glitchlings 0.4.4__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of glitchlings might be problematic. Click here for more details.

Files changed (47) hide show
  1. glitchlings/__init__.py +67 -0
  2. glitchlings/__main__.py +8 -0
  3. glitchlings/_zoo_rust.cpython-313-x86_64-linux-gnu.so +0 -0
  4. glitchlings/compat.py +284 -0
  5. glitchlings/config.py +388 -0
  6. glitchlings/config.toml +3 -0
  7. glitchlings/dlc/__init__.py +7 -0
  8. glitchlings/dlc/_shared.py +153 -0
  9. glitchlings/dlc/huggingface.py +81 -0
  10. glitchlings/dlc/prime.py +254 -0
  11. glitchlings/dlc/pytorch.py +166 -0
  12. glitchlings/dlc/pytorch_lightning.py +215 -0
  13. glitchlings/lexicon/__init__.py +192 -0
  14. glitchlings/lexicon/_cache.py +110 -0
  15. glitchlings/lexicon/data/default_vector_cache.json +82 -0
  16. glitchlings/lexicon/metrics.py +162 -0
  17. glitchlings/lexicon/vector.py +651 -0
  18. glitchlings/lexicon/wordnet.py +232 -0
  19. glitchlings/main.py +364 -0
  20. glitchlings/util/__init__.py +195 -0
  21. glitchlings/util/adapters.py +27 -0
  22. glitchlings/zoo/__init__.py +168 -0
  23. glitchlings/zoo/_ocr_confusions.py +32 -0
  24. glitchlings/zoo/_rate.py +131 -0
  25. glitchlings/zoo/_rust_extensions.py +143 -0
  26. glitchlings/zoo/_sampling.py +54 -0
  27. glitchlings/zoo/_text_utils.py +100 -0
  28. glitchlings/zoo/adjax.py +128 -0
  29. glitchlings/zoo/apostrofae.py +127 -0
  30. glitchlings/zoo/assets/__init__.py +0 -0
  31. glitchlings/zoo/assets/apostrofae_pairs.json +32 -0
  32. glitchlings/zoo/core.py +582 -0
  33. glitchlings/zoo/jargoyle.py +335 -0
  34. glitchlings/zoo/mim1c.py +109 -0
  35. glitchlings/zoo/ocr_confusions.tsv +30 -0
  36. glitchlings/zoo/redactyl.py +193 -0
  37. glitchlings/zoo/reduple.py +148 -0
  38. glitchlings/zoo/rushmore.py +153 -0
  39. glitchlings/zoo/scannequin.py +171 -0
  40. glitchlings/zoo/typogre.py +231 -0
  41. glitchlings/zoo/zeedub.py +185 -0
  42. glitchlings-0.4.4.dist-info/METADATA +627 -0
  43. glitchlings-0.4.4.dist-info/RECORD +47 -0
  44. glitchlings-0.4.4.dist-info/WHEEL +5 -0
  45. glitchlings-0.4.4.dist-info/entry_points.txt +2 -0
  46. glitchlings-0.4.4.dist-info/licenses/LICENSE +201 -0
  47. glitchlings-0.4.4.dist-info/top_level.txt +1 -0
@@ -0,0 +1,651 @@
1
+ """Vector-space lexicon implementation and cache building utilities."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import argparse
6
+ import importlib
7
+ import importlib.util
8
+ import json
9
+ import math
10
+ import sys
11
+ from pathlib import Path
12
+ from typing import Any, Callable, Iterable, Iterator, Mapping, MutableMapping, Sequence
13
+
14
+ from . import LexiconBackend
15
+ from ._cache import CacheSnapshot
16
+ from ._cache import load_cache as _load_cache_file
17
+ from ._cache import write_cache as _write_cache_file
18
+
19
+
20
+ def _cosine_similarity(vector_a: Sequence[float], vector_b: Sequence[float]) -> float:
21
+ """Return the cosine similarity between two dense vectors."""
22
+ dot_product = 0.0
23
+ norm_a = 0.0
24
+ norm_b = 0.0
25
+ for value_a, value_b in zip(vector_a, vector_b):
26
+ dot_product += value_a * value_b
27
+ norm_a += value_a * value_a
28
+ norm_b += value_b * value_b
29
+
30
+ if norm_a == 0.0 or norm_b == 0.0:
31
+ return 0.0
32
+
33
+ magnitude = math.sqrt(norm_a) * math.sqrt(norm_b)
34
+ if magnitude == 0.0:
35
+ return 0.0
36
+
37
+ return dot_product / magnitude
38
+
39
+
40
+ class _Adapter:
41
+ """Base adapter that exposes nearest-neighbour queries for embeddings."""
42
+
43
+ def contains(self, word: str) -> bool:
44
+ raise NotImplementedError
45
+
46
+ def nearest(self, word: str, *, limit: int) -> list[tuple[str, float]]:
47
+ raise NotImplementedError
48
+
49
+ def iter_keys(self) -> Iterator[str]:
50
+ raise NotImplementedError
51
+
52
+
53
+ class _MappingAdapter(_Adapter):
54
+ """Adapter for in-memory ``Mapping[str, Sequence[float]]`` embeddings."""
55
+
56
+ def __init__(self, mapping: Mapping[str, Sequence[float]]) -> None:
57
+ self._mapping = mapping
58
+
59
+ def contains(self, word: str) -> bool:
60
+ return word in self._mapping
61
+
62
+ def nearest(self, word: str, *, limit: int) -> list[tuple[str, float]]:
63
+ if word not in self._mapping:
64
+ return []
65
+
66
+ target_vector = self._mapping[word]
67
+ scores: list[tuple[str, float]] = []
68
+ for candidate, candidate_vector in self._mapping.items():
69
+ if candidate == word:
70
+ continue
71
+ similarity = _cosine_similarity(target_vector, candidate_vector)
72
+ if similarity == 0.0:
73
+ continue
74
+ scores.append((candidate, similarity))
75
+
76
+ scores.sort(key=lambda pair: pair[1], reverse=True)
77
+ if limit < len(scores):
78
+ return scores[:limit]
79
+ return scores
80
+
81
+ def iter_keys(self) -> Iterator[str]:
82
+ return iter(self._mapping.keys())
83
+
84
+
85
+ class _GensimAdapter(_Adapter):
86
+ """Adapter that proxies to ``gensim`` ``KeyedVectors`` instances."""
87
+
88
+ def __init__(self, keyed_vectors: Any) -> None:
89
+ self._keyed_vectors = keyed_vectors
90
+
91
+ def contains(self, word: str) -> bool:
92
+ return word in self._keyed_vectors.key_to_index
93
+
94
+ def nearest(self, word: str, *, limit: int) -> list[tuple[str, float]]:
95
+ try:
96
+ raw_neighbors = self._keyed_vectors.most_similar(word, topn=limit)
97
+ except KeyError:
98
+ return []
99
+
100
+ return [(candidate, float(score)) for candidate, score in raw_neighbors]
101
+
102
+ def iter_keys(self) -> Iterator[str]:
103
+ return iter(self._keyed_vectors.key_to_index.keys())
104
+
105
+
106
+ class _SpaCyAdapter(_Adapter):
107
+ """Adapter that interacts with spaCy ``Language`` objects."""
108
+
109
+ def __init__(self, language: Any) -> None:
110
+ self._language = language
111
+ self._vectors = language.vocab.vectors
112
+ spec = importlib.util.find_spec("numpy")
113
+ if spec is None:
114
+ raise RuntimeError("spaCy vector lexicons require NumPy to be installed.")
115
+ self._numpy = importlib.import_module("numpy")
116
+
117
+ def contains(self, word: str) -> bool:
118
+ strings = self._language.vocab.strings
119
+ return word in strings and strings[word] in self._vectors
120
+
121
+ def nearest(self, word: str, *, limit: int) -> list[tuple[str, float]]:
122
+ strings = self._language.vocab.strings
123
+ if word not in strings:
124
+ return []
125
+
126
+ key = strings[word]
127
+ if key not in self._vectors:
128
+ return []
129
+
130
+ vector = self._vectors.get(key)
131
+ query = self._numpy.asarray([vector])
132
+ keys, scores = self._vectors.most_similar(query, n=limit)
133
+ candidates: list[tuple[str, float]] = []
134
+ for candidate_key, score in zip(keys[0], scores[0]):
135
+ candidate_word = strings[candidate_key]
136
+ if candidate_word == word:
137
+ continue
138
+ candidates.append((candidate_word, float(score)))
139
+ return candidates
140
+
141
+ def iter_keys(self) -> Iterator[str]:
142
+ strings = self._language.vocab.strings
143
+ for key in self._vectors.keys():
144
+ yield strings[key]
145
+
146
+
147
+ def _load_json_vectors(path: Path) -> Mapping[str, Sequence[float]]:
148
+ """Load embeddings from a JSON mapping of token to vector list."""
149
+ with path.open("r", encoding="utf8") as handle:
150
+ payload = json.load(handle)
151
+
152
+ if not isinstance(payload, Mapping):
153
+ raise RuntimeError("Vector JSON payload must map tokens to dense vectors.")
154
+
155
+ validated: dict[str, list[float]] = {}
156
+ for token, raw_vector in payload.items():
157
+ if not isinstance(token, str):
158
+ raise RuntimeError("Vector JSON keys must be strings.")
159
+ if not isinstance(raw_vector, Sequence):
160
+ raise RuntimeError(f"Vector for '{token}' must be a sequence of floats.")
161
+ validated[token] = [float(value) for value in raw_vector]
162
+
163
+ return validated
164
+
165
+
166
+ def _load_gensim_vectors(path: Path, *, binary: bool | None = None) -> Any:
167
+ """Load ``gensim`` vectors from ``path``."""
168
+ if importlib.util.find_spec("gensim") is None:
169
+ raise RuntimeError("The gensim package is required to load keyed vector embeddings.")
170
+
171
+ keyed_vectors_module = importlib.import_module("gensim.models.keyedvectors")
172
+ if binary is None:
173
+ binary = path.suffix in {".bin", ".gz"}
174
+
175
+ if path.suffix in {".kv", ".kv2"}:
176
+ return keyed_vectors_module.KeyedVectors.load(str(path), mmap="r")
177
+
178
+ return keyed_vectors_module.KeyedVectors.load_word2vec_format(str(path), binary=binary)
179
+
180
+
181
+ def _load_spacy_language(model_name: str) -> Any:
182
+ """Load a spaCy language pipeline by name."""
183
+ if importlib.util.find_spec("spacy") is None:
184
+ raise RuntimeError(
185
+ "spaCy is required to use spaCy-backed vector lexicons; install the 'vectors' extra."
186
+ )
187
+
188
+ spacy_module = importlib.import_module("spacy")
189
+ return spacy_module.load(model_name)
190
+
191
+
192
+ def _load_sentence_transformer(model_name: str) -> Any:
193
+ """Return a ``SentenceTransformer`` instance for ``model_name``."""
194
+
195
+ if importlib.util.find_spec("sentence_transformers") is None:
196
+ raise RuntimeError(
197
+ "sentence-transformers is required for this source; install the 'st' extra."
198
+ )
199
+
200
+ module = importlib.import_module("sentence_transformers")
201
+ try:
202
+ model_cls = getattr(module, "SentenceTransformer")
203
+ except AttributeError as exc: # pragma: no cover - defensive
204
+ raise RuntimeError("sentence-transformers does not expose SentenceTransformer") from exc
205
+
206
+ return model_cls(model_name)
207
+
208
+
209
+ def _build_sentence_transformer_embeddings(
210
+ model_name: str, tokens: Sequence[str]
211
+ ) -> Mapping[str, Sequence[float]]:
212
+ """Return embeddings for ``tokens`` using ``model_name``."""
213
+
214
+ if not tokens:
215
+ return {}
216
+
217
+ model = _load_sentence_transformer(model_name)
218
+
219
+ unique_tokens: list[str] = []
220
+ seen: set[str] = set()
221
+ for token in tokens:
222
+ normalized = token.strip()
223
+ if not normalized or normalized in seen:
224
+ continue
225
+ unique_tokens.append(normalized)
226
+ seen.add(normalized)
227
+
228
+ if not unique_tokens:
229
+ return {}
230
+
231
+ embeddings = model.encode(
232
+ unique_tokens,
233
+ batch_size=64,
234
+ normalize_embeddings=True,
235
+ convert_to_numpy=True,
236
+ )
237
+
238
+ return {
239
+ token: [float(value) for value in vector]
240
+ for token, vector in zip(unique_tokens, embeddings, strict=True)
241
+ }
242
+
243
+
244
+ def _resolve_source(source: Any | None) -> _Adapter | None:
245
+ """Return an adapter instance for ``source`` if possible."""
246
+ if source is None:
247
+ return None
248
+
249
+ if isinstance(source, _Adapter):
250
+ return source
251
+
252
+ if isinstance(source, Mapping):
253
+ return _MappingAdapter(source)
254
+
255
+ module_name = type(source).__module__
256
+ if module_name.startswith("gensim") and hasattr(source, "most_similar"):
257
+ return _GensimAdapter(source)
258
+
259
+ if module_name.startswith("spacy") and hasattr(source, "vocab"):
260
+ return _SpaCyAdapter(source)
261
+
262
+ if isinstance(source, (str, Path)):
263
+ text_source = str(source)
264
+ if text_source.startswith("spacy:"):
265
+ model = text_source.split(":", 1)[1]
266
+ return _SpaCyAdapter(_load_spacy_language(model))
267
+
268
+ resolved_path = Path(text_source)
269
+ if not resolved_path.exists():
270
+ raise RuntimeError(f"Vector source '{text_source}' does not exist.")
271
+
272
+ suffix = resolved_path.suffix.lower()
273
+ if suffix == ".json":
274
+ return _MappingAdapter(_load_json_vectors(resolved_path))
275
+
276
+ if suffix in {".kv", ".kv2", ".bin", ".gz", ".txt", ".vec"}:
277
+ binary_flag = False if suffix in {".txt", ".vec"} else None
278
+ return _GensimAdapter(_load_gensim_vectors(resolved_path, binary=binary_flag))
279
+
280
+ if hasattr(source, "most_similar") and hasattr(source, "key_to_index"):
281
+ return _GensimAdapter(source)
282
+
283
+ if hasattr(source, "vocab") and hasattr(source.vocab, "vectors"):
284
+ return _SpaCyAdapter(source)
285
+
286
+ raise RuntimeError("Unsupported vector source supplied to VectorLexicon.")
287
+
288
+
289
+ class VectorLexicon(LexiconBackend):
290
+ """Lexicon implementation backed by dense word embeddings."""
291
+
292
+ def __init__(
293
+ self,
294
+ *,
295
+ source: Any | None = None,
296
+ cache: Mapping[str, Sequence[str]] | None = None,
297
+ cache_path: str | Path | None = None,
298
+ max_neighbors: int = 50,
299
+ min_similarity: float = 0.0,
300
+ normalizer: Callable[[str], str] | None = None,
301
+ case_sensitive: bool = False,
302
+ seed: int | None = None,
303
+ ) -> None:
304
+ """Initialise the lexicon with an embedding ``source`` and optional cache."""
305
+ super().__init__(seed=seed)
306
+ self._adapter = _resolve_source(source)
307
+ self._max_neighbors = max(1, max_neighbors)
308
+ self._min_similarity = min_similarity
309
+ self._cache: MutableMapping[str, list[str]] = {}
310
+ self._cache_path: Path | None
311
+ self._cache_checksum: str | None = None
312
+ if cache_path is not None:
313
+ path = Path(cache_path)
314
+ snapshot = _load_cache_file(path)
315
+ self._cache.update(snapshot.entries)
316
+ self._cache_checksum = snapshot.checksum
317
+ self._cache_path = path
318
+ else:
319
+ self._cache_path = None
320
+ if cache is not None:
321
+ for key, values in cache.items():
322
+ self._cache[str(key)] = [str(value) for value in values]
323
+ self._cache_dirty = False
324
+ self._case_sensitive = case_sensitive
325
+ if normalizer is not None:
326
+ self._lookup_normalizer: Callable[[str], str] = normalizer
327
+ self._dedupe_normalizer: Callable[[str], str] = normalizer
328
+ elif case_sensitive:
329
+ self._lookup_normalizer = str.lower
330
+ self._dedupe_normalizer = lambda value: value
331
+ else:
332
+ self._lookup_normalizer = str.lower
333
+ self._dedupe_normalizer = str.lower
334
+
335
+ def _normalize_for_lookup(self, word: str) -> str:
336
+ return self._lookup_normalizer(word)
337
+
338
+ def _normalize_for_dedupe(self, word: str) -> str:
339
+ return self._dedupe_normalizer(word)
340
+
341
+ def _fetch_neighbors(
342
+ self, *, original: str, normalized: str, limit: int
343
+ ) -> list[tuple[str, float]]:
344
+ if self._adapter is None:
345
+ return []
346
+
347
+ attempts = [original]
348
+ if normalized != original:
349
+ attempts.append(normalized)
350
+
351
+ collected: list[tuple[str, float]] = []
352
+ seen: set[str] = set()
353
+ for token in attempts:
354
+ neighbors = self._adapter.nearest(token, limit=limit)
355
+ for candidate, score in neighbors:
356
+ if candidate in seen:
357
+ continue
358
+ collected.append((candidate, score))
359
+ seen.add(candidate)
360
+ if len(collected) >= limit:
361
+ break
362
+
363
+ if len(collected) > limit:
364
+ return collected[:limit]
365
+ return collected
366
+
367
+ def _ensure_cached(
368
+ self, *, original: str, normalized: str, limit: int | None = None
369
+ ) -> list[str]:
370
+ cache_key = normalized if not self._case_sensitive else original
371
+ if cache_key in self._cache:
372
+ return self._cache[cache_key]
373
+
374
+ neighbor_limit = self._max_neighbors if limit is None else max(1, limit)
375
+ neighbors = self._fetch_neighbors(
376
+ original=original, normalized=normalized, limit=neighbor_limit
377
+ )
378
+ synonyms: list[str] = []
379
+ seen_candidates: set[str] = set()
380
+ original_lookup = normalized
381
+ original_dedupe = self._normalize_for_dedupe(original)
382
+ for candidate, similarity in neighbors:
383
+ if similarity < self._min_similarity:
384
+ continue
385
+ if self._case_sensitive:
386
+ if candidate == original:
387
+ continue
388
+ dedupe_key = self._normalize_for_dedupe(candidate)
389
+ if dedupe_key == original_dedupe:
390
+ continue
391
+ else:
392
+ candidate_lookup = self._normalize_for_lookup(candidate)
393
+ if candidate_lookup == original_lookup:
394
+ continue
395
+ dedupe_key = candidate_lookup
396
+ if dedupe_key in seen_candidates:
397
+ continue
398
+ seen_candidates.add(dedupe_key)
399
+ synonyms.append(candidate)
400
+
401
+ self._cache[cache_key] = synonyms
402
+ if self._cache_path is not None:
403
+ self._cache_dirty = True
404
+ return synonyms
405
+
406
+ def get_synonyms(self, word: str, pos: str | None = None, n: int = 5) -> list[str]:
407
+ """Return up to ``n`` deterministic synonyms drawn from the embedding cache."""
408
+ normalized = self._normalize_for_lookup(word)
409
+ synonyms = self._ensure_cached(original=word, normalized=normalized)
410
+ return self._deterministic_sample(synonyms, limit=n, word=word, pos=pos)
411
+
412
+ def precompute(self, word: str, *, limit: int | None = None) -> list[str]:
413
+ """Populate the cache for ``word`` and return the stored synonyms."""
414
+ normalized = self._normalize_for_lookup(word)
415
+ return list(self._ensure_cached(original=word, normalized=normalized, limit=limit))
416
+
417
+ def iter_vocabulary(self) -> Iterator[str]:
418
+ """Yield vocabulary tokens from the underlying embedding source."""
419
+ if self._adapter is None:
420
+ return iter(())
421
+ return self._adapter.iter_keys()
422
+
423
+ def export_cache(self) -> dict[str, list[str]]:
424
+ """Return a copy of the in-memory synonym cache."""
425
+ return {key: list(values) for key, values in self._cache.items()}
426
+
427
+ @classmethod
428
+ def load_cache(cls, path: str | Path) -> CacheSnapshot:
429
+ """Load and validate a cache file for reuse."""
430
+ return _load_cache_file(Path(path))
431
+
432
+ def save_cache(self, path: str | Path | None = None) -> Path:
433
+ """Persist the current cache to disk, returning the path used."""
434
+ if path is None:
435
+ if self._cache_path is None:
436
+ raise RuntimeError("No cache path supplied to VectorLexicon.")
437
+ target = self._cache_path
438
+ else:
439
+ target = Path(path)
440
+ self._cache_path = target
441
+
442
+ snapshot = _write_cache_file(target, self._cache)
443
+ self._cache_checksum = snapshot.checksum
444
+ self._cache_dirty = False
445
+ return target
446
+
447
+ def supports_pos(self, pos: str | None) -> bool:
448
+ """Always return ``True`` because vector sources do not encode POS metadata."""
449
+ return True
450
+
451
+ def __repr__(self) -> str: # pragma: no cover - debug helper
452
+ source_name = self._adapter.__class__.__name__ if self._adapter else "None"
453
+ return (
454
+ f"VectorLexicon(source={source_name}, max_neighbors={self._max_neighbors}, "
455
+ f"seed={self.seed!r})"
456
+ )
457
+
458
+
459
+ def build_vector_cache(
460
+ *,
461
+ source: Any,
462
+ words: Iterable[str],
463
+ output_path: Path,
464
+ max_neighbors: int = 50,
465
+ min_similarity: float = 0.0,
466
+ case_sensitive: bool = False,
467
+ seed: int | None = None,
468
+ normalizer: Callable[[str], str] | None = None,
469
+ ) -> Path:
470
+ """Generate a synonym cache for ``words`` using ``source`` embeddings."""
471
+ lexicon = VectorLexicon(
472
+ source=source,
473
+ max_neighbors=max_neighbors,
474
+ min_similarity=min_similarity,
475
+ case_sensitive=case_sensitive,
476
+ normalizer=normalizer,
477
+ seed=seed,
478
+ )
479
+
480
+ for word in words:
481
+ lexicon.precompute(word)
482
+
483
+ return lexicon.save_cache(output_path)
484
+
485
+
486
+ def load_vector_source(spec: str) -> Any:
487
+ """Resolve ``spec`` strings for the cache-building CLI."""
488
+ if spec.startswith("spacy:"):
489
+ model_name = spec.split(":", 1)[1]
490
+ return _load_spacy_language(model_name)
491
+
492
+ path = Path(spec).expanduser()
493
+ if not path.exists():
494
+ raise RuntimeError(f"Vector source '{spec}' does not exist.")
495
+
496
+ if path.suffix.lower() == ".json":
497
+ return _load_json_vectors(path)
498
+
499
+ return _load_gensim_vectors(path)
500
+
501
+
502
+ def _parse_cli(argv: Sequence[str] | None = None) -> argparse.Namespace:
503
+ parser = argparse.ArgumentParser(
504
+ prog="python -m glitchlings.lexicon.vector",
505
+ description="Precompute synonym caches for the vector lexicon backend.",
506
+ )
507
+ parser.add_argument(
508
+ "--source",
509
+ required=True,
510
+ help=(
511
+ "Vector source specification. Use 'spacy:<model>' for spaCy pipelines, "
512
+ "'sentence-transformers:<model>' for HuggingFace checkpoints (requires --tokens), "
513
+ "or provide a path to a gensim KeyedVectors/word2vec file."
514
+ ),
515
+ )
516
+ parser.add_argument(
517
+ "--output",
518
+ required=True,
519
+ type=Path,
520
+ help="Path to the JSON file that will receive the synonym cache.",
521
+ )
522
+ parser.add_argument(
523
+ "--tokens",
524
+ type=Path,
525
+ help="Optional newline-delimited vocabulary file to restrict generation.",
526
+ )
527
+ parser.add_argument(
528
+ "--max-neighbors",
529
+ type=int,
530
+ default=50,
531
+ help="Number of nearest neighbours to cache per token (default: 50).",
532
+ )
533
+ parser.add_argument(
534
+ "--min-similarity",
535
+ type=float,
536
+ default=0.0,
537
+ help="Minimum cosine similarity required to keep a synonym (default: 0.0).",
538
+ )
539
+ parser.add_argument(
540
+ "--seed",
541
+ type=int,
542
+ help="Optional deterministic seed to bake into the resulting cache.",
543
+ )
544
+ parser.add_argument(
545
+ "--case-sensitive",
546
+ action="store_true",
547
+ help="Preserve original casing instead of lower-casing cache keys.",
548
+ )
549
+ parser.add_argument(
550
+ "--normalizer",
551
+ choices=["lower", "identity"],
552
+ default="lower",
553
+ help="Token normalization strategy for cache keys (default: lower).",
554
+ )
555
+ parser.add_argument(
556
+ "--overwrite",
557
+ action="store_true",
558
+ help="Allow overwriting an existing cache file.",
559
+ )
560
+ parser.add_argument(
561
+ "--limit",
562
+ type=int,
563
+ help="Optional maximum number of tokens to process.",
564
+ )
565
+ return parser.parse_args(argv)
566
+
567
+
568
+ def _iter_tokens_from_file(path: Path) -> Iterator[str]:
569
+ with path.open("r", encoding="utf8") as handle:
570
+ for line in handle:
571
+ token = line.strip()
572
+ if token:
573
+ yield token
574
+
575
+
576
+ def main(argv: Sequence[str] | None = None) -> int:
577
+ """Entry-point for ``python -m glitchlings.lexicon.vector``."""
578
+ args = _parse_cli(argv)
579
+
580
+ if args.output.exists() and not args.overwrite:
581
+ raise SystemExit(
582
+ f"Refusing to overwrite existing cache at {args.output!s}; pass --overwrite."
583
+ )
584
+
585
+ if args.normalizer == "lower":
586
+ normalizer: Callable[[str], str] | None = None if args.case_sensitive else str.lower
587
+ else:
588
+
589
+ def _identity(value: str) -> str:
590
+ return value
591
+
592
+ normalizer = _identity
593
+
594
+ tokens_from_file: list[str] | None = None
595
+ if args.tokens is not None:
596
+ tokens_from_file = list(_iter_tokens_from_file(args.tokens))
597
+ if args.limit is not None:
598
+ tokens_from_file = tokens_from_file[: args.limit]
599
+
600
+ source_spec = args.source
601
+ token_iter: Iterable[str]
602
+ if source_spec.startswith("sentence-transformers:"):
603
+ model_name = source_spec.split(":", 1)[1].strip()
604
+ if not model_name:
605
+ model_name = "sentence-transformers/all-mpnet-base-v2"
606
+ if tokens_from_file is None:
607
+ raise SystemExit(
608
+ "Sentence-transformers sources require --tokens to supply a vocabulary."
609
+ )
610
+ source = _build_sentence_transformer_embeddings(model_name, tokens_from_file)
611
+ token_iter = tokens_from_file
612
+ else:
613
+ source = load_vector_source(source_spec)
614
+ if tokens_from_file is not None:
615
+ token_iter = tokens_from_file
616
+ else:
617
+ lexicon = VectorLexicon(
618
+ source=source,
619
+ max_neighbors=args.max_neighbors,
620
+ min_similarity=args.min_similarity,
621
+ case_sensitive=args.case_sensitive,
622
+ normalizer=normalizer,
623
+ seed=args.seed,
624
+ )
625
+ iterator = lexicon.iter_vocabulary()
626
+ if args.limit is not None:
627
+ token_iter = (
628
+ token for index, token in enumerate(iterator) if index < args.limit
629
+ )
630
+ else:
631
+ token_iter = iterator
632
+
633
+ build_vector_cache(
634
+ source=source,
635
+ words=token_iter,
636
+ output_path=args.output,
637
+ max_neighbors=args.max_neighbors,
638
+ min_similarity=args.min_similarity,
639
+ case_sensitive=args.case_sensitive,
640
+ seed=args.seed,
641
+ normalizer=normalizer,
642
+ )
643
+
644
+ return 0
645
+
646
+
647
+ if __name__ == "__main__": # pragma: no cover - manual CLI entry point
648
+ sys.exit(main())
649
+
650
+
651
+ __all__ = ["VectorLexicon", "build_vector_cache", "load_vector_source", "main"]