glitchlings 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,124 +1,166 @@
1
- import re
2
- import random
3
- from .core import Glitchling, AttackWave, AttackOrder
4
-
5
-
6
- def ocr_artifacts(
7
- text: str,
8
- error_rate: float = 0.02,
9
- seed: int | None = None,
10
- rng: random.Random | None = None,
11
- ) -> str:
12
- """Introduce OCR-like artifacts into text.
13
-
14
- Parameters
15
- - text: Input text to corrupt.
16
- - error_rate: Max proportion of eligible confusion matches to replace (default 0.02).
17
- - seed: Optional seed if `rng` not provided.
18
- - rng: Optional RNG; overrides seed.
19
-
20
- Notes
21
- - Uses a curated set of common OCR confusions (rn↔m, cl↔d, O↔0, l/I/1, etc.).
22
- - Collects all non-overlapping candidate spans in reading order, then samples
23
- a subset deterministically with the provided RNG.
24
- - Replacements can change length (e.g., m→rn), so edits are applied from left
25
- to right using precomputed spans to avoid index drift.
26
- """
27
- if not text:
28
- return text
29
-
30
- if rng is None:
31
- rng = random.Random(seed)
32
-
33
- # map: source -> list of possible replacements
34
- # Keep patterns small and specific; longer patterns first avoid overmatching
35
- confusion_table: list[tuple[str, list[str]]] = [
36
- ("li", ["h"]),
37
- ("h", ["li"]),
38
- ("rn", ["m"]),
39
- ("m", ["rn"]),
40
- ("cl", ["d"]),
41
- ("d", ["cl"]),
42
- ("I", ["l"]),
43
- ("l", ["I", "1"]),
44
- ("1", ["l", "I"]),
45
- ("0", ["O"]),
46
- ("O", ["0"]),
47
- ("B", ["8"]),
48
- ("8", ["B"]),
49
- ("S", ["5"]),
50
- ("5", ["S"]),
51
- ("Z", ["2"]),
52
- ("2", ["Z"]),
53
- ("G", ["6"]),
54
- ("6", ["G"]),
55
- ("", ['"']),
56
- ("", ['"']),
57
- ("", ["'"]),
58
- ("", ["'"]),
59
- ("", ["-"]), # em dash -> hyphen
60
- ("", ["-"]), # en dash -> hyphen
61
- ]
62
-
63
- # Build candidate matches as (start, end, choices)
64
- candidates: list[tuple[int, int, list[str]]] = []
65
-
66
- # To avoid double-counting overlapping patterns (like 'l' inside 'li'),
67
- # we will scan longer patterns first by sorting by len(src) desc.
68
- for src, choices in sorted(confusion_table, key=lambda p: -len(p[0])):
69
- pattern = re.escape(src)
70
- for m in re.finditer(pattern, text):
71
- start, end = m.span()
72
- candidates.append((start, end, choices))
73
-
74
- if not candidates:
75
- return text
76
-
77
- # Decide how many to replace
78
- k = int(len(candidates) * error_rate)
79
- if k <= 0:
80
- return text
81
-
82
- # Shuffle deterministically and select non-overlapping k spans
83
- rng.shuffle(candidates)
84
- chosen: list[tuple[int, int, str]] = []
85
- occupied: list[tuple[int, int]] = []
86
-
87
- def overlaps(a: tuple[int, int], b: tuple[int, int]) -> bool:
88
- return not (a[1] <= b[0] or b[1] <= a[0])
89
-
90
- for start, end, choices in candidates:
91
- if len(chosen) >= k:
92
- break
93
- span = (start, end)
94
- if any(overlaps(span, occ) for occ in occupied):
95
- continue
96
- replacement = rng.choice(choices)
97
- chosen.append((start, end, replacement))
98
- occupied.append(span)
99
-
100
- if not chosen:
101
- return text
102
-
103
- # Apply edits from left to right
104
- chosen.sort(key=lambda t: t[0])
105
- out_parts = []
106
- cursor = 0
107
- for start, end, rep in chosen:
108
- if cursor < start:
109
- out_parts.append(text[cursor:start])
110
- out_parts.append(rep)
111
- cursor = end
112
- if cursor < len(text):
113
- out_parts.append(text[cursor:])
114
-
115
- return "".join(out_parts)
116
-
117
-
118
- scannequin = Glitchling(
119
- name="Scannequin",
120
- corruption_function=ocr_artifacts,
121
- scope=AttackWave.CHARACTER,
122
- order=AttackOrder.LATE,
123
- error_rate=0.02,
124
- )
1
+ import re
2
+ import random
3
+
4
+ from .core import Glitchling, AttackWave, AttackOrder
5
+
6
+ try:
7
+ from glitchlings._zoo_rust import ocr_artifacts as _ocr_artifacts_rust
8
+ except ImportError: # pragma: no cover - compiled extension not present
9
+ _ocr_artifacts_rust = None
10
+
11
+
12
+ def _python_ocr_artifacts(
13
+ text: str,
14
+ *,
15
+ error_rate: float,
16
+ rng: random.Random,
17
+ ) -> str:
18
+ """Introduce OCR-like artifacts into text.
19
+
20
+ Parameters
21
+ - text: Input text to corrupt.
22
+ - error_rate: Max proportion of eligible confusion matches to replace (default 0.02).
23
+ - seed: Optional seed if `rng` not provided.
24
+ - rng: Optional RNG; overrides seed.
25
+
26
+ Notes
27
+ - Uses a curated set of common OCR confusions (rn↔m, cl↔d, O↔0, l/I/1, etc.).
28
+ - Collects all non-overlapping candidate spans in reading order, then samples
29
+ a subset deterministically with the provided RNG.
30
+ - Replacements can change length (e.g., m→rn), so edits are applied from left
31
+ to right using precomputed spans to avoid index drift.
32
+ """
33
+ if not text:
34
+ return text
35
+
36
+ # map: source -> list of possible replacements
37
+ # Keep patterns small and specific; longer patterns first avoid overmatching
38
+ confusion_table: list[tuple[str, list[str]]] = [
39
+ ("li", ["h"]),
40
+ ("h", ["li"]),
41
+ ("rn", ["m"]),
42
+ ("m", ["rn"]),
43
+ ("cl", ["d"]),
44
+ ("d", ["cl"]),
45
+ ("I", ["l"]),
46
+ ("l", ["I", "1"]),
47
+ ("1", ["l", "I"]),
48
+ ("0", ["O"]),
49
+ ("O", ["0"]),
50
+ ("B", ["8"]),
51
+ ("8", ["B"]),
52
+ ("S", ["5"]),
53
+ ("5", ["S"]),
54
+ ("Z", ["2"]),
55
+ ("2", ["Z"]),
56
+ ("G", ["6"]),
57
+ ("6", ["G"]),
58
+ ("", ['"']),
59
+ ("", ['"']),
60
+ ("", ["'"]),
61
+ ("’", ["'"]),
62
+ ("—", ["-"]), # em dash -> hyphen
63
+ ("–", ["-"]), # en dash -> hyphen
64
+ ]
65
+
66
+ # Build candidate matches as (start, end, choices)
67
+ candidates: list[tuple[int, int, list[str]]] = []
68
+
69
+ # To avoid double-counting overlapping patterns (like 'l' inside 'li'),
70
+ # we will scan longer patterns first by sorting by len(src) desc.
71
+ for src, choices in sorted(confusion_table, key=lambda p: -len(p[0])):
72
+ pattern = re.escape(src)
73
+ for m in re.finditer(pattern, text):
74
+ start, end = m.span()
75
+ candidates.append((start, end, choices))
76
+
77
+ if not candidates:
78
+ return text
79
+
80
+ # Decide how many to replace
81
+ k = int(len(candidates) * error_rate)
82
+ if k <= 0:
83
+ return text
84
+
85
+ # Shuffle deterministically and select non-overlapping k spans
86
+ rng.shuffle(candidates)
87
+ chosen: list[tuple[int, int, str]] = []
88
+ occupied: list[tuple[int, int]] = []
89
+
90
+ def overlaps(a: tuple[int, int], b: tuple[int, int]) -> bool:
91
+ return not (a[1] <= b[0] or b[1] <= a[0])
92
+
93
+ for start, end, choices in candidates:
94
+ if len(chosen) >= k:
95
+ break
96
+ span = (start, end)
97
+ if any(overlaps(span, occ) for occ in occupied):
98
+ continue
99
+ replacement = rng.choice(choices)
100
+ chosen.append((start, end, replacement))
101
+ occupied.append(span)
102
+
103
+ if not chosen:
104
+ return text
105
+
106
+ # Apply edits from left to right
107
+ chosen.sort(key=lambda t: t[0])
108
+ out_parts = []
109
+ cursor = 0
110
+ for start, end, rep in chosen:
111
+ if cursor < start:
112
+ out_parts.append(text[cursor:start])
113
+ out_parts.append(rep)
114
+ cursor = end
115
+ if cursor < len(text):
116
+ out_parts.append(text[cursor:])
117
+
118
+ return "".join(out_parts)
119
+
120
+
121
+ def ocr_artifacts(
122
+ text: str,
123
+ error_rate: float = 0.02,
124
+ seed: int | None = None,
125
+ rng: random.Random | None = None,
126
+ ) -> str:
127
+ """Introduce OCR-like artifacts into text.
128
+
129
+ Prefers the Rust implementation when available.
130
+ """
131
+
132
+ if not text:
133
+ return text
134
+
135
+ if rng is None:
136
+ rng = random.Random(seed)
137
+
138
+ if _ocr_artifacts_rust is not None:
139
+ return _ocr_artifacts_rust(text, error_rate, rng)
140
+
141
+ return _python_ocr_artifacts(text, error_rate=error_rate, rng=rng)
142
+
143
+
144
+ class Scannequin(Glitchling):
145
+ """Glitchling that simulates OCR artifacts using common confusions."""
146
+
147
+ def __init__(
148
+ self,
149
+ *,
150
+ error_rate: float = 0.02,
151
+ seed: int | None = None,
152
+ ) -> None:
153
+ super().__init__(
154
+ name="Scannequin",
155
+ corruption_function=ocr_artifacts,
156
+ scope=AttackWave.CHARACTER,
157
+ order=AttackOrder.LATE,
158
+ seed=seed,
159
+ error_rate=error_rate,
160
+ )
161
+
162
+
163
+ scannequin = Scannequin()
164
+
165
+
166
+ __all__ = ["Scannequin", "scannequin"]
@@ -0,0 +1,184 @@
1
+ from __future__ import annotations
2
+
3
+ import random
4
+ from typing import Optional
5
+
6
+ from .core import Glitchling, AttackWave, AttackOrder
7
+ from ..util import KEYNEIGHBORS
8
+
9
+ try:
10
+ from glitchlings._typogre_rust import fatfinger as _fatfinger_rust
11
+ except ImportError: # pragma: no cover - compiled extension not present
12
+ _fatfinger_rust = None
13
+
14
+
15
+ def _python_unichar(text: str, rng: random.Random) -> str:
16
+ """Collapse one random doubled letter (like 'ee' in 'seed') to a single occurrence."""
17
+ import re
18
+
19
+ matches = list(re.finditer(r"((.)\2)(?=\w)", text))
20
+ if not matches:
21
+ return text
22
+ start, end = rng.choice(matches).span(1)
23
+ return text[:start] + text[start] + text[end:]
24
+
25
+
26
+ def _python_skipped_space(text: str, rng: random.Random) -> str:
27
+ import re
28
+
29
+ space_positions = [m.start() for m in re.finditer(r" ", text)]
30
+ if not space_positions:
31
+ return text
32
+ idx = rng.choice(space_positions)
33
+ return text[:idx] + text[idx + 1 :]
34
+
35
+
36
+ def _python_random_space(text: str, rng: random.Random) -> str:
37
+ if len(text) < 2:
38
+ return text
39
+ idx = rng.randrange(1, len(text))
40
+ return text[:idx] + " " + text[idx:]
41
+
42
+
43
+ def _python_repeated_char(text: str, rng: random.Random) -> str:
44
+ positions = [i for i, c in enumerate(text) if not c.isspace()]
45
+ if not positions:
46
+ return text
47
+ i = rng.choice(positions)
48
+ return text[:i] + text[i] + text[i:]
49
+
50
+
51
+ def _python_is_word_char(c: str) -> bool:
52
+ return c.isalnum() or c == "_"
53
+
54
+
55
+ def _python_eligible_idx(s: str, i: int) -> bool:
56
+ if i < 0 or i >= len(s):
57
+ return False
58
+ if not _python_is_word_char(s[i]):
59
+ return False
60
+ left_ok = i > 0 and _python_is_word_char(s[i - 1])
61
+ right_ok = i + 1 < len(s) and _python_is_word_char(s[i + 1])
62
+ return left_ok and right_ok
63
+
64
+
65
+ def _python_draw_eligible_index(
66
+ rng: random.Random, s: str, max_tries: int = 16
67
+ ) -> Optional[int]:
68
+ n = len(s)
69
+ if n == 0:
70
+ return None
71
+ for _ in range(max_tries):
72
+ i = rng.randrange(n)
73
+ if _python_eligible_idx(s, i):
74
+ return i
75
+ start = rng.randrange(n)
76
+ i = start
77
+ while True:
78
+ if _python_eligible_idx(s, i):
79
+ return i
80
+ i += 1
81
+ if i == n:
82
+ i = 0
83
+ if i == start:
84
+ return None
85
+
86
+
87
+ def _fatfinger_python(
88
+ text: str,
89
+ *,
90
+ max_change_rate: float,
91
+ layout: dict[str, list[str]],
92
+ rng: random.Random,
93
+ ) -> str:
94
+ s = text
95
+ max_changes = max(1, int(len(s) * max_change_rate))
96
+
97
+ positional_actions = ("char_swap", "missing_char", "extra_char", "nearby_char")
98
+ global_actions = ("skipped_space", "random_space", "unichar", "repeated_char")
99
+ all_actions = positional_actions + global_actions
100
+
101
+ actions_drawn = [rng.choice(all_actions) for _ in range(max_changes)]
102
+
103
+ for action in actions_drawn:
104
+ if action in positional_actions:
105
+ idx = _python_draw_eligible_index(rng, s)
106
+ if idx is None:
107
+ continue
108
+ if action == "char_swap":
109
+ j = idx + 1
110
+ s = s[:idx] + s[j] + s[idx] + s[j + 1 :]
111
+ elif action == "missing_char":
112
+ if _python_eligible_idx(s, idx):
113
+ s = s[:idx] + s[idx + 1 :]
114
+ elif action == "extra_char":
115
+ ch = s[idx]
116
+ neighbors = layout.get(ch.lower(), []) or [ch]
117
+ ins = rng.choice(neighbors) or ch
118
+ s = s[:idx] + ins + s[idx:]
119
+ elif action == "nearby_char":
120
+ ch = s[idx]
121
+ neighbors = layout.get(ch.lower(), [])
122
+ if neighbors:
123
+ rep = rng.choice(neighbors)
124
+ s = s[:idx] + rep + s[idx + 1 :]
125
+ else:
126
+ if action == "skipped_space":
127
+ s = _python_skipped_space(s, rng)
128
+ elif action == "random_space":
129
+ s = _python_random_space(s, rng)
130
+ elif action == "unichar":
131
+ s = _python_unichar(s, rng)
132
+ elif action == "repeated_char":
133
+ s = _python_repeated_char(s, rng)
134
+ return s
135
+
136
+
137
+ def fatfinger(
138
+ text: str,
139
+ max_change_rate: float = 0.02,
140
+ keyboard: str = "CURATOR_QWERTY",
141
+ seed: int | None = None,
142
+ rng: random.Random | None = None,
143
+ ) -> str:
144
+ """Introduce character-level "fat finger" edits with a Rust fast path."""
145
+
146
+ if rng is None:
147
+ rng = random.Random(seed)
148
+ if not text:
149
+ return ""
150
+
151
+ layout = getattr(KEYNEIGHBORS, keyboard)
152
+
153
+ if _fatfinger_rust is not None:
154
+ return _fatfinger_rust(text, max_change_rate=max_change_rate, layout=layout, rng=rng)
155
+
156
+ return _fatfinger_python(text, max_change_rate=max_change_rate, layout=layout, rng=rng)
157
+
158
+
159
+ class Typogre(Glitchling):
160
+ """Glitchling that introduces deterministic keyboard-typing errors."""
161
+
162
+ def __init__(
163
+ self,
164
+ *,
165
+ max_change_rate: float = 0.02,
166
+ keyboard: str = "CURATOR_QWERTY",
167
+ seed: int | None = None,
168
+ ) -> None:
169
+ super().__init__(
170
+ name="Typogre",
171
+ corruption_function=fatfinger,
172
+ scope=AttackWave.CHARACTER,
173
+ order=AttackOrder.EARLY,
174
+ seed=seed,
175
+ max_change_rate=max_change_rate,
176
+ keyboard=keyboard,
177
+ )
178
+
179
+
180
+ typogre = Typogre()
181
+
182
+
183
+ __all__ = ["Typogre", "typogre"]
184
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: glitchlings
3
- Version: 0.1.1
3
+ Version: 0.1.3
4
4
  Summary: Monsters for your language games.
5
5
  Project-URL: Homepage, https://github.com/osoleve/glitchlings
6
6
  Project-URL: Repository, https://github.com/osoleve/glitchlings.git
@@ -209,7 +209,7 @@ License: Apache License
209
209
  See the License for the specific language governing permissions and
210
210
  limitations under the License.
211
211
  License-File: LICENSE
212
- Keywords: adversarial,data,evaluation,glitch,nlp,text
212
+ Keywords: adversarial augmentation,nlp,text,text augmentation
213
213
  Classifier: Development Status :: 3 - Alpha
214
214
  Classifier: Intended Audience :: Developers
215
215
  Classifier: License :: OSI Approved :: Apache Software License
@@ -223,10 +223,9 @@ Requires-Python: >=3.12
223
223
  Requires-Dist: confusable-homoglyphs>=3.3.1
224
224
  Requires-Dist: datasets>=4.0.0
225
225
  Requires-Dist: jellyfish>=1.2.0
226
+ Requires-Dist: nltk>=3.9.1
226
227
  Provides-Extra: dev
227
228
  Requires-Dist: pytest>=8.0.0; extra == 'dev'
228
- Provides-Extra: jargoyle
229
- Requires-Dist: nltk>=3.9.1; extra == 'jargoyle'
230
229
  Provides-Extra: prime
231
230
  Requires-Dist: verifiers>=0.1.3.post0; extra == 'prime'
232
231
  Description-Content-Type: text/markdown
@@ -270,10 +269,16 @@ pip install -U glitchlings
270
269
  ```
271
270
 
272
271
  ```python
273
- from glitchlings import summon, SAMPLE_TEXT
272
+ from glitchlings import Gaggle, SAMPLE_TEXT, Typogre, Mim1c, Reduple, Rushmore
274
273
 
275
- gaggle = summon(["reduple", "mim1c", "typogre", "rushmore"])
276
- gaggle(SAMPLE_TEXT)
274
+ gaggle = Gaggle([
275
+ Typogre(max_change_rate=0.03),
276
+ Mim1c(replacement_rate=0.02),
277
+ Reduple(seed=404),
278
+ Rushmore(max_deletion_rate=0.02),
279
+ ])
280
+
281
+ print(gaggle(SAMPLE_TEXT))
277
282
  ```
278
283
 
279
284
  > Onҽ m‎ھ‎rning, wһen Gregor Samƽa woke from trouble𝐝 𝑑reams, he found himself transformed in his bed into a horrible vermin‎٠‎ He l lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightlh domed and divided by arches ino stiff sections. The bedding was adly able to cover it and and seemed ready to slide off any moment. His many legxs, pitifully thin compared with the size of the the rest of him, waved about helplessly ashe looked looked.
@@ -286,14 +291,23 @@ Conversely, training a model to perform well in the presence of the types of per
286
291
 
287
292
  ## Your First Battle
288
293
 
289
- Summon your chosen `Glitchling` (_or a few, if ya nasty_) and call it on your text or slot it into `Dataset.map(...)`, supplying a seed if desired.
290
- Some `Glitchling`s may have additional keyword arguments but they will always be optional with what I decide are "reasonable defaults".
291
- Seed defaults to 151, obviously.
294
+ Summon your chosen `Glitchling` (_or a few, if ya nasty_) and call it on your text or slot it into `Dataset.map(...)`, supplying a seed if desired.
295
+ Glitchlings are standard Python classes, so you can instantiate them with whatever parameters fit your scenario:
296
+
297
+ ```python
298
+ from glitchlings import Gaggle, Typogre, Mim1c
299
+
300
+ custom_typogre = Typogre(max_change_rate=0.1)
301
+ selective_mimic = Mim1c(replacement_rate=0.05, classes=["LATIN", "GREEK"])
292
302
 
293
- Calling a `Glitchling` on a `str` transparently calls `.corrupt(str, ...) -> str`.
303
+ gaggle = Gaggle([custom_typogre, selective_mimic], seed=99)
304
+ print(gaggle("Summoned heroes do not fear the glitch."))
305
+ ```
306
+
307
+ Calling a `Glitchling` on a `str` transparently calls `.corrupt(str, ...) -> str`.
294
308
  This means that as long as your glitchlings get along logically, they play nicely with one another.
295
309
 
296
- When summoned as a `Gaggle`, the `Glitchling`s will automatically order themselves into attack waves, based on the scope of the change they make:
310
+ When summoned as or gathered into a `Gaggle`, the `Glitchling`s will automatically order themselves into attack waves, based on the scope of the change they make:
297
311
 
298
312
  1. Document
299
313
  2. Paragraph
@@ -303,6 +317,23 @@ When summoned as a `Gaggle`, the `Glitchling`s will automatically order themselv
303
317
 
304
318
  They're horrible little gremlins, but they're not _unreasonable_.
305
319
 
320
+ ## Command-Line Interface (CLI)
321
+
322
+ Keyboard warriors can challenge them directly via the `glitchlings` command:
323
+
324
+ ```bash
325
+ # Discover which glitchlings are currently on the loose.
326
+ glitchlings --list
327
+
328
+ # Run Typogre against the contents of a file and inspect the diff.
329
+ glitchlings -g typogre --file documents/report.txt --diff
330
+
331
+ # Pipe text straight into the CLI for an on-the-fly corruption.
332
+ echo "Beware LLM-written flavor-text" | glitchlings -g mim1c
333
+ ```
334
+
335
+ Use `--help` for a complete breakdown of available options.
336
+
306
337
  ## Starter 'lings
307
338
 
308
339
  For maintainability reasons, all `Glitchling` have consented to be given nicknames once they're in your care. See the [Monster Manual](MONSTER_MANUAL.md) for a complete bestiary.
@@ -311,13 +342,12 @@ For maintainability reasons, all `Glitchling` have consented to be given nicknam
311
342
 
312
343
  _What a nice word, would be a shame if something happened to it._
313
344
 
314
- > _**Fatfinger.**_ Typogre introduces character-level errors (duplicating, dropping, adding, or swapping) based on the layout of a (currently QWERTY) keyboard.
345
+ > _**Fatfinger.**_ Typogre introduces character-level errors (duplicating, dropping, adding, or swapping) based on the layout of a keyboard (QWERTY by default, with Dvorak and Colemak variants built-in).
315
346
  >
316
347
  > Args
317
348
  >
318
349
  > - `max_change_rate (float)`: The maximum number of edits to make as a percentage of the length (default: 0.02, 2%).
319
- > - `preserve_first_last (bool)`: Avoid editing the first and last character of a word (default: False).
320
- > - `keyboard (str)`: Keyboard layout key-neighbor map to use (default: "CURATOR_QWERTY").
350
+ > - `keyboard (str)`: Keyboard layout key-neighbor map to use (default: "CURATOR_QWERTY"; also accepts "QWERTY", "DVORAK", "COLEMAK", and "AZERTY").
321
351
  > - `seed (int)`: The random seed for reproducibility (default: 151).
322
352
 
323
353
  ### Mim1c
@@ -347,12 +377,12 @@ _How can a computer need reading glasses?_
347
377
 
348
378
  _Uh oh. The worst person you know just bought a thesaurus._
349
379
 
350
- > _**Sesquipedalianism.**_ Jargoyle, the insufferable `Glitchling`, replaces nouns with synonyms at random, without regard for connotational or denotational differences.
380
+ > _**Sesquipedalianism.**_ Jargoyle, the insufferable `Glitchling`, replaces words from selected parts of speech with synonyms at random, without regard for connotational or denotational differences.
351
381
  >
352
382
  > Args
353
383
  >
354
384
  > - `replacement_rate (float)`: The maximum proportion of words to replace (default: 0.1, 10%).
355
- > - `part_of_speech`: The WordNet part of speech to target (default: nouns). Accepts `wn.NOUN`, `wn.VERB`, `wn.ADJ`, or `wn.ADV`.
385
+ > - `part_of_speech`: The WordNet part(s) of speech to target (default: nouns). Accepts `wn.NOUN`, `wn.VERB`, `wn.ADJ`, `wn.ADV`, any iterable of those tags, or the string `"any"` to include them all.
356
386
  > - `seed (int)`: The random seed for reproducibility (default: 151).
357
387
 
358
388
  ### Reduple
@@ -406,19 +436,15 @@ Cave paintings and oral tradition contain many depictions of strange, otherworld
406
436
  These _Apocryphal `Glitchling`_ are said to possess unique abilities or behaviors.
407
437
  If you encounter one of these elusive beings, please document your findings and share them with _The Curator_.
408
438
 
409
- ### Reproducible Corruption
439
+ ### Ensuring Reproducible Corruption
410
440
 
411
- Every `Glitchling` owns its own independent `random.Random` instance. That means:
441
+ Every `Glitchling` should own its own independent `random.Random` instance. That means:
412
442
 
413
443
  - No `random.seed(...)` calls touch Python's global RNG.
414
444
  - Supplying a `seed` when you construct a `Glitchling` (or when you `summon(...)`) makes its behavior reproducible.
415
445
  - Re-running a `Gaggle` with the same master seed and the same input text (_and same external data!_) yields identical corruption output.
416
446
  - Corruption functions are written to accept an `rng` parameter internally so that all randomness is centralized and testable.
417
447
 
418
- #### Caveats
419
-
420
- - If you mutate a glitchling's parameters after you've used it (e.g. `typogre.set_param(...)`) the outputs may not be the same as before the change. So don't do that.
421
-
422
448
  #### At Wits' End?
423
449
 
424
450
  If you're trying to add a new glitchling and can't seem to make it deterministic, here are some places to look for determinism-breaking code:
@@ -0,0 +1,20 @@
1
+ glitchlings/__init__.py,sha256=yD0BaldUpcc_QlHVca1z1iwpOp8ne1H9YVQHc85d1So,580
2
+ glitchlings/__main__.py,sha256=EOiBgay0x6B9VlSDzSQvMuoq6bHJdSvFSgcAVGGKkd4,121
3
+ glitchlings/main.py,sha256=1pdVqytcrkh_GxOb0UPnZ0NzYKMoUnXmAWQB4cY5SEg,6199
4
+ glitchlings/dlc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ glitchlings/dlc/prime.py,sha256=WnLIon2WbdPGx_PK4vF6nOwJICXudZ6zKGR1hVES4Oc,1452
6
+ glitchlings/util/__init__.py,sha256=OCpWFtloU-sATBv2XpBGlkR7UFR6RemUtuCheuRA4yw,4018
7
+ glitchlings/zoo/__init__.py,sha256=hXQci2tysMoRHXiR6NDkWtGkKgcO0xxsMB91eiM_Llc,1344
8
+ glitchlings/zoo/core.py,sha256=5f9pWBZZSDADiUSs-xUahIqCEb9EUq-YcR_N5HzBAw0,8021
9
+ glitchlings/zoo/jargoyle.py,sha256=fvBP4ngqZ9BHLmpIjiLqGedriwAMuZc6ryqKT5GWfPw,6924
10
+ glitchlings/zoo/mim1c.py,sha256=X4jW4YrNqbyG0IEDx7wXUsPTwrUXGw2vXUO1kC2yY94,2471
11
+ glitchlings/zoo/redactyl.py,sha256=T0SAAbkva4A-tnQkXsUJ43N6Q33TsKElDvldUz69sMQ,3546
12
+ glitchlings/zoo/reduple.py,sha256=ML4TLQNfOkSaF7G9Sjy_i9ILB4FIl1I101CIppNGmOw,2773
13
+ glitchlings/zoo/rushmore.py,sha256=FH-pHnj1XKFzLRRQIHOojTkbkCpipNKnxSfxP9UGYZI,2528
14
+ glitchlings/zoo/scannequin.py,sha256=4QP_dpReUxno0mk5Hnn2uCfd3B6eDa7ZGePuW1dyqBU,4630
15
+ glitchlings/zoo/typogre.py,sha256=8aYULO4nvdyFDsknAfrlQYKeWz_Tgh5uXAkF3omHe0o,5358
16
+ glitchlings-0.1.3.dist-info/METADATA,sha256=fwqJfu1FrQwJfAnc5UQIaaN3L7er_FWek0cMzRFSVuw,24978
17
+ glitchlings-0.1.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
18
+ glitchlings-0.1.3.dist-info/entry_points.txt,sha256=kGOwuAsjFDLtztLisaXtOouq9wFVMOJg5FzaAkg-Hto,54
19
+ glitchlings-0.1.3.dist-info/licenses/LICENSE,sha256=YCvGip-LoaRyu6h0nPo71q6eHEkzUpsE11psDJOIRkw,11337
20
+ glitchlings-0.1.3.dist-info/RECORD,,