geospacelab 0.10.1__py3-none-any.whl → 0.10.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
geospacelab/__init__.py CHANGED
@@ -6,7 +6,7 @@ __author__ = "Lei Cai"
6
6
  __copyright__ = "Copyright 2021, GeospaceLAB"
7
7
  __credits__ = ["Lei Cai"]
8
8
  __license__ = "BSD-3-Clause License"
9
- __version__ = "0.10.1"
9
+ __version__ = "0.10.2"
10
10
  __maintainer__ = "Lei Cai"
11
11
  __email__ = "lei.cai@oulu.fi"
12
12
  __status__ = "Developing"
@@ -133,13 +133,14 @@ class Loader:
133
133
  print("Note: the number of range gates doesn't match nrec!")
134
134
  var = var.reshape(num_row, num_col)
135
135
  if self.gate_num is None:
136
- self.gate_num = num_col
136
+ num_gates=self.gate_num = num_col
137
137
  else:
138
- var_array = np.empty((num_row, num_gates))
139
- var_array[::] = np.nan
140
- for i in range(num_row):
141
- var_array[i, 0:num_col] = var[i, :]
142
- var = var_array
138
+ num_gates = self.gate_num
139
+ var_array = np.empty((num_row, num_gates))
140
+ var_array[::] = np.nan
141
+ for i in range(num_row):
142
+ var_array[i, 0:num_col] = var[i, :]
143
+ var = var_array
143
144
  elif nrec_group == 'par1d':
144
145
  if self.gate_num is None:
145
146
  self.gate_num = num_gates = int(np.max(nrec))
@@ -46,7 +46,7 @@ default_variable_names = [
46
46
  'DATETIME', 'AZ', 'EL', 'PULSE_LENGTH',
47
47
  'P_Tx', 'n_e', 'n_e_err', 'T_i', 'T_i_err', 'T_e', 'T_e_err',
48
48
  'v_i_los', 'v_i_los_err', 'comp_mix', 'comp_mix_err',
49
- 'HEIGHT', 'RANGE', 'CGM_LAT', 'CGM_LON'
49
+ 'HEIGHT', 'RANGE', 'CGM_LAT', 'CGM_LON', 'BEAM_ID', 'CHISQ'
50
50
  ]
51
51
 
52
52
  # default_data_search_recursive = True
@@ -55,7 +55,7 @@ default_attrs_required = []
55
55
 
56
56
  pulse_code_dict = {
57
57
  'alternating code': 'AC',
58
- 'long pulse': 'PL',
58
+ 'long pulse': 'LP',
59
59
  }
60
60
 
61
61
 
@@ -138,8 +138,8 @@ class Dataset(datahub.DatasetSourced):
138
138
  self.beam_az = load_obj.beam_az
139
139
  self.beam_el = load_obj.beam_el
140
140
 
141
- if self.add_APEX or self.add_AACGM:
142
- self.calc_lat_lon()
141
+ # if self.add_APEX or self.add_AACGM:
142
+ self.calc_lat_lon()
143
143
 
144
144
  if self['HEIGHT'].value is None:
145
145
  self['HEIGHT'] = self['GEO_ALT']
@@ -353,7 +353,7 @@ class Dataset(datahub.DatasetSourced):
353
353
  pulse_code=self.pulse_code,
354
354
  dry_run=dry_run,
355
355
  data_file_root_dir=self.data_root_dir,
356
- include_exp_ids=self.exp_ids,
356
+ include_exp_ids=self.experiment_ids,
357
357
  include_exp_name_patterns=include_exp_name_patterns)
358
358
  return download_obj.data_file_paths
359
359
 
@@ -15,7 +15,7 @@ EXCLUDE_FILE_TYPE_PATTERNS = [['from power'], ['velocity'], ['uncorrected']]
15
15
 
16
16
  pulse_code_dict = {
17
17
  'alternating code': 'AC',
18
- 'long pulse': 'PL',
18
+ 'long pulse': 'LP',
19
19
  }
20
20
 
21
21
 
@@ -37,6 +37,8 @@ var_name_dict = {
37
37
  'CGM_LAT': 'cgm_lat',
38
38
  'CGM_LON': 'cgm_long',
39
39
  'HEIGHT': 'gdalt',
40
+ 'BEAM_ID': 'beamid',
41
+ 'CHISQ': 'chisq',
40
42
  }
41
43
 
42
44
 
@@ -205,8 +205,8 @@ class Dataset(datahub.DatasetSourced):
205
205
  sin_glon_1 = np.sin(glon_1 * factor)
206
206
  sin_glon_2 = np.sin(glon_2 * factor)
207
207
  cos_glon_2 = np.cos(glon_2 * factor)
208
- itpf_sin = interp1d(sectime_2, sin_glon_2, kind='cubic', bounds_error=False, fill_value='extrapolate')
209
- itpf_cos = interp1d(sectime_2, cos_glon_2, kind='cubic', bounds_error=False, fill_value='extrapolate')
208
+ itpf_sin = interp1d(sectime_2, sin_glon_2, kind='linear', bounds_error=False, fill_value='extrapolate')
209
+ itpf_cos = interp1d(sectime_2, cos_glon_2, kind='linear', bounds_error=False, fill_value='extrapolate')
210
210
  sin_glon_2_i = itpf_sin(sectime_1)
211
211
  sin_glon_2_i = np.where(sin_glon_2_i > 1., 1., sin_glon_2_i)
212
212
  sin_glon_2_i = np.where(sin_glon_2_i < -1., -1., sin_glon_2_i)
@@ -177,8 +177,8 @@ class Dataset(datahub.DatasetSourced):
177
177
  sin_glon_1 = np.sin(glon_1 * factor)
178
178
  sin_glon_2 = np.sin(glon_2 * factor)
179
179
  cos_glon_2 = np.cos(glon_2 * factor)
180
- itpf_sin = interp1d(sectime_2, sin_glon_2, kind='cubic', bounds_error=False, fill_value='extrapolate')
181
- itpf_cos = interp1d(sectime_2, cos_glon_2, kind='cubic', bounds_error=False, fill_value='extrapolate')
180
+ itpf_sin = interp1d(sectime_2, sin_glon_2, kind='linear', bounds_error=False, fill_value='extrapolate')
181
+ itpf_cos = interp1d(sectime_2, cos_glon_2, kind='linear', bounds_error=False, fill_value='extrapolate')
182
182
  sin_glon_2_i = itpf_sin(sectime_1)
183
183
  cos_glon_2_i = itpf_cos(sectime_1)
184
184
  rad = np.sign(sin_glon_2_i) * (np.pi / 2 - np.arcsin(cos_glon_2_i))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: geospacelab
3
- Version: 0.10.1
3
+ Version: 0.10.2
4
4
  Summary: Collect, manage, and visualize geospace data.
5
5
  Home-page: https://github.com/JouleCai/geospacelab
6
6
  Author: Lei Cai
@@ -378,14 +378,9 @@ Output:
378
378
  From then on, the data source has been switched from JHUAPL to CDAWeb.
379
379
 
380
380
  ```python
381
- import datetime
382
- import matplotlib.pyplot as plt
383
-
384
- import geospacelab.visualization.mpl.geomap.geodashboards as geomap
385
-
386
381
  dt_fr = datetime.datetime(2015, 9, 8, 8)
387
382
  dt_to = datetime.datetime(2015, 9, 8, 23, 59)
388
- time1 = datetime.datetime(2015, 9, 8, 20, 21)
383
+ time_c = datetime.datetime(2015, 9, 8, 20, 21)
389
384
  pole = 'N'
390
385
  sat_id = 'f16'
391
386
  band = 'LBHS'
@@ -396,49 +391,51 @@ dashboard = geomap.GeoDashboard(dt_fr=dt_fr, dt_to=dt_to, figure_config={'figsiz
396
391
  # If the orbit_id is specified, only one file will be downloaded. This option saves the downloading time.
397
392
  # dashboard.dock(datasource_contents=['jhuapl', 'dmsp', 'ssusi', 'edraur'], pole='N', sat_id='f17', orbit_id='46863')
398
393
  # If not specified, the data during the whole day will be downloaded.
399
- dashboard.dock(
400
- datasource_contents=dashboard.dock(datasource_contents=['cdaweb', 'dmsp', 'ssusi', 'edr_aur'],
401
- pole=pole, sat_id=sat_id, orbit_id=None
402
- )
394
+ ds_ssusi = dashboard.dock(datasource_contents=['cdaweb', 'dmsp', 'ssusi', 'edr_aur'], pole=pole, sat_id=sat_id, orbit_id=None)
403
395
  ds_s1 = dashboard.dock(
404
396
  datasource_contents=['madrigal', 'satellites', 'dmsp', 's1'],
405
- dt_fr=time1 - datetime.timedelta(minutes=45),
406
- dt_to=time1 + datetime.timedelta(minutes=45),
407
- sat_id=sat_id
408
- )
397
+ dt_fr=time_c - datetime.timedelta(minutes=45),
398
+ dt_to=time_c + datetime.timedelta(minutes=45),
399
+ sat_id=sat_id, replace_orbit=True)
409
400
 
410
401
  dashboard.set_layout(1, 1)
411
402
 
412
403
  # Get the variables: LBHS emission intensiy, corresponding times and locations
413
- lbhs = dashboard.assign_variable('GRID_AUR_' + band, dataset_index=0)
414
- dts = dashboard.assign_variable('DATETIME', dataset_index=0).value.flatten()
415
- mlat = dashboard.assign_variable('GRID_MLAT', dataset_index=0).value
416
- mlon = dashboard.assign_variable('GRID_MLON', dataset_index=0).value
417
- mlt = dashboard.assign_variable(('GRID_MLT'), dataset_index=0).value
404
+ lbhs = ds_ssusi['GRID_AUR_' + band]
405
+ dts = ds_ssusi['DATETIME'].flatten()
406
+ mlat = ds_ssusi['GRID_MLAT']
407
+ mlon = ds_ssusi['GRID_MLON']
408
+ mlt = ds_ssusi['GRID_MLT']
418
409
 
419
410
  # Search the index for the time to plot, used as an input to the following polar map
420
- ind_t = dashboard.datasets[0].get_time_ind(ut=time1)
411
+ ind_t = dashboard.datasets[0].get_time_ind(ut=time_c)
412
+ if (dts[ind_t] - time_c).total_seconds()/60 > 60: # in minutes
413
+ raise ValueError("The time does not match any SSUSI data!")
421
414
  lbhs_ = lbhs.value[ind_t]
422
- mlat_ = mlat[ind_t]
423
- mlon_ = mlon[ind_t]
424
- mlt_ = mlt[ind_t]
415
+ mlat_ = mlat.value[ind_t]
416
+ mlon_ = mlon.value[ind_t]
417
+ mlt_ = mlt.value[ind_t]
425
418
  # Add a polar map panel to the dashboard. Currently the style is the fixed MLT at mlt_c=0. See the keywords below:
426
- panel1 = dashboard.add_polar_map(row_ind=0, col_ind=0, style='mlt-fixed', cs='AACGM', mlt_c=0., pole=pole, ut=time1, boundary_lat=65., mirror_south=True)
419
+ panel = dashboard.add_polar_map(
420
+ row_ind=0, col_ind=0, style='mlt-fixed', cs='AACGM',
421
+ mlt_c=0., pole=pole, ut=time_c, boundary_lat=55., mirror_south=True
422
+ )
427
423
 
428
424
  # Some settings for plotting.
429
425
  pcolormesh_config = lbhs.visual.plot_config.pcolormesh
430
426
  # Overlay the SSUSI image in the map.
431
- ipm = panel1.overlay_pcolormesh(data=lbhs_, coords={'lat': mlat_, 'lon': mlon_, 'mlt': mlt_}, cs='AACGM',
432
- regridding=True, **pcolormesh_config)
427
+ ipc = panel.overlay_pcolormesh(
428
+ data=lbhs_, coords={'lat': mlat_, 'lon': mlon_, 'mlt': mlt_}, cs='AACGM',
429
+ regridding=False, **pcolormesh_config)
433
430
  # Add a color bar
434
- panel1.add_colorbar(ipm, c_label=band + " (R)", c_scale=pcolormesh_config['c_scale'], left=1.1, bottom=0.1,
431
+ panel.add_colorbar(ipc, c_label=band + " (R)", c_scale=pcolormesh_config['c_scale'], left=1.1, bottom=0.1,
435
432
  width=0.05, height=0.7)
436
433
 
437
434
  # Overlay the gridlines
438
- panel1.overlay_gridlines(lat_res=5, lon_label_separator=5)
435
+ panel.overlay_gridlines(lat_res=5, lon_label_separator=5)
439
436
 
440
437
  # Overlay the coastlines in the AACGM coordinate
441
- panel1.overlay_coastlines()
438
+ panel.overlay_coastlines()
442
439
 
443
440
  # Overlay cross-track velocity along satellite trajectory
444
441
  sc_dt = ds_s1['SC_DATETIME'].value.flatten()
@@ -448,14 +445,22 @@ sc_alt = ds_s1['SC_GEO_ALT'].value.flatten()
448
445
  sc_coords = {'lat': sc_lat, 'lon': sc_lon, 'height': sc_alt}
449
446
 
450
447
  v_H = ds_s1['v_i_H'].value.flatten()
451
- panel1.overlay_cross_track_vector(vector=v_H, unit_vector=1000, alpha=0.5, color='r', sc_coords=sc_coords, sc_ut=sc_dt, cs='GEOC')
448
+ panel.overlay_cross_track_vector(
449
+ vector=v_H, unit_vector=1000, vector_unit='m/s', alpha=0.3, color='red',
450
+ sc_coords=sc_coords, sc_ut=sc_dt, cs='GEO',
451
+ )
452
452
  # Overlay the satellite trajectory with ticks
453
- panel1.overlay_sc_trajectory(sc_ut=sc_dt, sc_coords=sc_coords, cs='GEOC')
453
+ panel.overlay_sc_trajectory(sc_ut=sc_dt, sc_coords=sc_coords, cs='GEO')
454
+
455
+ # Overlay sites
456
+ panel.overlay_sites(
457
+ site_ids=['TRO', 'ESR'], coords={'lat': [69.58, 78.15], 'lon': [19.23, 16.02], 'height': 0.},
458
+ cs='GEO', marker='^', markersize=2)
454
459
 
455
460
  # Add the title and save the figure
456
461
  polestr = 'North' if pole == 'N' else 'South'
457
- panel1.add_title(title='DMSP/SSUSI, ' + band + ', ' + sat_id.upper() + ', ' + polestr + ', ' + time1.strftime('%Y-%m-%d %H%M UT'))
458
- plt.savefig('DMSP_SSUSI_' + time1.strftime('%Y%m%d-%H%M') + '_' + band + '_' + sat_id.upper() + '_' + pole, dpi=300)
462
+ panel.add_title(title='DMSP/SSUSI, ' + band + ', ' + sat_id.upper() + ', ' + polestr + ', ' + time_c.strftime('%Y-%m-%d %H%M UT'))
463
+ plt.savefig('DMSP_SSUSI_' + time_c.strftime('%Y%m%d-%H%M') + '_' + band + '_' + sat_id.upper() + '_' + pole, dpi=300)
459
464
 
460
465
  # show the figure
461
466
  plt.show()
@@ -1,4 +1,4 @@
1
- geospacelab/__init__.py,sha256=WJ8ufBQkkLmA82dBWYhytuVhAn5QyilSUAqrx2Jm2p8,801
1
+ geospacelab/__init__.py,sha256=ERG2N0CIY6iNLEbC9RPSn3k4KdxrXlMj4BI9U9Tzsg0,801
2
2
  geospacelab/config/__init__.py,sha256=D5A0ORTubSaLEXGqPmg-mLH_KNqINicOeeNFqkGpXrk,641
3
3
  geospacelab/config/_preferences.py,sha256=DakPjKJQ0VRe2Mgc8bakw585u4N8qVqYYvqnoLdyvH4,4726
4
4
  geospacelab/coords/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -156,7 +156,7 @@ geospacelab/datahub/sources/madrigal/gnss/tecmap/variable_config.py,sha256=d-1Xe
156
156
  geospacelab/datahub/sources/madrigal/isr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
157
157
  geospacelab/datahub/sources/madrigal/isr/eiscat/__init__.py,sha256=sxHcvgMy_Kjnl9TppU-jVw7yPoPtUZwxsieuCOBr2aY,20413
158
158
  geospacelab/datahub/sources/madrigal/isr/eiscat/downloader.py,sha256=d-oUtCh8NHbkmEKfbe1oGb0-DzZsQH0CQXAedncMfTU,26144
159
- geospacelab/datahub/sources/madrigal/isr/eiscat/loader.py,sha256=GHcEDY7YuEb0LfofdEk6_WhQ7qdpV_DvsTIk-6LZyTk,17909
159
+ geospacelab/datahub/sources/madrigal/isr/eiscat/loader.py,sha256=vxip8UcPqA0S4H3aFSVoT8BgMi6J9Q3noaMIjbIuNy4,17953
160
160
  geospacelab/datahub/sources/madrigal/isr/eiscat/utilities.py,sha256=TImaJSVDyqvXezSCTAzMgAQ7CmrgD5YjyUiRl-K_dWk,2514
161
161
  geospacelab/datahub/sources/madrigal/isr/eiscat/variable_config.py,sha256=Lny8eVbtE7wxcYtRcfUrVDY6vkzfxD5hb29mc3ytENI,9153
162
162
  geospacelab/datahub/sources/madrigal/isr/eiscat/examples/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -174,9 +174,9 @@ geospacelab/datahub/sources/madrigal/isr/millstonehill/vi/loader.py,sha256=kgV5c
174
174
  geospacelab/datahub/sources/madrigal/isr/millstonehill/vi/variable_config.py,sha256=tz650AGv4XedOEnB-DoN6VgIk6SNkEjnBOweACuXbwc,8951
175
175
  geospacelab/datahub/sources/madrigal/isr/pfisr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
176
176
  geospacelab/datahub/sources/madrigal/isr/pfisr/downloader.py,sha256=uCrJR-MJ_LJ2JyQ971VkiN56_Kl2C9y8RhdvG9B0vX8,6521
177
- geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/__init__.py,sha256=v5Wx2NfFX3GsOfNNJ26sRjDBT-8T_gG1Sne_NR3hXiE,16177
178
- geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/downloader.py,sha256=oO8QpDGw7XFSbJjtNtBES5vA4g1HGFUMkYteX6h17xE,2763
179
- geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/loader.py,sha256=jN95YU11l0PuJZ7k08lh5-4h2-Mhn_p-2VgCghnd_mQ,8495
177
+ geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/__init__.py,sha256=twxLco9U0-qZrZspe2LBokIkmG-8bHDlu_mZVMrPHY0,16202
178
+ geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/downloader.py,sha256=-2y1BRdQOmNjnXoWHIHh1PCRbeuKZh0Bn3LIMYw0yV4,2763
179
+ geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/loader.py,sha256=JsZwNSsEly__FxT1Px57Te5pKbteymE3j7B0oLBgKWc,8542
180
180
  geospacelab/datahub/sources/madrigal/isr/pfisr/fitted/variable_config.py,sha256=D4xdYFk--ll0ATqNtjoX9pwrsCryVV3TuPSbGR92drI,8167
181
181
  geospacelab/datahub/sources/madrigal/isr/pfisr/vi/__init__.py,sha256=rHx79V0gFwC4ZsSt79QkKaCE6XtdWWoQUaFaXVq49LY,12719
182
182
  geospacelab/datahub/sources/madrigal/isr/pfisr/vi/downloader.py,sha256=az1OxIa6-F4pvTAJGTqjuc6rfza1e3qyAiRf6sEje7c,2413
@@ -188,10 +188,10 @@ geospacelab/datahub/sources/madrigal/satellites/dmsp/downloader.py,sha256=jnA8Xp
188
188
  geospacelab/datahub/sources/madrigal/satellites/dmsp/e/__init__.py,sha256=2LmuPOzOH9lhMqXkrb4gj9Wxsmdq2mXSA0phTlrK0eU,10309
189
189
  geospacelab/datahub/sources/madrigal/satellites/dmsp/e/loader.py,sha256=kZ9AeI0LsNWS26Kwfp6azvDl2IutcWKBPDd6o0tKASc,4902
190
190
  geospacelab/datahub/sources/madrigal/satellites/dmsp/e/variable_config.py,sha256=exp1bYVmDBVlIbraeNgAuVEnjxg5IC2ED1cZIEiPj1U,10280
191
- geospacelab/datahub/sources/madrigal/satellites/dmsp/s1/__init__.py,sha256=FcSeOfcymCcqDukxSvHTEpdxa-r2ZpZXC-dbb0t7M7I,11534
191
+ geospacelab/datahub/sources/madrigal/satellites/dmsp/s1/__init__.py,sha256=u7Z0SFUaLNzPV7aIqcaEUTyIIYPHHJF3rXMWCDYbSUY,11536
192
192
  geospacelab/datahub/sources/madrigal/satellites/dmsp/s1/loader.py,sha256=o5zEkosq7LyNlBIjlefKUpYpePCDbyL_yd3HrrUrk5Q,3360
193
193
  geospacelab/datahub/sources/madrigal/satellites/dmsp/s1/variable_config.py,sha256=Amp90wHogRQOESLH2b4D0jfeBozIKvvOnwx-_waU0us,6745
194
- geospacelab/datahub/sources/madrigal/satellites/dmsp/s4/__init__.py,sha256=YIVUE3rrOs67KCBUTfExoHz-EoVx2OoJqEfPGClp8Tk,10196
194
+ geospacelab/datahub/sources/madrigal/satellites/dmsp/s4/__init__.py,sha256=0Qkn18pmVBmc0y0Kk6TRJBynoU_ysYMsXLzAAXB37M8,10198
195
195
  geospacelab/datahub/sources/madrigal/satellites/dmsp/s4/loader.py,sha256=LL8IAMwmgQX06lgVECh6Rx6TGXEoHmAkFDmouJ6kQOo,3229
196
196
  geospacelab/datahub/sources/madrigal/satellites/dmsp/s4/variable_config.py,sha256=4DhvQxFonoYiU_3f9ObE2OkJOXDkHfw0RUMHa3FLTv4,4054
197
197
  geospacelab/datahub/sources/ncei/__init__.py,sha256=MHpNJ-PJBjywheG5CZDgj89fsxVG5qSxi_vkTsxibd8,658
@@ -371,7 +371,7 @@ geospacelab/wrapper/geopack/geopack/t89.py,sha256=zDVNPrmtK1NnNHgohQEPqOOJDsm2Z-
371
371
  geospacelab/wrapper/geopack/geopack/t96.py,sha256=ktcoo1R7Z3NtkWHENuseu48ub4-JfQGqFV0ZOtd0zH8,65292
372
372
  geospacelab/wrapper/geopack/geopack/test_geopack1.md,sha256=dMUY0O1BgZsKpmJ6BLSQ80B6p6DZcB7OceFeyPOlFK0,15324
373
373
  geospacelab/wrapper/geopack/geopack/test_geopack1.py,sha256=qjLz6O3BAk3H58IpmxXyftwZTkh3vPGp49C-al4hjf0,6669
374
- geospacelab-0.10.1.dist-info/licenses/LICENSE,sha256=2yRlwLt4o5Z6OZAGcyvBj-zfFX1Uw7E6CzqODg7khqs,1515
374
+ geospacelab-0.10.2.dist-info/licenses/LICENSE,sha256=2yRlwLt4o5Z6OZAGcyvBj-zfFX1Uw7E6CzqODg7khqs,1515
375
375
  test/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
376
376
  test/test_ampere.py,sha256=0-HZURubpv1mBK3bJ_qTqx39L1jezgRoU5neXMPYgZQ,2968
377
377
  test/test_dmsp_s1.py,sha256=5m_7mjdDGja8ovshNPV3LKW_6q6mIwT9XKqoyRiH79A,3588
@@ -381,7 +381,7 @@ test/test_omni.py,sha256=Zk1LZozPiY5V0aSRmK6GTQuB01hHn_j2j3Brm6Ea_po,1632
381
381
  test/test_superdarn.py,sha256=uP55muvXryPzNGHinWkiGv2PxvRs4f9M9h1WIBEBW7k,2846
382
382
  test/test_swarm.py,sha256=PDDE9nUshhQpXZbV_ZwcsjbMhI73fRaojTZv9rtRzZE,15568
383
383
  test/test_swarm_new.py,sha256=mzhMAx-M9W3Ue5noTyfBx4c3Vtc3b_ZUEvGgL9v8UE4,853
384
- geospacelab-0.10.1.dist-info/METADATA,sha256=741bKhyehSFn8wPCQzWzhINXfDbMhR6dBEEn_rUxK6g,24337
385
- geospacelab-0.10.1.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
386
- geospacelab-0.10.1.dist-info/top_level.txt,sha256=98eDwrSNgyQFAtSA06QMP71gw9BzgIj0uvkTudpGly4,12
387
- geospacelab-0.10.1.dist-info/RECORD,,
384
+ geospacelab-0.10.2.dist-info/METADATA,sha256=qZZNzZ0LIB9gD7DVcJA0gbis5euI8GLsseAEGSgFl6I,24351
385
+ geospacelab-0.10.2.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
386
+ geospacelab-0.10.2.dist-info/top_level.txt,sha256=98eDwrSNgyQFAtSA06QMP71gw9BzgIj0uvkTudpGly4,12
387
+ geospacelab-0.10.2.dist-info/RECORD,,