gllm-datastore-binary 0.5.50__cp312-cp312-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (137) hide show
  1. gllm_datastore/__init__.pyi +0 -0
  2. gllm_datastore/cache/__init__.pyi +4 -0
  3. gllm_datastore/cache/base.pyi +84 -0
  4. gllm_datastore/cache/cache.pyi +137 -0
  5. gllm_datastore/cache/hybrid_cache/__init__.pyi +5 -0
  6. gllm_datastore/cache/hybrid_cache/file_system_hybrid_cache.pyi +50 -0
  7. gllm_datastore/cache/hybrid_cache/hybrid_cache.pyi +115 -0
  8. gllm_datastore/cache/hybrid_cache/in_memory_hybrid_cache.pyi +29 -0
  9. gllm_datastore/cache/hybrid_cache/key_matcher/__init__.pyi +5 -0
  10. gllm_datastore/cache/hybrid_cache/key_matcher/exact_key_matcher.pyi +44 -0
  11. gllm_datastore/cache/hybrid_cache/key_matcher/fuzzy_key_matcher.pyi +70 -0
  12. gllm_datastore/cache/hybrid_cache/key_matcher/key_matcher.pyi +60 -0
  13. gllm_datastore/cache/hybrid_cache/key_matcher/semantic_key_matcher.pyi +93 -0
  14. gllm_datastore/cache/hybrid_cache/redis_hybrid_cache.pyi +34 -0
  15. gllm_datastore/cache/hybrid_cache/utils.pyi +36 -0
  16. gllm_datastore/cache/utils.pyi +34 -0
  17. gllm_datastore/cache/vector_cache/__init__.pyi +0 -0
  18. gllm_datastore/cache/vector_cache/eviction_manager/__init__.pyi +0 -0
  19. gllm_datastore/cache/vector_cache/eviction_manager/asyncio_eviction_manager.pyi +48 -0
  20. gllm_datastore/cache/vector_cache/eviction_manager/eviction_manager.pyi +38 -0
  21. gllm_datastore/cache/vector_cache/eviction_strategy/__init__.pyi +0 -0
  22. gllm_datastore/cache/vector_cache/eviction_strategy/eviction_strategy.pyi +34 -0
  23. gllm_datastore/cache/vector_cache/eviction_strategy/ttl_eviction_strategy.pyi +34 -0
  24. gllm_datastore/cache/vector_cache/vector_cache.pyi +99 -0
  25. gllm_datastore/constants.pyi +66 -0
  26. gllm_datastore/core/__init__.pyi +7 -0
  27. gllm_datastore/core/capabilities/__init__.pyi +7 -0
  28. gllm_datastore/core/capabilities/encryption_capability.pyi +21 -0
  29. gllm_datastore/core/capabilities/fulltext_capability.pyi +73 -0
  30. gllm_datastore/core/capabilities/graph_capability.pyi +70 -0
  31. gllm_datastore/core/capabilities/hybrid_capability.pyi +184 -0
  32. gllm_datastore/core/capabilities/vector_capability.pyi +90 -0
  33. gllm_datastore/core/filters/__init__.pyi +4 -0
  34. gllm_datastore/core/filters/filter.pyi +340 -0
  35. gllm_datastore/core/filters/schema.pyi +149 -0
  36. gllm_datastore/data_store/__init__.pyi +8 -0
  37. gllm_datastore/data_store/_elastic_core/__init__.pyi +0 -0
  38. gllm_datastore/data_store/_elastic_core/client_factory.pyi +66 -0
  39. gllm_datastore/data_store/_elastic_core/constants.pyi +27 -0
  40. gllm_datastore/data_store/_elastic_core/elastic_like_core.pyi +115 -0
  41. gllm_datastore/data_store/_elastic_core/index_manager.pyi +37 -0
  42. gllm_datastore/data_store/_elastic_core/query_translator.pyi +89 -0
  43. gllm_datastore/data_store/base.pyi +176 -0
  44. gllm_datastore/data_store/chroma/__init__.pyi +4 -0
  45. gllm_datastore/data_store/chroma/_chroma_import.pyi +13 -0
  46. gllm_datastore/data_store/chroma/data_store.pyi +201 -0
  47. gllm_datastore/data_store/chroma/fulltext.pyi +134 -0
  48. gllm_datastore/data_store/chroma/query.pyi +266 -0
  49. gllm_datastore/data_store/chroma/query_translator.pyi +41 -0
  50. gllm_datastore/data_store/chroma/vector.pyi +197 -0
  51. gllm_datastore/data_store/elasticsearch/__init__.pyi +5 -0
  52. gllm_datastore/data_store/elasticsearch/data_store.pyi +147 -0
  53. gllm_datastore/data_store/elasticsearch/fulltext.pyi +238 -0
  54. gllm_datastore/data_store/elasticsearch/query.pyi +118 -0
  55. gllm_datastore/data_store/elasticsearch/query_translator.pyi +18 -0
  56. gllm_datastore/data_store/elasticsearch/vector.pyi +180 -0
  57. gllm_datastore/data_store/exceptions.pyi +35 -0
  58. gllm_datastore/data_store/in_memory/__init__.pyi +5 -0
  59. gllm_datastore/data_store/in_memory/data_store.pyi +71 -0
  60. gllm_datastore/data_store/in_memory/fulltext.pyi +131 -0
  61. gllm_datastore/data_store/in_memory/query.pyi +175 -0
  62. gllm_datastore/data_store/in_memory/vector.pyi +174 -0
  63. gllm_datastore/data_store/opensearch/__init__.pyi +5 -0
  64. gllm_datastore/data_store/opensearch/data_store.pyi +160 -0
  65. gllm_datastore/data_store/opensearch/fulltext.pyi +240 -0
  66. gllm_datastore/data_store/opensearch/query.pyi +89 -0
  67. gllm_datastore/data_store/opensearch/query_translator.pyi +18 -0
  68. gllm_datastore/data_store/opensearch/vector.pyi +211 -0
  69. gllm_datastore/data_store/redis/__init__.pyi +5 -0
  70. gllm_datastore/data_store/redis/data_store.pyi +153 -0
  71. gllm_datastore/data_store/redis/fulltext.pyi +128 -0
  72. gllm_datastore/data_store/redis/query.pyi +428 -0
  73. gllm_datastore/data_store/redis/query_translator.pyi +37 -0
  74. gllm_datastore/data_store/redis/vector.pyi +131 -0
  75. gllm_datastore/data_store/sql/__init__.pyi +4 -0
  76. gllm_datastore/data_store/sql/constants.pyi +5 -0
  77. gllm_datastore/data_store/sql/data_store.pyi +201 -0
  78. gllm_datastore/data_store/sql/fulltext.pyi +164 -0
  79. gllm_datastore/data_store/sql/query.pyi +81 -0
  80. gllm_datastore/data_store/sql/query_translator.pyi +51 -0
  81. gllm_datastore/data_store/sql/schema.pyi +16 -0
  82. gllm_datastore/encryptor/__init__.pyi +4 -0
  83. gllm_datastore/encryptor/aes_gcm_encryptor.pyi +45 -0
  84. gllm_datastore/encryptor/capability/__init__.pyi +3 -0
  85. gllm_datastore/encryptor/capability/mixin.pyi +32 -0
  86. gllm_datastore/encryptor/encryptor.pyi +52 -0
  87. gllm_datastore/encryptor/key_ring/__init__.pyi +3 -0
  88. gllm_datastore/encryptor/key_ring/in_memory_key_ring.pyi +52 -0
  89. gllm_datastore/encryptor/key_ring/key_ring.pyi +45 -0
  90. gllm_datastore/encryptor/key_rotating_encryptor.pyi +60 -0
  91. gllm_datastore/graph_data_store/__init__.pyi +6 -0
  92. gllm_datastore/graph_data_store/graph_data_store.pyi +151 -0
  93. gllm_datastore/graph_data_store/graph_rag_data_store.pyi +29 -0
  94. gllm_datastore/graph_data_store/light_rag_data_store.pyi +93 -0
  95. gllm_datastore/graph_data_store/light_rag_postgres_data_store.pyi +96 -0
  96. gllm_datastore/graph_data_store/llama_index_graph_rag_data_store.pyi +49 -0
  97. gllm_datastore/graph_data_store/llama_index_neo4j_graph_rag_data_store.pyi +78 -0
  98. gllm_datastore/graph_data_store/mixins/__init__.pyi +3 -0
  99. gllm_datastore/graph_data_store/mixins/agentic_graph_tools_mixin.pyi +175 -0
  100. gllm_datastore/graph_data_store/nebula_graph_data_store.pyi +206 -0
  101. gllm_datastore/graph_data_store/neo4j_graph_data_store.pyi +182 -0
  102. gllm_datastore/graph_data_store/schema.pyi +27 -0
  103. gllm_datastore/graph_data_store/utils/__init__.pyi +6 -0
  104. gllm_datastore/graph_data_store/utils/constants.pyi +21 -0
  105. gllm_datastore/graph_data_store/utils/light_rag_em_invoker_adapter.pyi +56 -0
  106. gllm_datastore/graph_data_store/utils/light_rag_lm_invoker_adapter.pyi +43 -0
  107. gllm_datastore/graph_data_store/utils/llama_index_em_invoker_adapter.pyi +45 -0
  108. gllm_datastore/graph_data_store/utils/llama_index_lm_invoker_adapter.pyi +169 -0
  109. gllm_datastore/signature/__init__.pyi +0 -0
  110. gllm_datastore/signature/webhook_signature.pyi +31 -0
  111. gllm_datastore/sql_data_store/__init__.pyi +4 -0
  112. gllm_datastore/sql_data_store/adapter/__init__.pyi +0 -0
  113. gllm_datastore/sql_data_store/adapter/sqlalchemy_adapter.pyi +38 -0
  114. gllm_datastore/sql_data_store/constants.pyi +6 -0
  115. gllm_datastore/sql_data_store/sql_data_store.pyi +86 -0
  116. gllm_datastore/sql_data_store/sqlalchemy_sql_data_store.pyi +216 -0
  117. gllm_datastore/sql_data_store/types.pyi +31 -0
  118. gllm_datastore/utils/__init__.pyi +6 -0
  119. gllm_datastore/utils/converter.pyi +51 -0
  120. gllm_datastore/utils/dict.pyi +21 -0
  121. gllm_datastore/utils/ttl.pyi +25 -0
  122. gllm_datastore/utils/types.pyi +32 -0
  123. gllm_datastore/vector_data_store/__init__.pyi +6 -0
  124. gllm_datastore/vector_data_store/chroma_vector_data_store.pyi +259 -0
  125. gllm_datastore/vector_data_store/elasticsearch_vector_data_store.pyi +357 -0
  126. gllm_datastore/vector_data_store/in_memory_vector_data_store.pyi +179 -0
  127. gllm_datastore/vector_data_store/mixin/__init__.pyi +0 -0
  128. gllm_datastore/vector_data_store/mixin/cache_compatible_mixin.pyi +145 -0
  129. gllm_datastore/vector_data_store/redis_vector_data_store.pyi +191 -0
  130. gllm_datastore/vector_data_store/vector_data_store.pyi +146 -0
  131. gllm_datastore.build/.gitignore +1 -0
  132. gllm_datastore.cpython-312-darwin.so +0 -0
  133. gllm_datastore.pyi +178 -0
  134. gllm_datastore_binary-0.5.50.dist-info/METADATA +185 -0
  135. gllm_datastore_binary-0.5.50.dist-info/RECORD +137 -0
  136. gllm_datastore_binary-0.5.50.dist-info/WHEEL +5 -0
  137. gllm_datastore_binary-0.5.50.dist-info/top_level.txt +1 -0
@@ -0,0 +1,52 @@
1
+ from gllm_datastore.encryptor.encryptor import BaseEncryptor as BaseEncryptor
2
+ from gllm_datastore.encryptor.key_ring.key_ring import BaseKeyRing as BaseKeyRing
3
+
4
+ class InMemoryKeyRing(BaseKeyRing):
5
+ """In-memory implementation of BaseKeyRing.
6
+
7
+ This class provides a simple in-memory storage for encryption keys and
8
+ their associated encryptors. All keys are stored in memory and will be
9
+ lost when the application terminates.
10
+
11
+ Attributes:
12
+ encryptors (dict[str, BaseEncryptor]): A dictionary to store the keys and their associated encryptors.
13
+ """
14
+ encryptors: dict[str, BaseEncryptor]
15
+ def __init__(self, encryptors: dict[str, BaseEncryptor] | None = None) -> None:
16
+ """Initialize the InMemoryKeyRing.
17
+
18
+ Args:
19
+ encryptors (dict[str, BaseEncryptor] | None, optional): A dictionary to store the keys and
20
+ their associated encryptors. Defaults to None.
21
+ """
22
+ def get(self, key_id: str) -> BaseEncryptor:
23
+ """Get an encryptor by key ID.
24
+
25
+ Args:
26
+ key_id (str): ID of the key to retrieve.
27
+
28
+ Returns:
29
+ BaseEncryptor: The encryptor for the specified key.
30
+
31
+ Raises:
32
+ KeyError: If key_id does not exist.
33
+ """
34
+ def add(self, key_id: str, encryptor: BaseEncryptor) -> None:
35
+ """Add a new key to the key ring.
36
+
37
+ Args:
38
+ key_id (str): Unique identifier for the key.
39
+ encryptor (BaseEncryptor): The encryptor instance for this key.
40
+
41
+ Raises:
42
+ KeyError: If key_id already exists.
43
+ """
44
+ def remove(self, key_id: str) -> None:
45
+ """Remove a key from the key ring.
46
+
47
+ Args:
48
+ key_id (str): ID of the key to remove.
49
+
50
+ Raises:
51
+ KeyError: If key_id does not exist.
52
+ """
@@ -0,0 +1,45 @@
1
+ from abc import ABC, abstractmethod
2
+ from gllm_datastore.encryptor.encryptor import BaseEncryptor as BaseEncryptor
3
+
4
+ class BaseKeyRing(ABC):
5
+ """Abstract base class defining the interface for managing multiple encryption keys."""
6
+ @abstractmethod
7
+ def get(self, key_id: str) -> BaseEncryptor:
8
+ """Get an encryptor by key ID.
9
+
10
+ This method should be implemented by subclasses to provide the getting functionality.
11
+
12
+ Args:
13
+ key_id (str): ID of the key to retrieve.
14
+
15
+ Returns:
16
+ BaseEncryptor: The encryptor for the specified key.
17
+
18
+ Raises:
19
+ NotImplementedError: If the method is not implemented by the subclass.
20
+ """
21
+ @abstractmethod
22
+ def add(self, key_id: str, encryptor: BaseEncryptor) -> None:
23
+ """Add a new key to the key ring.
24
+
25
+ This method should be implemented by subclasses to provide the adding functionality.
26
+
27
+ Args:
28
+ key_id (str): Unique identifier for the key.
29
+ encryptor (BaseEncryptor): The encryptor instance for this key.
30
+
31
+ Raises:
32
+ NotImplementedError: If the method is not implemented by the subclass.
33
+ """
34
+ @abstractmethod
35
+ def remove(self, key_id: str) -> None:
36
+ """Remove a key from the key ring.
37
+
38
+ This method should be implemented by subclasses to provide the removing functionality.
39
+
40
+ Args:
41
+ key_id (str): ID of the key to remove.
42
+
43
+ Raises:
44
+ NotImplementedError: If the method is not implemented by the subclass.
45
+ """
@@ -0,0 +1,60 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_datastore.encryptor.encryptor import BaseEncryptor as BaseEncryptor
3
+ from gllm_datastore.encryptor.key_ring.key_ring import BaseKeyRing as BaseKeyRing
4
+
5
+ class KeyRotatingEncryptor(BaseEncryptor):
6
+ """Encryptor that supports key rotation through a key ring.
7
+
8
+ This encryptor uses a BaseKeyRing to manage multiple encryption keys.
9
+ Users must specify which key to use for encryption and decryption operations.
10
+
11
+ Attributes:
12
+ key_ring (BaseKeyRing): The key ring managing encryption keys.
13
+ active_key_id (str): The ID of the current key to use for encryption.
14
+ """
15
+ key_ring: Incomplete
16
+ def __init__(self, key_ring: BaseKeyRing, active_key_id: str) -> None:
17
+ """Initialize KeyRotatingEncryptor with a key ring.
18
+
19
+ Args:
20
+ key_ring (BaseKeyRing): The key ring to use for key management.
21
+ active_key_id (str): The ID of the current key to use for encryption.
22
+ """
23
+ @property
24
+ def active_key_id(self) -> str:
25
+ """Get the ID of the current key to use for encryption."""
26
+ @active_key_id.setter
27
+ def active_key_id(self, value: str) -> None:
28
+ """Set the ID of the current key to use for encryption.
29
+
30
+ Args:
31
+ value (str): The ID of the current key to use for encryption.
32
+
33
+ Raises:
34
+ KeyError: If the specified key does not exist.
35
+ """
36
+ def encrypt(self, plaintext: str) -> str:
37
+ """Encrypt plaintext using the specified key.
38
+
39
+ Args:
40
+ plaintext (str): The plaintext to encrypt.
41
+
42
+ Returns:
43
+ str: The encrypted data with key metadata, encoded in base64.
44
+
45
+ Raises:
46
+ KeyError: If the specified key does not exist.
47
+ """
48
+ def decrypt(self, ciphertext: str) -> str:
49
+ """Decrypt ciphertext the key detected from metadata.
50
+
51
+ Args:
52
+ ciphertext (str): The encrypted data with key metadata.
53
+
54
+ Returns:
55
+ str: The decrypted plaintext.
56
+
57
+ Raises:
58
+ ValueError: If the data format is invalid or decryption fails.
59
+ KeyError: If the required key is not available.
60
+ """
@@ -0,0 +1,6 @@
1
+ from gllm_datastore.graph_data_store.light_rag_postgres_data_store import LightRAGPostgresDataStore as LightRAGPostgresDataStore
2
+ from gllm_datastore.graph_data_store.llama_index_neo4j_graph_rag_data_store import LlamaIndexNeo4jGraphRAGDataStore as LlamaIndexNeo4jGraphRAGDataStore
3
+ from gllm_datastore.graph_data_store.nebula_graph_data_store import NebulaGraphDataStore as NebulaGraphDataStore
4
+ from gllm_datastore.graph_data_store.neo4j_graph_data_store import Neo4jGraphDataStore as Neo4jGraphDataStore
5
+
6
+ __all__ = ['LightRAGPostgresDataStore', 'LlamaIndexNeo4jGraphRAGDataStore', 'NebulaGraphDataStore', 'Neo4jGraphDataStore']
@@ -0,0 +1,151 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Any
3
+
4
+ class BaseGraphDataStore(ABC):
5
+ """Abstract base class for an async graph data store interface.
6
+
7
+ This class defines the asynchronous interface for all graph data store implementations.
8
+ It provides methods for creating, updating, and querying graph data.
9
+ """
10
+ @abstractmethod
11
+ async def upsert_node(self, label: str, identifier_key: str, identifier_value: str, properties: dict[str, Any] | None) -> Any:
12
+ """Upsert a node in the graph.
13
+
14
+ Args:
15
+ label (str): The label of the node.
16
+ identifier_key (str): The key of the identifier.
17
+ identifier_value (str): The value of the identifier.
18
+ properties (dict[str, Any] | None, optional): The properties of the node. Defaults to None.
19
+
20
+ Returns:
21
+ Any: The result of the operation.
22
+ """
23
+ @abstractmethod
24
+ async def upsert_relationship(self, node_source_key: str, node_source_value: str, relation: str, node_target_key: str, node_target_value: str, properties: dict[str, Any] | None) -> Any:
25
+ """Upsert a relationship between two nodes in the graph.
26
+
27
+ Args:
28
+ node_source_key (str): The key of the source node.
29
+ node_source_value (str): The value of the source node.
30
+ relation (str): The type of the relationship.
31
+ node_target_key (str): The key of the target node.
32
+ node_target_value (str): The value of the target node.
33
+ properties (dict[str, Any] | None, optional): The properties of the relationship. Defaults to None.
34
+
35
+ Returns:
36
+ Any: The result of the operation.
37
+ """
38
+ @abstractmethod
39
+ async def delete_node(self, label: str, identifier_key: str, identifier_value: str) -> Any:
40
+ """Delete a node from the graph.
41
+
42
+ Args:
43
+ label (str): The label of the node.
44
+ identifier_key (str): The key of the identifier.
45
+ identifier_value (str): The identifier of the node.
46
+
47
+ Returns:
48
+ Any: The result of the operation.
49
+ """
50
+ @abstractmethod
51
+ async def delete_relationship(self, node_source_key: str, node_source_value: str, relation: str, node_target_key: str, node_target_value: str) -> Any:
52
+ """Delete a relationship between two nodes in the graph.
53
+
54
+ Args:
55
+ node_source_key (str): The key of the source node.
56
+ node_source_value (str): The identifier of the source node.
57
+ relation (str): The type of the relationship.
58
+ node_target_key (str): The key of the target node.
59
+ node_target_value (str): The identifier of the target node.
60
+
61
+ Returns:
62
+ Any: The result of the operation.
63
+ """
64
+ @abstractmethod
65
+ async def query(self, query: str, parameters: dict[str, Any] | None = None) -> list[dict[str, Any]]:
66
+ """Query the graph data store.
67
+
68
+ Args:
69
+ query (str): The query to be executed.
70
+ parameters (dict[str, Any] | None, optional): The parameters of the query. Defaults to None.
71
+
72
+ Returns:
73
+ list[dict[str, Any]]: The result of the query as a list of dictionaries.
74
+ """
75
+ @abstractmethod
76
+ async def traverse_graph(self, node_properties: dict[str, Any], extracted_node_properties: list[str] | None = None, extracted_relationship_properties: list[str] | None = None, depth: int = 3) -> tuple[list[dict[str, Any]], list[dict[str, Any]]]:
77
+ '''Traverse graph from a node with specified properties, ignoring relationship\'s direction, up to a given depth.
78
+
79
+ Example:
80
+ ```python
81
+ nodes, relationships = await graph_data_store.traverse_graph(
82
+ node_properties={"name": "John Doe"},
83
+ extracted_node_properties=["name", "age"],
84
+ extracted_relationship_properties=["since"],
85
+ depth=1
86
+ )
87
+ ```
88
+ Means starting from the node with property `name` equal to "John Doe", traverse
89
+ the graph up to depth 1, extracting the `name` and `age` properties from nodes
90
+ and the `since` property from relationships.
91
+
92
+ ```python
93
+ nodes, relationships = await graph_data_store.traverse_graph(
94
+ node_properties={"name": "John Doe"},
95
+ depth=2
96
+ )
97
+ ```
98
+ Means starting from the node with property `name` equal to "John Doe", traverse
99
+ the graph up to depth 2, extracting all properties from nodes and relationships.
100
+
101
+ Args:
102
+ node_properties (dict[str, Any]): The properties of the starting node.
103
+ extracted_node_properties (list[str] | None, optional): The properties to extract from nodes during
104
+ traversal. If None or empty list, all node properties will be returned. Defaults to None.
105
+ extracted_relationship_properties (list[str] | None, optional): The properties to extract from relationships
106
+ during traversal. If None or empty list, all relationship properties will be returned. Defaults to None.
107
+ depth (int, optional): The depth of traversal. Defaults to 3.
108
+
109
+ Returns:
110
+ tuple[list[dict[str, Any]], list[dict[str, Any]]]: A tuple containing two lists:
111
+ - List of nodes with their extracted properties.
112
+ - List of relationships with their extracted properties.
113
+
114
+ Example return value:
115
+ nodes = [
116
+ {
117
+ "id": 1001,
118
+ "labels": ["Person"],
119
+ "properties": {
120
+ "name": "John Doe",
121
+ "age": 30,
122
+ "occupation": "Engineer"
123
+ }
124
+ },
125
+ {
126
+ "id": 2001,
127
+ "labels": ["Company"],
128
+ "properties": {
129
+ "name": "TechCorp",
130
+ "industry": "Technology",
131
+ "employees": 500
132
+ }
133
+ }
134
+ ]
135
+
136
+ relationships = [
137
+ {
138
+ "id": 5002,
139
+ "type": "FRIEND_OF",
140
+ "start_node": 1001,
141
+ "end_node": 1002,
142
+ "properties": {
143
+ "since": "2018-05-20",
144
+ "closeness": 8
145
+ }
146
+ }
147
+ ]
148
+ '''
149
+ @abstractmethod
150
+ async def close(self) -> None:
151
+ """Close the graph data store."""
@@ -0,0 +1,29 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Any
3
+
4
+ class BaseGraphRAGDataStore(ABC):
5
+ """Abstract base class for graph RAG data stores in the retrieval system.
6
+
7
+ This class defines the interface for all graph-based Retrieval-Augmented
8
+ Generation (RAG) implementations. It provides methods for querying the graph with
9
+ natural language and managing document-related data.
10
+ """
11
+ @abstractmethod
12
+ async def query(self, query: str, **kwargs: Any) -> list[dict[str, Any]]:
13
+ """Query the graph RAG data store.
14
+
15
+ Args:
16
+ query (str): The query to be executed.
17
+ **kwargs (Any): Additional keyword arguments.
18
+
19
+ Returns:
20
+ list[dict[str, Any]]: The result of the query as a list of dictionaries.
21
+ """
22
+ @abstractmethod
23
+ async def delete_by_document_id(self, document_id: str, **kwargs: Any) -> None:
24
+ """Delete nodes and edges by document ID.
25
+
26
+ Args:
27
+ document_id (str): The document ID.
28
+ **kwargs (Any): Additional keyword arguments.
29
+ """
@@ -0,0 +1,93 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_core.schema import Chunk as Chunk
3
+ from gllm_datastore.graph_data_store.graph_rag_data_store import BaseGraphRAGDataStore as BaseGraphRAGDataStore
4
+ from gllm_datastore.graph_data_store.utils.constants import LightRAGConstants as LightRAGConstants, LightRAGKeys as LightRAGKeys
5
+ from gllm_datastore.graph_data_store.utils.light_rag_em_invoker_adapter import LightRAGEMInvokerAdapter as LightRAGEMInvokerAdapter
6
+ from lightrag import LightRAG
7
+ from typing import Any
8
+
9
+ class BaseLightRAGDataStore(BaseGraphRAGDataStore):
10
+ """LightRAG data store base class.
11
+
12
+ This class provides an abstract base class for the BaseGraphRAGDataStore interface
13
+ using LightRAG as the underlying technology. It handles indexing files
14
+ into a graph database, creating relationships between files and chunks,
15
+ and provides methods for deleting files and chunks from the graph.
16
+
17
+ Please use LightRAGPostgresDataStore or other concrete implementations instead.
18
+
19
+ To implement a concrete data store, inherit from this class and implement the
20
+ abstract methods.
21
+
22
+ Attributes:
23
+ instance (LightRAG): The LightRAG instance to use.
24
+ is_initialized (bool): Whether the data store is initialized.
25
+ """
26
+ instance: Incomplete
27
+ is_initialized: bool
28
+ def __init__(self, instance: LightRAG) -> None:
29
+ """Initialize the LightRAG data store.
30
+
31
+ This is an abstract base class and cannot be instantiated directly.
32
+ Use LightRAGPostgresDataStore or other concrete implementations instead.
33
+
34
+ Args:
35
+ instance (LightRAG): The LightRAG instance to use for indexing.
36
+
37
+ Raises:
38
+ TypeError: If attempting to instantiate BaseLightRAGDataStore directly.
39
+ """
40
+ async def ensure_initialized(self) -> None:
41
+ """Ensure that the LightRAG data store is initialized.
42
+
43
+ This asynchronous method ensures that the LightRAG data store is initialized.
44
+ If the data store is not initialized, it will initialize it.
45
+ """
46
+ async def map_file_id_to_chunk_ids_using_graph(self, file_id: str, chunk_ids: list[str]) -> None:
47
+ """Create file and chunk nodes in the graph and establish relationships.
48
+
49
+ This asynchronous method creates a file node and multiple chunk nodes
50
+ in the graph database, then establishes relationships between the file
51
+ and its chunks. The relationships are necessary for retaining the relationships
52
+ between the file and its chunks when deleting the file.
53
+
54
+ Args:
55
+ file_id (str): The ID of the file to create in the graph.
56
+ chunk_ids (list[str]): List of chunk IDs that belong to the file.
57
+ """
58
+ async def insert(self, chunks: list[Chunk]) -> None:
59
+ """Insert a chunk into the LightRAG data store.
60
+
61
+ This asynchronous method inserts a chunk into the LightRAG data store.
62
+ If the data store is not initialized, it will initialize it.
63
+
64
+ Args:
65
+ chunks (list[Chunk]): The chunks to insert.
66
+ """
67
+ async def query(self, query: str, **kwargs: Any) -> Any:
68
+ """Query the LightRAG data store.
69
+
70
+ Args:
71
+ query (str): The query to be executed.
72
+ **kwargs (Any): Additional keyword arguments.
73
+
74
+ Returns:
75
+ Any: The result of the query.
76
+ """
77
+ async def delete(self, chunk_id: str) -> None:
78
+ """Delete a chunk from the LightRAG data store.
79
+
80
+ Args:
81
+ chunk_id (str): The ID of the chunk to delete.
82
+ """
83
+ async def delete_by_document_id(self, document_id: str, **kwargs: Any) -> None:
84
+ """Delete a document/file and all its associated chunks from the LightRAG data store.
85
+
86
+ This asynchronous method retrieves all chunks associated with a document/file,
87
+ deletes each chunk from both the LightRAG system and the graph database,
88
+ and finally deletes the document/file node itself.
89
+
90
+ Args:
91
+ document_id (str): The ID of the document to delete.
92
+ **kwargs (Any): Additional keyword arguments.
93
+ """
@@ -0,0 +1,96 @@
1
+ from _typeshed import Incomplete
2
+ from contextlib import contextmanager
3
+ from gllm_datastore.graph_data_store.light_rag_data_store import BaseLightRAGDataStore as BaseLightRAGDataStore
4
+ from gllm_datastore.graph_data_store.utils.constants import LightRAGPostgresStorageConstants as LightRAGPostgresStorageConstants
5
+ from gllm_datastore.graph_data_store.utils.light_rag_em_invoker_adapter import LightRAGEMInvokerAdapter as LightRAGEMInvokerAdapter
6
+ from gllm_datastore.graph_data_store.utils.light_rag_lm_invoker_adapter import LightRAGLMInvokerAdapter as LightRAGLMInvokerAdapter
7
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker
8
+ from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker
9
+ from lightrag import LightRAG
10
+ from pydantic import BaseModel
11
+ from typing import Any, Generator
12
+
13
+ class PostgresDBConfig(BaseModel):
14
+ """Pydantic model containing PostgreSQL configuration parameters."""
15
+ host: str
16
+ port: int
17
+ user: str
18
+ password: str
19
+ database: str
20
+ workspace: str
21
+
22
+ @contextmanager
23
+ def postgres_config_context(config: PostgresDBConfig) -> Generator[None, None, None]:
24
+ """Context manager to temporarily set postgres config.
25
+
26
+ This context manager is used to temporarily set the environment variables
27
+ for PostgreSQL configuration. It is used to set the environment variables
28
+ for the duration of the context manager's block as it is required by LightRAG.
29
+
30
+ Args:
31
+ config (PostgresDBConfig): Pydantic model containing PostgreSQL configuration parameters.
32
+
33
+ Returns:
34
+ Generator[None, None, None]: Generator object that can be used in a context manager.
35
+ """
36
+
37
+ class LightRAGPostgresDataStore(BaseLightRAGDataStore):
38
+ '''Data store implementation for LightRAG-based graph RAG using PostgreSQL.
39
+
40
+ This class extends the LightRAGDataStore to use PostgreSQL as the graph database,
41
+ key-value store, and vector database.
42
+
43
+ To use this data store, please ensure that you have a PostgreSQL with AGE and PGVector extensions installed.
44
+ You can use the following docker run command to start a PostgreSQL container with AGE and PGVector extensions:
45
+
46
+ ```bash
47
+ docker run -p 5455:5432 -d --name postgres-LightRag shangor/postgres-for-rag:v1.0 sh -c "service postgresql start && sleep infinity"
48
+ ```
49
+
50
+ Example:
51
+ ```python
52
+ from gllm_inference.em_invoker import OpenAIEMInvoker
53
+ from gllm_inference.lm_invoker import OpenAILMInvoker
54
+ from gllm_datastore.graph_data_store.light_rag_postgres_data_store import LightRAGPostgresDataStore
55
+
56
+ # Create the indexer
57
+ data_store = await LightRAGPostgresDataStore(
58
+ lm_invoker=OpenAILMInvoker(model_name="gpt-4o-mini"),
59
+ em_invoker=OpenAIEMInvoker(model_name="text-embedding-3-small"),
60
+ postgres_db_user="rag",
61
+ postgres_db_password="rag",
62
+ postgres_db_name="rag",
63
+ postgres_db_host="localhost",
64
+ postgres_db_port=5455,
65
+ )
66
+
67
+ # Retrieve using LightRAG instance
68
+ await data_store.query("What is AI?")
69
+ ```
70
+
71
+ Attributes:
72
+ instance (LightRAG): The LightRAG instance used for indexing and querying.
73
+ lm_invoker_adapter (LightRAGLMInvokerAdapter): The adapter for the LM invoker.
74
+ em_invoker_adapter (LightRAGEMInvokerAdapter): The adapter for the EM invoker.
75
+ postgres_config (PostgresDBConfig): Pydantic model containing PostgreSQL configuration parameters.
76
+ '''
77
+ lm_invoker_adapter: Incomplete
78
+ em_invoker_adapter: Incomplete
79
+ postgres_config: Incomplete
80
+ def __init__(self, lm_invoker: BaseLMInvoker, em_invoker: BaseEMInvoker, postgres_db_host: str = 'localhost', postgres_db_port: int = 5432, postgres_db_user: str = 'postgres', postgres_db_password: str = 'password', postgres_db_name: str = 'postgres', postgres_db_workspace: str = 'default', use_cache: bool = False, lm_invoke_kwargs: dict[str, Any] | None = None, instance: LightRAG | None = None, **kwargs: Any) -> None:
81
+ '''Initialize the LightRAGPostgresIndexer.
82
+
83
+ Args:
84
+ lm_invoker (BaseLMInvoker): The LM invoker to use.
85
+ em_invoker (BaseEMInvoker): The EM invoker to use.
86
+ postgres_db_host (str, optional): The host for the PostgreSQL database. Defaults to "localhost".
87
+ postgres_db_port (int, optional): The port for the PostgreSQL database. Defaults to 5432.
88
+ postgres_db_user (str, optional): The user for the PostgreSQL database. Defaults to "postgres".
89
+ postgres_db_password (str, optional): The password for the PostgreSQL database. Defaults to "password".
90
+ postgres_db_name (str, optional): The name for the PostgreSQL database. Defaults to "postgres".
91
+ postgres_db_workspace (str, optional): The workspace for the PostgreSQL database. Defaults to "default".
92
+ use_cache (bool, optional): Whether to enable caching for the LightRAG instance. Defaults to False.
93
+ lm_invoke_kwargs (dict[str, Any] | None, optional): Keyword arguments for the LM invoker. Defaults to None.
94
+ instance (LightRAG | None, optional): A configured LightRAG instance to use. Defaults to None.
95
+ **kwargs (Any): Additional keyword arguments.
96
+ '''
@@ -0,0 +1,49 @@
1
+ from _typeshed import Incomplete
2
+ from abc import ABC
3
+ from gllm_datastore.graph_data_store.graph_rag_data_store import BaseGraphRAGDataStore as BaseGraphRAGDataStore
4
+ from gllm_datastore.graph_data_store.utils import LlamaIndexEMInvokerAdapter as LlamaIndexEMInvokerAdapter, LlamaIndexLMInvokerAdapter as LlamaIndexLMInvokerAdapter
5
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker
6
+ from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker
7
+ from llama_index.core.base.embeddings.base import BaseEmbedding
8
+ from llama_index.core.graph_stores.types import PropertyGraphStore
9
+ from llama_index.core.llms import LLM
10
+ from typing import Any
11
+
12
+ class LlamaIndexGraphRAGDataStore(PropertyGraphStore, BaseGraphRAGDataStore, ABC):
13
+ """Abstract base class for a LlamaIndex graph RAG data store.
14
+
15
+ This class provides a common interface for LlamaIndex-based graph RAG data stores.
16
+ It handles conversion from GLLM invokers to LlamaIndex LLM and embedding models.
17
+
18
+ Attributes:
19
+ lm_invoker (BaseLMInvoker | None): The GLLM language model invoker.
20
+ em_invoker (BaseEMInvoker | None): The GLLM embedding model invoker.
21
+ llm (LLM | None): The LlamaIndex LLM instance (converted from lm_invoker if provided).
22
+ embed_model (BaseEmbedding | None): The LlamaIndex embedding instance (converted from em_invoker if provided).
23
+ """
24
+ lm_invoker: Incomplete
25
+ em_invoker: Incomplete
26
+ llm: LLM | None
27
+ embed_model: BaseEmbedding | None
28
+ def __init__(self, lm_invoker: BaseLMInvoker | None = None, em_invoker: BaseEMInvoker | None = None, **kwargs: Any) -> None:
29
+ """Initialize the LlamaIndexGraphRAGDataStore.
30
+
31
+ Args:
32
+ lm_invoker (BaseLMInvoker | None, optional): GLLM language model invoker.
33
+ If provided, it will be automatically converted to a LlamaIndex LLM instance
34
+ using LlamaIndexLMInvokerAdapter. Defaults to None.
35
+ em_invoker (BaseEMInvoker | None, optional): GLLM embedding model invoker.
36
+ If provided, it will be automatically converted to a LlamaIndex BaseEmbedding instance
37
+ using LlamaIndexEMInvokerAdapter. Defaults to None.
38
+ **kwargs (Any): Additional keyword arguments passed to PropertyGraphStore.
39
+ """
40
+ async def query(self, query: str, **kwargs: Any) -> Any:
41
+ """Query the graph RAG data store.
42
+
43
+ Args:
44
+ query (str): The query to be executed.
45
+ **kwargs (Any): Additional keyword arguments.
46
+
47
+ Returns:
48
+ Any: The result of the query.
49
+ """
@@ -0,0 +1,78 @@
1
+ from _typeshed import Incomplete
2
+ from gllm_datastore.graph_data_store.llama_index_graph_rag_data_store import LlamaIndexGraphRAGDataStore as LlamaIndexGraphRAGDataStore
3
+ from gllm_inference.em_invoker.em_invoker import BaseEMInvoker
4
+ from gllm_inference.lm_invoker.lm_invoker import BaseLMInvoker
5
+ from llama_index.graph_stores.neo4j import Neo4jPropertyGraphStore
6
+ from typing import Any
7
+
8
+ class LlamaIndexNeo4jGraphRAGDataStore(LlamaIndexGraphRAGDataStore, Neo4jPropertyGraphStore):
9
+ '''Graph RAG data store for Neo4j.
10
+
11
+ This class extends the Neo4jPropertyGraphStore class from LlamaIndex.
12
+ This class provides an interface for graph-based Retrieval-Augmented Generation (RAG)
13
+ operations on Neo4j graph databases.
14
+
15
+ Attributes:
16
+ neo4j_version_tuple (tuple[int, ...]): The Neo4j version tuple.
17
+ lm_invoker (BaseLMInvoker | None): The GLLM language model invoker (inherited from parent).
18
+ em_invoker (BaseEMInvoker | None): The GLLM embedding model invoker (inherited from parent).
19
+ llm (LLM | None): The LlamaIndex LLM instance (converted from lm_invoker, inherited from parent).
20
+ embed_model (BaseEmbedding | None): The LlamaIndex embedding instance
21
+ (converted from em_invoker, inherited from parent).
22
+
23
+ Example:
24
+ ```python
25
+ # Option 1: Use with GLLM invokers (recommended)
26
+ from gllm_inference.builder import build_lm_invoker, build_em_invoker
27
+
28
+ lm_invoker = build_lm_invoker(model_id="openai/gpt-4o-mini")
29
+ em_invoker = build_em_invoker(model_id="openai/text-embedding-3-small")
30
+
31
+ store = LlamaIndexNeo4jGraphRAGDataStore(
32
+ url="bolt://localhost:7687",
33
+ username="neo4j",
34
+ password="password",
35
+ lm_invoker=lm_invoker, # Optional: Auto-converted to LlamaIndex LLM
36
+ em_invoker=em_invoker, # Optional: Auto-converted to LlamaIndex Embedding
37
+ )
38
+
39
+ # Option 2: Use with LlamaIndex LLM/Embeddings directly
40
+ from llama_index.llms.openai import OpenAI
41
+ from llama_index.embeddings.openai import OpenAIEmbedding
42
+
43
+ store = LlamaIndexNeo4jGraphRAGDataStore(
44
+ url="bolt://localhost:7687",
45
+ username="neo4j",
46
+ password="password",
47
+ )
48
+
49
+ # Perform RAG query
50
+ results = await store.query("What is the relationship between X and Y?")
51
+
52
+ # Delete document data
53
+ await store.delete_by_document_id("doc123")
54
+ ```
55
+ '''
56
+ neo4j_version_tuple: Incomplete
57
+ def __init__(self, url: str, username: str, password: str, lm_invoker: BaseLMInvoker | None = None, em_invoker: BaseEMInvoker | None = None, **kwargs: Any) -> None:
58
+ '''Initialize the LlamaIndexNeo4jGraphRAGDataStore.
59
+
60
+ Args:
61
+ url (str): The Neo4j database URL (e.g., "bolt://localhost:7687").
62
+ username (str): The Neo4j database username.
63
+ password (str): The Neo4j database password.
64
+ lm_invoker (BaseLMInvoker | None, optional): GLLM language model invoker.
65
+ If provided, it will be automatically converted to a LlamaIndex LLM instance
66
+ by the parent class. Defaults to None.
67
+ em_invoker (BaseEMInvoker | None, optional): GLLM embedding model invoker.
68
+ If provided, it will be automatically converted to a LlamaIndex BaseEmbedding instance
69
+ by the parent class. Defaults to None.
70
+ **kwargs (Any): Additional keyword arguments passed to Neo4jPropertyGraphStore.
71
+ '''
72
+ async def delete_by_document_id(self, document_id: str, **kwargs: Any) -> None:
73
+ """Delete nodes and edges by document ID.
74
+
75
+ Args:
76
+ document_id (str): The document ID.
77
+ **kwargs (Any): Additional keyword arguments.
78
+ """
@@ -0,0 +1,3 @@
1
+ from gllm_datastore.graph_data_store.mixins.agentic_graph_tools_mixin import AgenticGraphToolsMixin as AgenticGraphToolsMixin
2
+
3
+ __all__ = ['AgenticGraphToolsMixin']