihGc3rkZxL93swg,975
61
+ gllm_inference/prompt_builder/__init__.pyi,sha256=mPsbiafzSNHsgN-CuzjhgZpfXfi1pPC3_gdsq2p0EM4,120
62
+ gllm_inference/prompt_builder/prompt_builder.pyi,sha256=tX4wfs3P5C-ti5zT1zW3Rw2wS2VEc-PIQcyZcyR8QL0,2934
63
+ gllm_inference/prompt_formatter/__init__.pyi,sha256=q5sPPrnoCf-4tMGowh7hXxs63uyWfaZyEI-wjLBTGsA,747
64
+ gllm_inference/prompt_formatter/agnostic_prompt_formatter.pyi,sha256=qp4L3x7XK7oZaSYP8B4idewKpPioB4XELeKVV-dNi-Q,2067
65
+ gllm_inference/prompt_formatter/huggingface_prompt_formatter.pyi,sha256=kH60A_3DnHd3BrqbgS_FqQTCTHIjC9BTsk6_FNgcZw8,2784
66
+ gllm_inference/prompt_formatter/llama_prompt_formatter.pyi,sha256=m3m3gXLXbk1LMfWn7a6raKlnSjgMQJNlGsE6FlijogA,2907
67
+ gllm_inference/prompt_formatter/mistral_prompt_formatter.pyi,sha256=bpRXB26qw1REnnY1PqVm8D-Eo-dWYMVLb0s31-g0g_Y,2703
68
+ gllm_inference/prompt_formatter/openai_prompt_formatter.pyi,sha256=xGpytprs5W1TogHFYbsYxBPClIuQc0tXfZSzR9ypRC4,1321
69
+ gllm_inference/prompt_formatter/prompt_formatter.pyi,sha256=hAc6rxWc6JSYdD-OypLixGKXlPA8djE7zJqZpVKXcOs,1176
70
+ gllm_inference/request_processor/__init__.pyi,sha256=giEme2WFQhgyKiBZHhSet0_nKSCHwGy-_2p6NRzg0Zc,231
71
+ gllm_inference/request_processor/lm_request_processor.pyi,sha256=rInXhC95BvQnw9q98KZWpjPH8Q_TV4zC2ycNjypEBZ4,5516
72
+ gllm_inference/request_processor/uses_lm_mixin.pyi,sha256=znBG4AWWm_H70Qqrc1mO4ohmWotX9id81Fqe-x9Qa6Q,2371
73
+ gllm_inference/schema/__init__.pyi,sha256=-ldt0xJQJirVNdwLFev3bmzmFRw9HSUWBRmmIVH7uyU,1251
74
+ gllm_inference/schema/attachment.pyi,sha256=FML2m4-LZYjBIeQaTwJqrcihGpxboJqEtjs2zqLfrCk,2886
75
+ gllm_inference/schema/code_exec_result.pyi,sha256=WQ-ARoGM9r6nyRX-A0Ro1XKiqrc9R3jRYXZpu_xo5S4,573
76
+ gllm_inference/schema/enums.pyi,sha256=SQ9mXt8j7uK333uUnUHRs-mkRxf0Z5NCtkAkgQZPIb4,629
77
+ gllm_inference/schema/lm_output.pyi,sha256=WP2LQrY0D03OJtFoaW_dGoJ_-yFUh2HbVlllgjzpYv4,1992
78
+ gllm_inference/schema/message.pyi,sha256=jJV6A0ihEcun2OhzyMtNkiHnf7d6v5R-GdpTBGfJ0AQ,2272
79
+ gllm_inference/schema/model_id.pyi,sha256=3prO19l-FCSecRupe93ruXe91-Xw3GJOpbuQ66bijo0,5368
80
+ gllm_inference/schema/reasoning.pyi,sha256=jbPxkDRHt0Vt-zdcc8lTT1l2hIE1Jm3HIHeNd0hfXGo,577
81
+ gllm_inference/schema/token_usage.pyi,sha256=Eevs8S-yXoM7kQkkzhXHEvORU8DMGzdQynAamqtIoX4,323
82
+ gllm_inference/schema/tool_call.pyi,sha256=OWT9LUqs_xfUcOkPG0aokAAqzLYYDkfnjTa0zOWvugk,403
83
+ gllm_inference/schema/tool_result.pyi,sha256=IJsU3n8y0Q9nFMEiq4RmLEIHueSiim0Oz_DlhKrTqto,287
84
+ gllm_inference/schema/type_alias.pyi,sha256=qAljeBoeQEfT601maGe_mEpXD9inNzbGte1i6joQafc,740
85
+ gllm_inference/utils/__init__.pyi,sha256=RBTWDu1TDPpTd17fixcPYFv2L_vp4-IAOX0IsxgCsD4,299
86
+ gllm_inference/utils/langchain.pyi,sha256=4AwFiVAO0ZpdgmqeC4Pb5NJwBt8vVr0MSUqLeCdTscc,1194
87
+ gllm_inference/utils/validation.pyi,sha256=-RdMmb8afH7F7q4Ao7x6FbwaDfxUHn3hA3WiOgzB-3s,397
88
+ gllm_inference.build/.gitignore,sha256=aEiIwOuxfzdCmLZe4oB1JsBmCUxwG8x-u-HBCV9JT8E,1
89
+ gllm_inference.cp312-win_amd64.pyd,sha256=9aQWPUOguH1Sup3Tr7dzTOBGapuWHZrIDrlBy2uc324,2629120
90
+ gllm_inference.pyi,sha256=VEcscbPCJ-6lXU4jV3YYXwwumk9kWxpCAsS84ssKG6o,3295
91
+ gllm_inference_binary-0.5.0.dist-info/METADATA,sha256=cC_ZGodtt4N7PUIMLwyp7QQ3Vx7gcHfh7mxh8aPJQwE,4568
92
+ gllm_inference_binary-0.5.0.dist-info/WHEEL,sha256=4N0hGcnWMI_Ty6ATf4qJqqSl-UNI-Ln828iTWGIywmU,98
93
+ gllm_inference_binary-0.5.0.dist-info/RECORD,,
@@ -1,13 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.schema.model_id import ModelId as _ModelId
3
- from typing import Any
4
-
5
- logger: Incomplete
6
-
7
- class ModelId(_ModelId):
8
- """Deprecated: Use gllm_inference.schema.ModelId instead."""
9
- @classmethod
10
- def from_string(cls, *args: Any, **kwargs: Any) -> None:
11
- """Deprecated: Use gllm_inference.schema.ModelId.from_string instead."""
12
-
13
- ModelProvider: Incomplete
@@ -1,8 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_inference.lm_invoker import AnthropicLMInvoker as AnthropicLMInvoker, AzureOpenAILMInvoker as AzureOpenAILMInvoker, BedrockLMInvoker as BedrockLMInvoker, DatasaurLMInvoker as DatasaurLMInvoker, GoogleGenerativeAILMInvoker as GoogleGenerativeAILMInvoker, GoogleLMInvoker as GoogleLMInvoker, GoogleVertexAILMInvoker as GoogleVertexAILMInvoker, LangChainLMInvoker as LangChainLMInvoker, OpenAICompatibleLMInvoker as OpenAICompatibleLMInvoker, OpenAILMInvoker as OpenAILMInvoker, TGILMInvoker as TGILMInvoker
3
- from gllm_inference.multimodal_lm_invoker import AnthropicMultimodalLMInvoker as AnthropicMultimodalLMInvoker, GoogleGenerativeAIMultimodalLMInvoker as GoogleGenerativeAIMultimodalLMInvoker, GoogleVertexAIMultimodalLMInvoker as GoogleVertexAIMultimodalLMInvoker, OpenAIMultimodalLMInvoker as OpenAIMultimodalLMInvoker
4
- from gllm_inference.multimodal_prompt_builder import MultimodalPromptBuilder as MultimodalPromptBuilder
5
- from gllm_inference.prompt_builder import AgnosticPromptBuilder as AgnosticPromptBuilder, HuggingFacePromptBuilder as HuggingFacePromptBuilder, LlamaPromptBuilder as LlamaPromptBuilder, MistralPromptBuilder as MistralPromptBuilder, OpenAIPromptBuilder as OpenAIPromptBuilder, PromptBuilder as PromptBuilder
6
-
7
- PROMPT_BUILDER_TYPE_MAP: Incomplete
8
- LM_INVOKER_TYPE_MAP: Incomplete
@@ -1,32 +0,0 @@
1
- from gllm_core.utils.retry import RetryConfig as RetryConfig
2
- from gllm_inference.em_invoker.google_em_invoker import GoogleEMInvoker as GoogleEMInvoker
3
- from typing import Any
4
-
5
- DEPRECATION_MESSAGE: str
6
-
7
- class GoogleGenerativeAIEMInvoker(GoogleEMInvoker):
8
- """An embedding model invoker to interact with Google Generative AI embedding models.
9
-
10
- This class has been deprecated as Google Generative AI is now supported through `GoogleEMInvoker`.
11
- This class is maintained for backward compatibility and will be removed in version 0.5.0.
12
-
13
- Attributes:
14
- model_id (str): The model ID of the embedding model.
15
- model_provider (str): The provider of the embedding model.
16
- model_name (str): The name of the embedding model.
17
- client_params (dict[str, Any]): The Google client instance init parameters.
18
- default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
19
- retry_config (RetryConfig | None): The retry configuration for the language model.
20
- """
21
- def __init__(self, model_name: str, api_key: str, task_type: str | None = None, model_kwargs: Any = None, retry_config: RetryConfig | None = None) -> None:
22
- """Initializes a new instance of the GoogleGenerativeAIEMInvoker class.
23
-
24
- Args:
25
- model_name (str): The name of the Google Generative AI model to be used.
26
- api_key (str): The API key for accessing the Google Generative AI model.
27
- task_type (str | None, optional): The type of task to be performed by the embedding model. Defaults to None.
28
- model_kwargs (Any, optional): Additional keyword arguments to initiate the embedding model.
29
- Defaults to None.
30
- retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
31
- Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used.
32
- """
@@ -1,34 +0,0 @@
1
- from gllm_core.utils.retry import RetryConfig as RetryConfig
2
- from gllm_inference.em_invoker.google_em_invoker import GoogleEMInvoker as GoogleEMInvoker
3
- from typing import Any
4
-
5
- DEPRECATION_MESSAGE: str
6
-
7
- class GoogleVertexAIEMInvoker(GoogleEMInvoker):
8
- """An embedding model invoker to interact with Google Vertex AI embedding models.
9
-
10
- This class has been deprecated as Google Vertex AI is now supported through `GoogleEMInvoker`.
11
- This class is maintained for backward compatibility and will be removed in version 0.5.0.
12
-
13
- Attributes:
14
- model_id (str): The model ID of the embedding model.
15
- model_provider (str): The provider of the embedding model.
16
- model_name (str): The name of the embedding model.
17
- client_params (dict[str, Any]): The Google client instance init parameters.
18
- default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the embedding model.
19
- retry_config (RetryConfig | None): The retry configuration for the language model.
20
- """
21
- def __init__(self, model_name: str, credentials_path: str, project_id: str | None = None, location: str = 'us-central1', model_kwargs: Any = None, retry_config: RetryConfig | None = None) -> None:
22
- '''Initializes a new instance of the GoogleVertexAIEMInvoker class.
23
-
24
- Args:
25
- model_name (str): The name of the multimodal embedding model to be used.
26
- credentials_path (str): The path to the Google Cloud service account credentials JSON file.
27
- project_id (str | None, optional): The Google Cloud project ID. Defaults to None, in which case the
28
- project ID will be loaded from the credentials file.
29
- location (str, optional): The location of the Google Cloud project. Defaults to "us-central1".
30
- model_kwargs (Any, optional): Additional keyword arguments to initiate the Google Vertex AI model.
31
- Defaults to None.
32
- retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
33
- Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used.
34
- '''
@@ -1,71 +0,0 @@
1
- from gllm_inference.schema import Vector as Vector
2
- from gllm_inference.utils import preprocess_tei_input as preprocess_tei_input
3
- from langchain_core.embeddings import Embeddings
4
- from pydantic import BaseModel
5
- from typing import Any
6
- from typing_extensions import Self
7
-
8
- class TEIEmbeddings(BaseModel, Embeddings):
9
- '''A custom LangChain `Embeddings` class to interact with Text Embeddings Inference (TEI).
10
-
11
- Attributes:
12
- url (str): The URL of the TEI service that hosts the embedding model.
13
- api_key (str | None, optional): The API key to the TEI service. Defaults to None.
14
- client (InferenceClient): The client instance to interact with the TEI service.
15
- query_prefix (str): The additional prefix to be added when embedding a query.
16
- document_prefix (str): The additional prefix to be added when embedding documents.
17
-
18
- Initialize with URL and API key example:
19
- ```python
20
- from gllm_inference.em_invoker.langchain import TEIEmbeddings
21
-
22
- embeddings = TEIEmbeddings(url="<url-to-tei-service>", api_key="<my-api-key>")
23
- ```
24
-
25
- Initialize with only URL example:
26
- ```python
27
- from gllm_inference.em_invoker.langchain import TEIEmbeddings
28
-
29
- embeddings = TEIEmbeddings(url="<url-to-tei-service>")
30
- ```
31
-
32
- Initialize with client example:
33
- ```python
34
- from gllm_inference.em_invoker.langchain import TEIEmbeddings
35
- from huggingface_hub import InferenceClient
36
-
37
- client = InferenceClient(model="<url-to-tei-service>", api_key="<my-api-key>")
38
- embeddings = TEIEmbeddings(client=client)
39
- ```
40
- '''
41
- url: str | None
42
- api_key: str | None
43
- client: Any
44
- query_prefix: str
45
- document_prefix: str
46
- def validate_environment(self) -> Self:
47
- """Validates that the TEI service URL and python package exists in environment.
48
-
49
- The validation is done in the following order:
50
- 1. If neither `url` nor `client` is provided, an error will be raised.
51
- 2. If an invalid `client` is provided, an error will be raised.
52
- 3. If `url` is provided, it will be used to initialize the TEI service, along with an optional `api_key`.
53
- """
54
- def embed_documents(self, texts: list[str]) -> list[Vector]:
55
- """Embed documents using TEI's hosted embedding model.
56
-
57
- Args:
58
- texts (list[str]): The list of texts to embed.
59
-
60
- Returns:
61
- list[Vector]: List of embeddings, one for each text.
62
- """
63
- def embed_query(self, text: str) -> Vector:
64
- """Embed query using TEI's hosted embedding model.
65
-
66
- Args:
67
- text (str): The text to embed.
68
-
69
- Returns:
70
- Vector: Embeddings for the text.
71
- """
@@ -1,48 +0,0 @@
1
- from _typeshed import Incomplete
2
- from gllm_core.utils.retry import RetryConfig as RetryConfig
3
- from gllm_inference.em_invoker.em_invoker import BaseEMInvoker as BaseEMInvoker
4
- from gllm_inference.em_invoker.langchain import TEIEmbeddings as TEIEmbeddings
5
- from gllm_inference.schema import ModelId as ModelId, ModelProvider as ModelProvider, Vector as Vector
6
- from gllm_inference.utils import get_basic_auth_headers as get_basic_auth_headers, preprocess_tei_input as preprocess_tei_input
7
-
8
- DEPRECATION_MESSAGE: str
9
-
10
- class TEIEMInvoker(BaseEMInvoker):
11
- """An embedding model invoker to interact with embedding models hosted in Text Embeddings Inference (TEI).
12
-
13
- The `TEIEMInvoker` class is responsible for invoking an embedding model in Text Embeddings Inference (TEI).
14
- It uses the embedding model to transform a text or a list of input text into their vector representations.
15
-
16
- Attributes:
17
- model_id (str): The model ID of the embedding model.
18
- model_provider (str): The provider of the embedding model.
19
- model_name (str): The name of the embedding model.
20
- client (AsyncInferenceClient): The client instance to interact with the TEI service.
21
- query_prefix (str): The additional prefix to be added when embedding a query.
22
- document_prefix (str): The additional prefix to be added when embedding documents.
23
- retry_config (RetryConfig): The retry configuration for the embedding model.
24
- """
25
- client: Incomplete
26
- query_prefix: Incomplete
27
- document_prefix: Incomplete
28
- def __init__(self, url: str, username: str = '', password: str = '', api_key: str | None = None, query_prefix: str = '', document_prefix: str = '', retry_config: RetryConfig | None = None) -> None:
29
- """Initializes a new instance of the TEIEMInvoker class.
30
-
31
- Args:
32
- url (str): The URL of the TEI service.
33
- username (str, optional): The username for Basic Authentication. Defaults to an empty string.
34
- password (str, optional): The password for Basic Authentication. Defaults to an empty string.
35
- api_key (str | None, optional): The API key for the TEI service. Defaults to None.
36
- query_prefix (str, optional): The additional prefix to be added when embedding a query.
37
- Defaults to an empty string.
38
- document_prefix (str, optional): The additional prefix to be added when embedding documents.
39
- Defaults to an empty string.
40
- retry_config (RetryConfig | None, optional): The retry configuration for the embedding model.
41
- Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used.
42
- """
43
- def to_langchain(self) -> TEIEmbeddings:
44
- """Converts the current embedding model invoker to an instance of LangChain `TEIEmbeddings` object.
45
-
46
- Returns:
47
- TEIEmbeddings: An instance of LangChain `TEIEmbeddings` object.
48
- """
@@ -1,51 +0,0 @@
1
- from gllm_core.utils.retry import RetryConfig as RetryConfig
2
- from gllm_inference.lm_invoker.google_lm_invoker import GoogleLMInvoker as GoogleLMInvoker
3
- from gllm_inference.schema import ResponseSchema as ResponseSchema
4
- from langchain_core.tools import Tool as Tool
5
- from typing import Any
6
-
7
- DEPRECATION_MESSAGE: str
8
-
9
- class GoogleGenerativeAILMInvoker(GoogleLMInvoker):
10
- """A language model invoker to interact with Google Gen AI language models.
11
-
12
- This class has been deprecated as Google Generative AI is now supported through `GoogleLMInvoker`.
13
- This class is maintained for backward compatibility and will be removed in version 0.5.0.
14
-
15
- Attributes:
16
- model_id (str): The model ID of the language model.
17
- model_provider (str): The provider of the language model.
18
- model_name (str): The name of the language model.
19
- client (Client): The Google client instance.
20
- default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
21
- tools (list[Any]): The list of tools provided to the model to enable tool calling.
22
- response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
23
- structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
24
- output_analytics (bool): Whether to output the invocation analytics.
25
- retry_config (RetryConfig | None): The retry configuration for the language model.
26
- """
27
- def __init__(self, model_name: str, api_key: str, model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, bind_tools_params: dict[str, Any] | None = None, with_structured_output_params: dict[str, Any] | None = None) -> None:
28
- """Initializes a new instance of the GoogleGenerativeAILMInvoker class.
29
-
30
- Args:
31
- model_name (str): The name of the multimodal language model to be used.
32
- api_key (str): The API key for authenticating with Google Gen AI.
33
- model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the Google Generative AI
34
- client.
35
- default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
36
- Defaults to None.
37
- tools (list[Tool] | None, optional): Tools provided to the language model to enable tool calling.
38
- Defaults to None.
39
- response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
40
- output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
41
- dictionary. Defaults to None.
42
- output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
43
- retry_config (RetryConfig | None, optional): The retry configuration for the language model.
44
- Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used.
45
- bind_tools_params (dict[str, Any] | None, optional): Deprecated parameter to add tool calling capability.
46
- If provided, must at least include the `tools` key that is equivalent to the `tools` parameter.
47
- Retained for backward compatibility. Defaults to None.
48
- with_structured_output_params (dict[str, Any] | None, optional): Deprecated parameter to instruct the
49
- model to produce output with a certain schema. If provided, must at least include the `schema` key that
50
- is equivalent to the `response_schema` parameter. Retained for backward compatibility. Defaults to None.
51
- """
@@ -1,54 +0,0 @@
1
- from gllm_core.utils.retry import RetryConfig as RetryConfig
2
- from gllm_inference.lm_invoker.google_lm_invoker import GoogleLMInvoker as GoogleLMInvoker
3
- from gllm_inference.schema import ResponseSchema as ResponseSchema
4
- from langchain_core.tools import Tool as Tool
5
- from typing import Any
6
-
7
- DEPRECATION_MESSAGE: str
8
-
9
- class GoogleVertexAILMInvoker(GoogleLMInvoker):
10
- """A language model invoker to interact with Google Vertex AI language models.
11
-
12
- This class has been deprecated as Google Vertex AI is now supported through `GoogleLMInvoker`.
13
- This class is maintained for backward compatibility and will be removed in version 0.5.0.
14
-
15
- Attributes:
16
- model_id (str): The model ID of the language model.
17
- model_provider (str): The provider of the language model.
18
- model_name (str): The name of the language model.
19
- client (Client): The Google client instance.
20
- default_hyperparameters (dict[str, Any]): Default hyperparameters for invoking the model.
21
- tools (list[Any]): The list of tools provided to the model to enable tool calling.
22
- response_schema (ResponseSchema | None): The schema of the response. If provided, the model will output a
23
- structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary.
24
- output_analytics (bool): Whether to output the invocation analytics.
25
- retry_config (RetryConfig | None): The retry configuration for the language model.
26
- """
27
- def __init__(self, model_name: str, credentials_path: str, project_id: str | None = None, location: str = 'us-central1', model_kwargs: dict[str, Any] | None = None, default_hyperparameters: dict[str, Any] | None = None, tools: list[Tool] | None = None, response_schema: ResponseSchema | None = None, output_analytics: bool = False, retry_config: RetryConfig | None = None, bind_tools_params: dict[str, Any] | None = None, with_structured_output_params: dict[str, Any] | None = None) -> None:
28
- '''Initializes a new instance of the GoogleVertexAILMInvoker class.
29
-
30
- Args:
31
- model_name (str): The name of the multimodal language model to be used.
32
- credentials_path (str): The path to the Google Cloud service account credentials JSON file.
33
- project_id (str | None, optional): The Google Cloud project ID. Defaults to None, in which case the
34
- project ID will be loaded from the credentials file.
35
- location (str, optional): The location of the Google Cloud project. Defaults to "us-central1".
36
- model_kwargs (dict[str, Any] | None, optional): Additional keyword arguments for the Google Vertex AI
37
- client.
38
- default_hyperparameters (dict[str, Any] | None, optional): Default hyperparameters for invoking the model.
39
- Defaults to None.
40
- tools (list[Tool] | None, optional): Tools provided to the language model to enable tool calling.
41
- Defaults to None.
42
- response_schema (ResponseSchema | None, optional): The schema of the response. If provided, the model will
43
- output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema
44
- dictionary. Defaults to None.
45
- output_analytics (bool, optional): Whether to output the invocation analytics. Defaults to False.
46
- retry_config (RetryConfig | None, optional): The retry configuration for the language model.
47
- Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used.
48
- bind_tools_params (dict[str, Any] | None, optional): Deprecated parameter to add tool calling capability.
49
- If provided, must at least include the `tools` key that is equivalent to the `tools` parameter.
50
- Retained for backward compatibility. Defaults to None.
51
- with_structured_output_params (dict[str, Any] | None, optional): Deprecated parameter to instruct the
52
- model to produce output with a certain schema. If provided, must at least include the `schema` key that
53
- is equivalent to the `response_schema` parameter. Retained for backward compatibility. Defaults to None.
54
- '''