glitchlings 0.4.1__cp310-cp310-macosx_11_0_universal2.whl → 0.4.3__cp310-cp310-macosx_11_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of glitchlings might be problematic. Click here for more details.
- glitchlings/__init__.py +30 -17
- glitchlings/__main__.py +0 -1
- glitchlings/_zoo_rust.cpython-310-darwin.so +0 -0
- glitchlings/compat.py +284 -0
- glitchlings/config.py +164 -34
- glitchlings/config.toml +1 -1
- glitchlings/dlc/__init__.py +3 -1
- glitchlings/dlc/_shared.py +68 -0
- glitchlings/dlc/huggingface.py +26 -41
- glitchlings/dlc/prime.py +64 -101
- glitchlings/dlc/pytorch.py +216 -0
- glitchlings/dlc/pytorch_lightning.py +233 -0
- glitchlings/lexicon/__init__.py +12 -33
- glitchlings/lexicon/_cache.py +21 -22
- glitchlings/lexicon/data/default_vector_cache.json +80 -14
- glitchlings/lexicon/metrics.py +1 -8
- glitchlings/lexicon/vector.py +109 -49
- glitchlings/lexicon/wordnet.py +89 -49
- glitchlings/main.py +30 -24
- glitchlings/util/__init__.py +18 -4
- glitchlings/util/adapters.py +27 -0
- glitchlings/zoo/__init__.py +26 -15
- glitchlings/zoo/_ocr_confusions.py +1 -3
- glitchlings/zoo/_rate.py +1 -4
- glitchlings/zoo/_sampling.py +0 -1
- glitchlings/zoo/_text_utils.py +1 -5
- glitchlings/zoo/adjax.py +2 -4
- glitchlings/zoo/apostrofae.py +128 -0
- glitchlings/zoo/assets/__init__.py +0 -0
- glitchlings/zoo/assets/apostrofae_pairs.json +32 -0
- glitchlings/zoo/core.py +152 -87
- glitchlings/zoo/jargoyle.py +50 -45
- glitchlings/zoo/mim1c.py +11 -10
- glitchlings/zoo/redactyl.py +16 -16
- glitchlings/zoo/reduple.py +5 -3
- glitchlings/zoo/rushmore.py +4 -10
- glitchlings/zoo/scannequin.py +7 -6
- glitchlings/zoo/typogre.py +8 -9
- glitchlings/zoo/zeedub.py +6 -3
- {glitchlings-0.4.1.dist-info → glitchlings-0.4.3.dist-info}/METADATA +101 -4
- glitchlings-0.4.3.dist-info/RECORD +46 -0
- glitchlings/lexicon/graph.py +0 -290
- glitchlings-0.4.1.dist-info/RECORD +0 -39
- {glitchlings-0.4.1.dist-info → glitchlings-0.4.3.dist-info}/WHEEL +0 -0
- {glitchlings-0.4.1.dist-info → glitchlings-0.4.3.dist-info}/entry_points.txt +0 -0
- {glitchlings-0.4.1.dist-info → glitchlings-0.4.3.dist-info}/licenses/LICENSE +0 -0
- {glitchlings-0.4.1.dist-info → glitchlings-0.4.3.dist-info}/top_level.txt +0 -0
glitchlings/lexicon/graph.py
DELETED
|
@@ -1,290 +0,0 @@
|
|
|
1
|
-
"""Graph-based lexicon backed by ConceptNet/Numberbatch embeddings."""
|
|
2
|
-
|
|
3
|
-
from __future__ import annotations
|
|
4
|
-
|
|
5
|
-
import re
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
from typing import Iterable, Mapping, MutableMapping, Sequence
|
|
8
|
-
|
|
9
|
-
from . import LexiconBackend
|
|
10
|
-
from ._cache import CacheSnapshot, load_cache as _load_cache_file, write_cache as _write_cache_file
|
|
11
|
-
from .vector import VectorLexicon
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
_CONCEPT_RE = re.compile(r"^/c/(?P<lang>[a-z]{2})/(?P<term>[^/]+)")
|
|
15
|
-
_PUNCTUATION_RE = re.compile(r"[^\w\s-]+", re.UNICODE)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def _lemmatize_token(token: str) -> str:
|
|
19
|
-
"""Return a lightweight lemma for ``token`` using heuristic rules."""
|
|
20
|
-
|
|
21
|
-
irregular = {
|
|
22
|
-
"children": "child",
|
|
23
|
-
"mice": "mouse",
|
|
24
|
-
"geese": "goose",
|
|
25
|
-
"feet": "foot",
|
|
26
|
-
"teeth": "tooth",
|
|
27
|
-
"men": "man",
|
|
28
|
-
"women": "woman",
|
|
29
|
-
"better": "good",
|
|
30
|
-
"worse": "bad",
|
|
31
|
-
}
|
|
32
|
-
lowered = token.lower()
|
|
33
|
-
if lowered in irregular:
|
|
34
|
-
return irregular[lowered]
|
|
35
|
-
|
|
36
|
-
if lowered.endswith("ies") and len(lowered) > 3:
|
|
37
|
-
return lowered[:-3] + "y"
|
|
38
|
-
if lowered.endswith("ves") and len(lowered) > 3:
|
|
39
|
-
return lowered[:-3] + "f"
|
|
40
|
-
if lowered.endswith("men") and len(lowered) > 3:
|
|
41
|
-
return lowered[:-3] + "man"
|
|
42
|
-
if lowered.endswith("ses") and len(lowered) > 3:
|
|
43
|
-
return lowered[:-2]
|
|
44
|
-
if lowered.endswith("es") and len(lowered) > 3:
|
|
45
|
-
return lowered[:-2]
|
|
46
|
-
if lowered.endswith("s") and len(lowered) > 2 and not lowered.endswith("ss"):
|
|
47
|
-
return lowered[:-1]
|
|
48
|
-
if lowered.endswith("ing") and len(lowered) > 4:
|
|
49
|
-
stem = lowered[:-3]
|
|
50
|
-
if len(stem) > 2 and stem[-1] == stem[-2]:
|
|
51
|
-
stem = stem[:-1]
|
|
52
|
-
return stem
|
|
53
|
-
if lowered.endswith("ed") and len(lowered) > 3:
|
|
54
|
-
stem = lowered[:-2]
|
|
55
|
-
if len(stem) > 2 and stem[-1] == stem[-2]:
|
|
56
|
-
stem = stem[:-1]
|
|
57
|
-
return stem
|
|
58
|
-
return lowered
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
def _normalize_phrase(phrase: str) -> str:
|
|
62
|
-
"""Normalise ``phrase`` for ConceptNet lookups."""
|
|
63
|
-
|
|
64
|
-
stripped = _PUNCTUATION_RE.sub(" ", phrase.lower())
|
|
65
|
-
tokens = [token for token in stripped.split() if token]
|
|
66
|
-
if not tokens:
|
|
67
|
-
return ""
|
|
68
|
-
lemmatised = [_lemmatize_token(token) for token in tokens]
|
|
69
|
-
return " ".join(lemmatised)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
def _concept_terms(normalized: str) -> list[str]:
|
|
73
|
-
"""Return ConceptNet term variants for ``normalized``."""
|
|
74
|
-
|
|
75
|
-
collapsed = normalized.replace(" ", "_")
|
|
76
|
-
if not collapsed:
|
|
77
|
-
return []
|
|
78
|
-
variants = {collapsed}
|
|
79
|
-
variants.add(collapsed.replace("_", "-"))
|
|
80
|
-
variants.add(collapsed.replace("-", "_"))
|
|
81
|
-
return list(variants)
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
def _surface_from_concept(concept: str) -> str | None:
|
|
85
|
-
"""Return a human-readable surface form for ``concept``."""
|
|
86
|
-
|
|
87
|
-
match = _CONCEPT_RE.match(concept)
|
|
88
|
-
if match is None:
|
|
89
|
-
return None
|
|
90
|
-
term = match.group("term")
|
|
91
|
-
surface = term.replace("_", " ")
|
|
92
|
-
surface = surface.replace("-", " ")
|
|
93
|
-
return " ".join(surface.split())
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
def _language_from_concept(concept: str) -> str | None:
|
|
97
|
-
match = _CONCEPT_RE.match(concept)
|
|
98
|
-
if match is None:
|
|
99
|
-
return None
|
|
100
|
-
return match.group("lang")
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
def _load_numberbatch(path: Path, *, languages: set[str]) -> Mapping[str, list[float]]:
|
|
104
|
-
"""Load ConceptNet Numberbatch embeddings from ``path``."""
|
|
105
|
-
|
|
106
|
-
if not path.exists():
|
|
107
|
-
return {}
|
|
108
|
-
|
|
109
|
-
if path.suffix == ".gz":
|
|
110
|
-
import gzip
|
|
111
|
-
|
|
112
|
-
handle = gzip.open(path, "rt", encoding="utf8")
|
|
113
|
-
else:
|
|
114
|
-
handle = path.open("r", encoding="utf8")
|
|
115
|
-
|
|
116
|
-
with handle as stream:
|
|
117
|
-
header = stream.readline()
|
|
118
|
-
try:
|
|
119
|
-
parts = header.strip().split()
|
|
120
|
-
if len(parts) >= 2:
|
|
121
|
-
int(parts[0])
|
|
122
|
-
int(parts[1])
|
|
123
|
-
except ValueError:
|
|
124
|
-
stream.seek(0)
|
|
125
|
-
|
|
126
|
-
embeddings: dict[str, list[float]] = {}
|
|
127
|
-
for line in stream:
|
|
128
|
-
tokens = line.strip().split()
|
|
129
|
-
if len(tokens) <= 2:
|
|
130
|
-
continue
|
|
131
|
-
concept = tokens[0]
|
|
132
|
-
lang = _language_from_concept(concept)
|
|
133
|
-
if lang is None or lang not in languages:
|
|
134
|
-
continue
|
|
135
|
-
try:
|
|
136
|
-
vector = [float(value) for value in tokens[1:]]
|
|
137
|
-
except ValueError:
|
|
138
|
-
continue
|
|
139
|
-
embeddings[concept] = vector
|
|
140
|
-
return embeddings
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
class GraphLexicon(LexiconBackend):
|
|
144
|
-
"""Lexicon backed by ConceptNet/Numberbatch embeddings."""
|
|
145
|
-
|
|
146
|
-
def __init__(
|
|
147
|
-
self,
|
|
148
|
-
*,
|
|
149
|
-
source: Mapping[str, Sequence[float]] | str | Path | None = None,
|
|
150
|
-
cache: Mapping[str, Sequence[str]] | None = None,
|
|
151
|
-
cache_path: str | Path | None = None,
|
|
152
|
-
languages: Iterable[str] = ("en",),
|
|
153
|
-
max_neighbors: int = 50,
|
|
154
|
-
min_similarity: float = 0.0,
|
|
155
|
-
seed: int | None = None,
|
|
156
|
-
) -> None:
|
|
157
|
-
super().__init__(seed=seed)
|
|
158
|
-
self._languages = {language.lower() for language in languages}
|
|
159
|
-
if not self._languages:
|
|
160
|
-
self._languages = {"en"}
|
|
161
|
-
self._max_neighbors = max(1, max_neighbors)
|
|
162
|
-
self._min_similarity = min_similarity
|
|
163
|
-
self._cache: MutableMapping[str, list[str]] = {}
|
|
164
|
-
self._cache_path: Path | None = Path(cache_path) if cache_path is not None else None
|
|
165
|
-
self._cache_checksum: str | None = None
|
|
166
|
-
if self._cache_path is not None:
|
|
167
|
-
snapshot = _load_cache_file(self._cache_path)
|
|
168
|
-
self._cache.update(snapshot.entries)
|
|
169
|
-
self._cache_checksum = snapshot.checksum
|
|
170
|
-
if cache is not None:
|
|
171
|
-
for key, values in cache.items():
|
|
172
|
-
self._cache[str(key)] = [str(value) for value in values]
|
|
173
|
-
self._cache_dirty = False
|
|
174
|
-
|
|
175
|
-
prepared_source = self._prepare_source(source)
|
|
176
|
-
self._backend = VectorLexicon(
|
|
177
|
-
source=prepared_source if prepared_source else None,
|
|
178
|
-
max_neighbors=self._max_neighbors,
|
|
179
|
-
min_similarity=self._min_similarity,
|
|
180
|
-
case_sensitive=True,
|
|
181
|
-
seed=seed,
|
|
182
|
-
)
|
|
183
|
-
|
|
184
|
-
def _prepare_source(
|
|
185
|
-
self, source: Mapping[str, Sequence[float]] | str | Path | None
|
|
186
|
-
) -> Mapping[str, Sequence[float]]:
|
|
187
|
-
if source is None:
|
|
188
|
-
return {}
|
|
189
|
-
if isinstance(source, Mapping):
|
|
190
|
-
prepared: dict[str, list[float]] = {}
|
|
191
|
-
for key, vector in source.items():
|
|
192
|
-
lang = _language_from_concept(key)
|
|
193
|
-
if lang is None or lang not in self._languages:
|
|
194
|
-
continue
|
|
195
|
-
prepared[key] = [float(value) for value in vector]
|
|
196
|
-
return prepared
|
|
197
|
-
path = Path(source)
|
|
198
|
-
embeddings = _load_numberbatch(path, languages=self._languages)
|
|
199
|
-
return embeddings
|
|
200
|
-
|
|
201
|
-
def reseed(self, seed: int | None) -> None:
|
|
202
|
-
super().reseed(seed)
|
|
203
|
-
self._backend.reseed(seed)
|
|
204
|
-
|
|
205
|
-
def _concept_candidates(self, normalized: str) -> list[str]:
|
|
206
|
-
terms = _concept_terms(normalized)
|
|
207
|
-
concepts = []
|
|
208
|
-
for language in sorted(self._languages):
|
|
209
|
-
for term in terms:
|
|
210
|
-
concepts.append(f"/c/{language}/{term}")
|
|
211
|
-
return concepts
|
|
212
|
-
|
|
213
|
-
def _collect_synonyms(self, normalized: str) -> list[str]:
|
|
214
|
-
candidates: list[str] = []
|
|
215
|
-
seen: set[str] = set()
|
|
216
|
-
for concept in self._concept_candidates(normalized):
|
|
217
|
-
neighbors = self._backend.precompute(concept, limit=self._max_neighbors)
|
|
218
|
-
for neighbor in neighbors:
|
|
219
|
-
lang = _language_from_concept(neighbor)
|
|
220
|
-
if lang is None or lang not in self._languages:
|
|
221
|
-
continue
|
|
222
|
-
surface = _surface_from_concept(neighbor)
|
|
223
|
-
if surface is None:
|
|
224
|
-
continue
|
|
225
|
-
surface_norm = _normalize_phrase(surface)
|
|
226
|
-
if not surface_norm or surface_norm == normalized:
|
|
227
|
-
continue
|
|
228
|
-
if surface_norm in seen:
|
|
229
|
-
continue
|
|
230
|
-
seen.add(surface_norm)
|
|
231
|
-
candidates.append(surface)
|
|
232
|
-
return candidates
|
|
233
|
-
|
|
234
|
-
def _ensure_cached(self, normalized: str) -> list[str]:
|
|
235
|
-
if normalized in self._cache:
|
|
236
|
-
return self._cache[normalized]
|
|
237
|
-
synonyms = self._collect_synonyms(normalized)
|
|
238
|
-
self._cache[normalized] = synonyms
|
|
239
|
-
if self._cache_path is not None:
|
|
240
|
-
self._cache_dirty = True
|
|
241
|
-
return synonyms
|
|
242
|
-
|
|
243
|
-
def get_synonyms(
|
|
244
|
-
self, word: str, pos: str | None = None, n: int = 5
|
|
245
|
-
) -> list[str]:
|
|
246
|
-
normalized = _normalize_phrase(word)
|
|
247
|
-
if not normalized:
|
|
248
|
-
return []
|
|
249
|
-
synonyms = self._ensure_cached(normalized)
|
|
250
|
-
return self._deterministic_sample(synonyms, limit=n, word=word, pos=pos)
|
|
251
|
-
|
|
252
|
-
def precompute(self, word: str) -> list[str]:
|
|
253
|
-
normalized = _normalize_phrase(word)
|
|
254
|
-
if not normalized:
|
|
255
|
-
return []
|
|
256
|
-
return list(self._ensure_cached(normalized))
|
|
257
|
-
|
|
258
|
-
def export_cache(self) -> dict[str, list[str]]:
|
|
259
|
-
return {key: list(values) for key, values in self._cache.items()}
|
|
260
|
-
|
|
261
|
-
@classmethod
|
|
262
|
-
def load_cache(cls, path: str | Path) -> CacheSnapshot:
|
|
263
|
-
"""Load and validate a persisted ConceptNet cache file."""
|
|
264
|
-
|
|
265
|
-
return _load_cache_file(Path(path))
|
|
266
|
-
|
|
267
|
-
def save_cache(self, path: str | Path | None = None) -> Path:
|
|
268
|
-
if path is None:
|
|
269
|
-
if self._cache_path is None:
|
|
270
|
-
raise RuntimeError("No cache path supplied to GraphLexicon.")
|
|
271
|
-
target = self._cache_path
|
|
272
|
-
else:
|
|
273
|
-
target = Path(path)
|
|
274
|
-
self._cache_path = target
|
|
275
|
-
snapshot = _write_cache_file(target, self._cache)
|
|
276
|
-
self._cache_checksum = snapshot.checksum
|
|
277
|
-
self._cache_dirty = False
|
|
278
|
-
return target
|
|
279
|
-
|
|
280
|
-
def supports_pos(self, pos: str | None) -> bool:
|
|
281
|
-
return True
|
|
282
|
-
|
|
283
|
-
def __repr__(self) -> str: # pragma: no cover - debug helper
|
|
284
|
-
adapter = getattr(self._backend, "_adapter", None)
|
|
285
|
-
state = "loaded" if adapter else "empty"
|
|
286
|
-
return (
|
|
287
|
-
f"GraphLexicon(languages={sorted(self._languages)!r}, "
|
|
288
|
-
f"max_neighbors={self._max_neighbors}, seed={self.seed!r}, state={state})"
|
|
289
|
-
)
|
|
290
|
-
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
glitchlings/__init__.py,sha256=hEmQ1rl3G5uZBDbfJX_W4aIUNSsPAsy_Ai5DgQHasvk,813
|
|
2
|
-
glitchlings/__main__.py,sha256=EOiBgay0x6B9VlSDzSQvMuoq6bHJdSvFSgcAVGGKkd4,121
|
|
3
|
-
glitchlings/_zoo_rust.cpython-310-darwin.so,sha256=gQ1s02SM0NA1WomTnUUl7l1MT0TMHh_DV1OUn5M6_1E,2488464
|
|
4
|
-
glitchlings/config.py,sha256=hwkcMkhEvUzK8FECgG6kbf_4MpMQcopskiSgXzK5B3o,7785
|
|
5
|
-
glitchlings/config.toml,sha256=MWwgbx1-KIRAY3JZmMrCVbZNxFjHgRJXbtNAVuUNcxY,108
|
|
6
|
-
glitchlings/main.py,sha256=Rw9pCgNrGxwzC1rZbbng7cHUP9xlL0WWWTdjW95XiSM,10084
|
|
7
|
-
glitchlings/dlc/__init__.py,sha256=eTLEEWrVWPqniXHqee4W23H1rjElI1PQ_jcqWFe9D3g,141
|
|
8
|
-
glitchlings/dlc/huggingface.py,sha256=I1QWanWVxO02awgSpHDtgQEVF-9AQRLtsta2RCitWhE,2933
|
|
9
|
-
glitchlings/dlc/prime.py,sha256=wpRMNtgka1vNlEzifeCjGMp1q_-QclZn3NxXczGnNpM,9278
|
|
10
|
-
glitchlings/lexicon/__init__.py,sha256=e3MbtV3R_UOoZXsckR3gnThwgqCi4HXnfduaqxqYXvw,6229
|
|
11
|
-
glitchlings/lexicon/_cache.py,sha256=KlcHKtOFH1yPxwhr8_HF_qgpALmUuHkGTzNfWnQ2Jb8,3955
|
|
12
|
-
glitchlings/lexicon/graph.py,sha256=YYLrYnmSZ8uf8VvrNLuVF_nIVDH7OoR3RuxJ-9JMA2c,10041
|
|
13
|
-
glitchlings/lexicon/metrics.py,sha256=W8TCemZaCjBOUSX8G7JdgQAbMykXXfRTfodkDSkc3aQ,4599
|
|
14
|
-
glitchlings/lexicon/vector.py,sha256=oeZQwYxrK25REu4MhUUlMmaStW17Gx6RwrU1v6NooOg,19713
|
|
15
|
-
glitchlings/lexicon/wordnet.py,sha256=Zv0YNHSM-DE2ucVZl_OOutTV1s0-i2xPOrfqYYdZKTU,6034
|
|
16
|
-
glitchlings/lexicon/data/default_vector_cache.json,sha256=7obKHqmR3odbTfgJPWLSRFYFh4J_6uvv_CntCSe_EjI,725
|
|
17
|
-
glitchlings/util/__init__.py,sha256=7KiZ0gKMjocfd34cajneZhTqYb7Hkwi_PpjltPqvkNI,4498
|
|
18
|
-
glitchlings/zoo/__init__.py,sha256=eFYmaWeFDlSqfaiED51HWM-OqiTo_BOz0ASeyhOwOsw,4818
|
|
19
|
-
glitchlings/zoo/_ocr_confusions.py,sha256=MkCbwk9T24SO2pD3JNPajYCfpMMlm2vQ5_sJty5GoXE,1218
|
|
20
|
-
glitchlings/zoo/_rate.py,sha256=TMyfVFV7pLxSGVswPlOAtBvk25Bjtx5xXTtpb_utgik,527
|
|
21
|
-
glitchlings/zoo/_sampling.py,sha256=VOSWDgYWXIiAuKxn2IckFJhpRgGotQP_KW28db8kTKI,1587
|
|
22
|
-
glitchlings/zoo/_text_utils.py,sha256=nAfFT_VdXMXciCR7eQ5EAmym5wvzL6_Sdn9dvCx2s3Q,2758
|
|
23
|
-
glitchlings/zoo/adjax.py,sha256=N3CzfM7m7mAYgFcQYLQkqK2VYLw_vFvEMBM2aNU--ZA,3530
|
|
24
|
-
glitchlings/zoo/core.py,sha256=YymiEc66V4mW_4MbTST2038D7YdZVyRkiUZn886IV4I,17203
|
|
25
|
-
glitchlings/zoo/jargoyle.py,sha256=6-DJxUFz2AjT-iQDFlK2ZG9pVwq2boDtslEzCNyI_04,11481
|
|
26
|
-
glitchlings/zoo/mim1c.py,sha256=yAt1ngR3j2KXLbzc8LhrQlIWRO_KT5dFK1EE8QivMAQ,3429
|
|
27
|
-
glitchlings/zoo/ocr_confusions.tsv,sha256=KhtR7vJDTITpfTSGa-I7RHr6CK7LkGi2KjdhEWipI6o,183
|
|
28
|
-
glitchlings/zoo/redactyl.py,sha256=H4PwAMBCIsDw1KBOBiTR3VUbRZwynqakwwfx3wHjVp8,5457
|
|
29
|
-
glitchlings/zoo/reduple.py,sha256=Q9NRCdvUgaHvvJu8A0n6zW9v_L3pdmNZbWqaJ7uycw4,4216
|
|
30
|
-
glitchlings/zoo/rushmore.py,sha256=J1wd4IB7WOAR2TdntkxCMZWseWR0Yii8UQZ7ucfpWCc,4335
|
|
31
|
-
glitchlings/zoo/scannequin.py,sha256=Ps8nxysKjkJV408zaL1kjVjy4jliATDBpYcNHLWbNFg,4859
|
|
32
|
-
glitchlings/zoo/typogre.py,sha256=0fYaxOEiTnxiCqmsiSN1r_wl1vC1Ueaiks2e94kks70,6668
|
|
33
|
-
glitchlings/zoo/zeedub.py,sha256=l51swlo556-TXhDk4nayHOm1XgHwWmfUKzQ01YMuCpE,4801
|
|
34
|
-
glitchlings-0.4.1.dist-info/licenses/LICENSE,sha256=YCvGip-LoaRyu6h0nPo71q6eHEkzUpsE11psDJOIRkw,11337
|
|
35
|
-
glitchlings-0.4.1.dist-info/METADATA,sha256=9HdqQt7PazdHMtPP5JpINljl3kvL8HOqTFE3Wwyrm2g,28260
|
|
36
|
-
glitchlings-0.4.1.dist-info/WHEEL,sha256=G4cu_uTI97hAXSudQC0D9fpgNQkuavCNljtwFXiUqZM,114
|
|
37
|
-
glitchlings-0.4.1.dist-info/entry_points.txt,sha256=kGOwuAsjFDLtztLisaXtOouq9wFVMOJg5FzaAkg-Hto,54
|
|
38
|
-
glitchlings-0.4.1.dist-info/top_level.txt,sha256=VHFNBrLjtDwPCYXbGKi6o17Eueedi81eNbR3hBOoST0,12
|
|
39
|
-
glitchlings-0.4.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|