gfdl 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gfdl/__init__.py +36 -0
- gfdl/activations.py +194 -0
- gfdl/model.py +851 -0
- gfdl/tests/__init__.py +0 -0
- gfdl/tests/test_model.py +518 -0
- gfdl/tests/test_regression.py +142 -0
- gfdl/weights.py +378 -0
- gfdl-0.1.0.dist-info/METADATA +33 -0
- gfdl-0.1.0.dist-info/RECORD +12 -0
- gfdl-0.1.0.dist-info/WHEEL +5 -0
- gfdl-0.1.0.dist-info/licenses/COPYING +29 -0
- gfdl-0.1.0.dist-info/top_level.txt +1 -0
gfdl/weights.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Weight functions for Gradient Free Deep Learning estimators.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def zeros(d, h, **kwargs):
|
|
9
|
+
"""
|
|
10
|
+
The weight function setting all weights to zero.
|
|
11
|
+
|
|
12
|
+
This function is useful to test out the effect of
|
|
13
|
+
the data features in isolation.
|
|
14
|
+
|
|
15
|
+
Parameters
|
|
16
|
+
----------
|
|
17
|
+
d : int
|
|
18
|
+
Number of features in a sample or number of neurons in the previous
|
|
19
|
+
hidden layer.
|
|
20
|
+
|
|
21
|
+
h : int
|
|
22
|
+
Number of neurons in the current hidden layer.
|
|
23
|
+
|
|
24
|
+
Returns
|
|
25
|
+
-------
|
|
26
|
+
ndarray or scalar
|
|
27
|
+
All zeros.
|
|
28
|
+
|
|
29
|
+
Other Parameters
|
|
30
|
+
----------------
|
|
31
|
+
**kwargs : dict
|
|
32
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
33
|
+
but not relevant for this function.
|
|
34
|
+
"""
|
|
35
|
+
return np.zeros((h, d))
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def uniform(d, h, *, rng, **kwargs):
|
|
39
|
+
"""
|
|
40
|
+
The weight function returning samples drawn from uniform distribution.
|
|
41
|
+
|
|
42
|
+
Parameters
|
|
43
|
+
----------
|
|
44
|
+
d : int
|
|
45
|
+
Number of features in a sample or number of neurons in the previous
|
|
46
|
+
hidden layer.
|
|
47
|
+
|
|
48
|
+
h : int
|
|
49
|
+
Number of neurons in the current hidden layer.
|
|
50
|
+
|
|
51
|
+
rng : np.random.Generator
|
|
52
|
+
A NumPy random number generator instance.
|
|
53
|
+
|
|
54
|
+
Returns
|
|
55
|
+
-------
|
|
56
|
+
ndarray or scalar
|
|
57
|
+
Draw samples from the uniform distribution between ``[0, 1)``.
|
|
58
|
+
|
|
59
|
+
Other Parameters
|
|
60
|
+
----------------
|
|
61
|
+
**kwargs : dict
|
|
62
|
+
Other keyword arguments. Placeholder for exposing distribution
|
|
63
|
+
parameters later on.
|
|
64
|
+
"""
|
|
65
|
+
return rng.uniform(0, 1, (h, d))
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def range(d, h, **kwargs):
|
|
69
|
+
"""
|
|
70
|
+
The weight function setting weights to a normalized np.arange.
|
|
71
|
+
|
|
72
|
+
Parameters
|
|
73
|
+
----------
|
|
74
|
+
d : int
|
|
75
|
+
Number of features in a sample or number of neurons in the previous
|
|
76
|
+
hidden layer.
|
|
77
|
+
|
|
78
|
+
h : int
|
|
79
|
+
Number of neurons in the current hidden layer.
|
|
80
|
+
|
|
81
|
+
Returns
|
|
82
|
+
-------
|
|
83
|
+
ndarray or scalar
|
|
84
|
+
Set the weights to normalized np.arange over the range ``[0, d*h)``.
|
|
85
|
+
|
|
86
|
+
Other Parameters
|
|
87
|
+
----------------
|
|
88
|
+
**kwargs : dict
|
|
89
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
90
|
+
but not relevant for this function.
|
|
91
|
+
"""
|
|
92
|
+
s = np.arange(d * h)
|
|
93
|
+
s = np.subtract(s, np.mean(s))
|
|
94
|
+
s /= np.std(s)
|
|
95
|
+
s = np.nan_to_num(s)
|
|
96
|
+
return s.reshape(h, d)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def he_uniform(d, h, *, rng, **kwargs):
|
|
100
|
+
"""
|
|
101
|
+
The weight function returning samples drawn from He uniform distribution.
|
|
102
|
+
|
|
103
|
+
Parameters
|
|
104
|
+
----------
|
|
105
|
+
d : int
|
|
106
|
+
Number of features in a sample or number of neurons in the previous
|
|
107
|
+
hidden layer.
|
|
108
|
+
|
|
109
|
+
h : int
|
|
110
|
+
Number of neurons in the current hidden layer.
|
|
111
|
+
|
|
112
|
+
rng : np.random.Generator
|
|
113
|
+
A NumPy random number generator instance.
|
|
114
|
+
|
|
115
|
+
Returns
|
|
116
|
+
-------
|
|
117
|
+
ndarray or scalar
|
|
118
|
+
Draw samples from the He uniform distribution between
|
|
119
|
+
``[sqrt(6/h), sqrt(6/h))``.
|
|
120
|
+
|
|
121
|
+
Other Parameters
|
|
122
|
+
----------------
|
|
123
|
+
**kwargs : dict
|
|
124
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
125
|
+
but not relevant for this function.
|
|
126
|
+
|
|
127
|
+
Notes
|
|
128
|
+
-----
|
|
129
|
+
https://faroit.com/keras-docs/2.0.0/initializers/#he_uniform
|
|
130
|
+
"""
|
|
131
|
+
|
|
132
|
+
limit = np.sqrt(6 / h)
|
|
133
|
+
return rng.uniform(-limit, limit, (h, d))
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def lecun_uniform(d, h, *, rng, **kwargs):
|
|
137
|
+
"""
|
|
138
|
+
The weight function returning samples drawn from Lecun uniform distribution.
|
|
139
|
+
|
|
140
|
+
Parameters
|
|
141
|
+
----------
|
|
142
|
+
d : int
|
|
143
|
+
Number of features in a sample or number of neurons in the previous
|
|
144
|
+
hidden layer.
|
|
145
|
+
|
|
146
|
+
h : int
|
|
147
|
+
Number of neurons in the current hidden layer.
|
|
148
|
+
|
|
149
|
+
rng : np.random.Generator
|
|
150
|
+
A NumPy random number generator instance.
|
|
151
|
+
|
|
152
|
+
Returns
|
|
153
|
+
-------
|
|
154
|
+
ndarray or scalar
|
|
155
|
+
Draw samples from the Lecun uniform distribution between
|
|
156
|
+
``[sqrt(3/h), sqrt(3/h))``.
|
|
157
|
+
|
|
158
|
+
Other Parameters
|
|
159
|
+
----------------
|
|
160
|
+
**kwargs : dict
|
|
161
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
162
|
+
but not relevant for this function.
|
|
163
|
+
|
|
164
|
+
Notes
|
|
165
|
+
-----
|
|
166
|
+
https://faroit.com/keras-docs/2.0.0/initializers/#lecun_uniform
|
|
167
|
+
"""
|
|
168
|
+
|
|
169
|
+
limit = np.sqrt(3 / h)
|
|
170
|
+
return rng.uniform(-limit, limit, (h, d))
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def glorot_uniform(d, h, *, rng, **kwargs):
|
|
174
|
+
"""
|
|
175
|
+
The weight function returning samples drawn from Glorot uniform distribution.
|
|
176
|
+
|
|
177
|
+
Parameters
|
|
178
|
+
----------
|
|
179
|
+
d : int
|
|
180
|
+
Number of features in a sample or number of neurons in the previous
|
|
181
|
+
hidden layer.
|
|
182
|
+
|
|
183
|
+
h : int
|
|
184
|
+
Number of neurons in the current hidden layer.
|
|
185
|
+
|
|
186
|
+
rng : np.random.Generator
|
|
187
|
+
A NumPy random number generator instance.
|
|
188
|
+
|
|
189
|
+
Returns
|
|
190
|
+
-------
|
|
191
|
+
ndarray or scalar
|
|
192
|
+
Draw samples from the Glorot uniform distribution between
|
|
193
|
+
``[-sqrt(6/(d+h)), sqrt(6/(d+h)))``.
|
|
194
|
+
|
|
195
|
+
Other Parameters
|
|
196
|
+
----------------
|
|
197
|
+
**kwargs : dict
|
|
198
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
199
|
+
but not relevant for this function.
|
|
200
|
+
|
|
201
|
+
Notes
|
|
202
|
+
-----
|
|
203
|
+
https://faroit.com/keras-docs/2.0.0/initializers/#glorot_uniform
|
|
204
|
+
"""
|
|
205
|
+
|
|
206
|
+
fan_avg = 0.5 * (d + h)
|
|
207
|
+
limit = np.sqrt(3 / fan_avg)
|
|
208
|
+
return rng.uniform(-limit, limit, (h, d))
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
def normal(d, h, *, rng, **kwargs):
|
|
212
|
+
"""
|
|
213
|
+
The weight function returning samples drawn from normal distribution.
|
|
214
|
+
|
|
215
|
+
Parameters
|
|
216
|
+
----------
|
|
217
|
+
d : int
|
|
218
|
+
Number of features in a sample or number of neurons in the previous
|
|
219
|
+
hidden layer.
|
|
220
|
+
|
|
221
|
+
h : int
|
|
222
|
+
Number of neurons in the current hidden layer.
|
|
223
|
+
|
|
224
|
+
rng : np.random.Generator
|
|
225
|
+
A NumPy random number generator instance.
|
|
226
|
+
|
|
227
|
+
Returns
|
|
228
|
+
-------
|
|
229
|
+
ndarray or scalar
|
|
230
|
+
Draw samples from the normal distribution with
|
|
231
|
+
mean ``0`` and standard deviation ``1``.
|
|
232
|
+
|
|
233
|
+
Other Parameters
|
|
234
|
+
----------------
|
|
235
|
+
**kwargs : dict
|
|
236
|
+
Other keyword arguments. Placeholder for exposing distribution
|
|
237
|
+
parameters later on.
|
|
238
|
+
"""
|
|
239
|
+
return rng.normal(0, 1, (h, d))
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def he_normal(d, h, *, rng, **kwargs):
|
|
243
|
+
"""
|
|
244
|
+
The weight function returning samples drawn from He normal distribution.
|
|
245
|
+
|
|
246
|
+
Parameters
|
|
247
|
+
----------
|
|
248
|
+
d : int
|
|
249
|
+
Number of features in a sample or number of neurons in the previous
|
|
250
|
+
hidden layer.
|
|
251
|
+
|
|
252
|
+
h : int
|
|
253
|
+
Number of neurons in the current hidden layer.
|
|
254
|
+
|
|
255
|
+
rng : np.random.Generator
|
|
256
|
+
A NumPy random number generator instance.
|
|
257
|
+
|
|
258
|
+
Returns
|
|
259
|
+
-------
|
|
260
|
+
ndarray or scalar
|
|
261
|
+
Draw samples from the He normal distribution with
|
|
262
|
+
mean ``0`` and standard deviation ``sqrt(2/h)``.
|
|
263
|
+
|
|
264
|
+
Other Parameters
|
|
265
|
+
----------------
|
|
266
|
+
**kwargs : dict
|
|
267
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
268
|
+
but not relevant for this function.
|
|
269
|
+
|
|
270
|
+
Notes
|
|
271
|
+
-----
|
|
272
|
+
https://faroit.com/keras-docs/2.0.0/initializers/#he_normal
|
|
273
|
+
"""
|
|
274
|
+
|
|
275
|
+
var = np.sqrt(2 / h)
|
|
276
|
+
return rng.normal(0, var, (h, d))
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def lecun_normal(d, h, *, rng, **kwargs):
|
|
280
|
+
"""
|
|
281
|
+
The weight function returning samples drawn from Lecun normal distribution.
|
|
282
|
+
|
|
283
|
+
Parameters
|
|
284
|
+
----------
|
|
285
|
+
d : int
|
|
286
|
+
Number of features in a sample or number of neurons in the previous
|
|
287
|
+
hidden layer.
|
|
288
|
+
|
|
289
|
+
h : int
|
|
290
|
+
Number of neurons in the current hidden layer.
|
|
291
|
+
|
|
292
|
+
rng : np.random.Generator
|
|
293
|
+
A NumPy random number generator instance.
|
|
294
|
+
|
|
295
|
+
Returns
|
|
296
|
+
-------
|
|
297
|
+
ndarray or scalar
|
|
298
|
+
Draw samples from the Lecun normal distribution
|
|
299
|
+
with mean ``0`` and standard deviation ``sqrt(1/h)``.
|
|
300
|
+
|
|
301
|
+
Other Parameters
|
|
302
|
+
----------------
|
|
303
|
+
**kwargs : dict
|
|
304
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
305
|
+
but not relevant for this function.
|
|
306
|
+
|
|
307
|
+
Notes
|
|
308
|
+
-----
|
|
309
|
+
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/LecunNormal
|
|
310
|
+
"""
|
|
311
|
+
|
|
312
|
+
var = 1 / np.sqrt(h)
|
|
313
|
+
return rng.normal(0, var, (h, d))
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
def glorot_normal(d, h, *, rng, **kwargs):
|
|
317
|
+
"""
|
|
318
|
+
The weight function returning samples drawn from Glorot normal distribution.
|
|
319
|
+
|
|
320
|
+
Parameters
|
|
321
|
+
----------
|
|
322
|
+
d : int
|
|
323
|
+
Number of features in a sample or number of neurons in the previous
|
|
324
|
+
hidden layer.
|
|
325
|
+
|
|
326
|
+
h : int
|
|
327
|
+
Number of neurons in the current hidden layer.
|
|
328
|
+
|
|
329
|
+
rng : np.random.Generator
|
|
330
|
+
A NumPy random number generator instance.
|
|
331
|
+
|
|
332
|
+
Returns
|
|
333
|
+
-------
|
|
334
|
+
ndarray or scalar
|
|
335
|
+
Draw samples from the Glorot normal distribution with
|
|
336
|
+
mean ``0`` and standard deviation ``sqrt(2/(d+h))``.
|
|
337
|
+
|
|
338
|
+
Other Parameters
|
|
339
|
+
----------------
|
|
340
|
+
**kwargs : dict
|
|
341
|
+
Needed for keyword arguments and compatibility with other weight function apis
|
|
342
|
+
but not relevant for this function.
|
|
343
|
+
|
|
344
|
+
Notes
|
|
345
|
+
-----
|
|
346
|
+
https://faroit.com/keras-docs/2.0.0/initializers/#glorot_normal
|
|
347
|
+
"""
|
|
348
|
+
|
|
349
|
+
fan_avg = 0.5 * (d + h)
|
|
350
|
+
var = np.sqrt(1 / fan_avg)
|
|
351
|
+
return rng.normal(0, var, (h, d))
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
WEIGHTS = {
|
|
355
|
+
"zeros": zeros,
|
|
356
|
+
"uniform": uniform,
|
|
357
|
+
"range": range,
|
|
358
|
+
"normal": normal,
|
|
359
|
+
"he_uniform": he_uniform,
|
|
360
|
+
"lecun_uniform": lecun_uniform,
|
|
361
|
+
"glorot_uniform": glorot_uniform,
|
|
362
|
+
"he_normal": he_normal,
|
|
363
|
+
"lecun_normal": lecun_normal,
|
|
364
|
+
"glorot_normal": glorot_normal,
|
|
365
|
+
}
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def resolve_weight(weight):
|
|
369
|
+
# numpydoc ignore=GL08
|
|
370
|
+
name = weight.strip().lower()
|
|
371
|
+
try:
|
|
372
|
+
w = WEIGHTS[name]
|
|
373
|
+
except KeyError as e:
|
|
374
|
+
allowed = sorted(WEIGHTS.keys())
|
|
375
|
+
raise ValueError(
|
|
376
|
+
f"weight scheme='{weight}' is not supported; choose from {allowed}"
|
|
377
|
+
) from e
|
|
378
|
+
return w
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: gfdl
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Gradient Free Deep Learning (GFDL) networks including single and multi layer random vector functional link (RVFL) networks and extreme learning machines (ELMs)
|
|
5
|
+
Project-URL: source, https://github.com/lanl/GFDL
|
|
6
|
+
Project-URL: download, https://github.com/lanl/GFDL/releases
|
|
7
|
+
Project-URL: tracker, https://github.com/lanl/GFDL/issues
|
|
8
|
+
Classifier: Development Status :: 4 - Beta
|
|
9
|
+
Classifier: Intended Audience :: Science/Research
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: Programming Language :: Python
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
16
|
+
Classifier: Topic :: Software Development :: Libraries
|
|
17
|
+
Classifier: Topic :: Scientific/Engineering
|
|
18
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
19
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
20
|
+
Classifier: Operating System :: POSIX
|
|
21
|
+
Classifier: Operating System :: Unix
|
|
22
|
+
Classifier: Operating System :: MacOS
|
|
23
|
+
Requires-Python: >=3.12
|
|
24
|
+
License-File: COPYING
|
|
25
|
+
Requires-Dist: numpy<2.7,>=2.0.0
|
|
26
|
+
Requires-Dist: scikit-learn<1.11,>=1.5.0
|
|
27
|
+
Requires-Dist: scipy<1.20,>=1.13.0
|
|
28
|
+
Requires-Dist: packaging<27.0,>=24.0
|
|
29
|
+
Provides-Extra: test
|
|
30
|
+
Requires-Dist: ucimlrepo; extra == "test"
|
|
31
|
+
Requires-Dist: pytest; extra == "test"
|
|
32
|
+
Requires-Dist: pytest-cov; extra == "test"
|
|
33
|
+
Dynamic: license-file
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
gfdl/__init__.py,sha256=RZGxuS1S6CtWVb78TfscnwBXPNGTdT55DHVFiO5plFc,1156
|
|
2
|
+
gfdl/activations.py,sha256=V5_49AEV8rhGHjk56Lml-bUqiN0_kKqWs3Qsl_UJscw,3483
|
|
3
|
+
gfdl/model.py,sha256=d-rhxJi454yqW0Cz4bxBrjxX-F6XTfkwRo_mYReaTzg,28758
|
|
4
|
+
gfdl/weights.py,sha256=PFcO2C-IppP3b_EvukwPIWwqyJROpWje-JsGz9HIbe8,9397
|
|
5
|
+
gfdl/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
+
gfdl/tests/test_model.py,sha256=FtUAVHlDAXB6kidhiVTPqSvkclRwlhpkHdEpwhK_glU,20304
|
|
7
|
+
gfdl/tests/test_regression.py,sha256=00FSkqw1WFVhoi3APtypUaNYmKZjgqvpwl3rpHsP6J4,6465
|
|
8
|
+
gfdl-0.1.0.dist-info/licenses/COPYING,sha256=SyvHPYvDWhkWHrNALv0ppjB9yJhLi9mMRdemPF9wYPA,1535
|
|
9
|
+
gfdl-0.1.0.dist-info/METADATA,sha256=SiATGBdeGXFbFmtb5uDUqA08LCPvo3sypnLn5FPnjLw,1438
|
|
10
|
+
gfdl-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
11
|
+
gfdl-0.1.0.dist-info/top_level.txt,sha256=Sdh-XBQCopJ8FC1mqqCi5dxuzGibAGEPUCTtzltZ84c,5
|
|
12
|
+
gfdl-0.1.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
BSD 3-Clause License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025-2026 Los Alamos National Laboratory.
|
|
4
|
+
All rights reserved.
|
|
5
|
+
|
|
6
|
+
Redistribution and use in source and binary forms, with or without
|
|
7
|
+
modification, are permitted provided that the following conditions are met:
|
|
8
|
+
|
|
9
|
+
* Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
list of conditions and the following disclaimer.
|
|
11
|
+
|
|
12
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
and/or other materials provided with the distribution.
|
|
15
|
+
|
|
16
|
+
* Neither the name of the copyright holder nor the names of its
|
|
17
|
+
contributors may be used to endorse or promote products derived from
|
|
18
|
+
this software without specific prior written permission.
|
|
19
|
+
|
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
gfdl
|