geometallurgy 0.4.12__py3-none-any.whl → 0.4.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. elphick/geomet/__init__.py +11 -11
  2. elphick/geomet/base.py +1133 -1133
  3. elphick/geomet/block_model.py +319 -358
  4. elphick/geomet/config/__init__.py +1 -1
  5. elphick/geomet/config/config_read.py +39 -39
  6. elphick/geomet/config/flowsheet_example_partition.yaml +31 -31
  7. elphick/geomet/config/flowsheet_example_simple.yaml +25 -25
  8. elphick/geomet/config/mc_config.yml +35 -35
  9. elphick/geomet/data/downloader.py +39 -39
  10. elphick/geomet/data/register.csv +12 -12
  11. elphick/geomet/datasets/__init__.py +2 -2
  12. elphick/geomet/datasets/datasets.py +47 -47
  13. elphick/geomet/datasets/downloader.py +40 -40
  14. elphick/geomet/datasets/register.csv +12 -12
  15. elphick/geomet/datasets/sample_data.py +196 -196
  16. elphick/geomet/extras.py +35 -35
  17. elphick/geomet/flowsheet/__init__.py +1 -1
  18. elphick/geomet/flowsheet/flowsheet.py +1216 -1216
  19. elphick/geomet/flowsheet/loader.py +99 -99
  20. elphick/geomet/flowsheet/operation.py +256 -256
  21. elphick/geomet/flowsheet/stream.py +39 -39
  22. elphick/geomet/interval_sample.py +641 -641
  23. elphick/geomet/io.py +379 -379
  24. elphick/geomet/plot.py +147 -147
  25. elphick/geomet/sample.py +28 -28
  26. elphick/geomet/utils/amenability.py +49 -49
  27. elphick/geomet/utils/block_model_converter.py +93 -93
  28. elphick/geomet/utils/components.py +136 -136
  29. elphick/geomet/utils/data.py +49 -49
  30. elphick/geomet/utils/estimates.py +108 -108
  31. elphick/geomet/utils/interp.py +193 -193
  32. elphick/geomet/utils/interp2.py +134 -134
  33. elphick/geomet/utils/layout.py +72 -72
  34. elphick/geomet/utils/moisture.py +61 -61
  35. elphick/geomet/utils/output.html +617 -0
  36. elphick/geomet/utils/pandas.py +378 -378
  37. elphick/geomet/utils/parallel.py +29 -29
  38. elphick/geomet/utils/partition.py +63 -63
  39. elphick/geomet/utils/size.py +51 -51
  40. elphick/geomet/utils/timer.py +80 -80
  41. elphick/geomet/utils/viz.py +56 -56
  42. elphick/geomet/validate.py.hide +176 -176
  43. {geometallurgy-0.4.12.dist-info → geometallurgy-0.4.13.dist-info}/LICENSE +21 -21
  44. {geometallurgy-0.4.12.dist-info → geometallurgy-0.4.13.dist-info}/METADATA +7 -5
  45. geometallurgy-0.4.13.dist-info/RECORD +49 -0
  46. {geometallurgy-0.4.12.dist-info → geometallurgy-0.4.13.dist-info}/WHEEL +1 -1
  47. geometallurgy-0.4.12.dist-info/RECORD +0 -48
  48. {geometallurgy-0.4.12.dist-info → geometallurgy-0.4.13.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,617 @@
1
+
2
+ <!DOCTYPE html>
3
+ <html lang="en">
4
+ <head>
5
+ <meta charset="UTF-8">
6
+ <title>Converted .py to HTML</title>
7
+ <style>pre { line-height: 125%; }
8
+ td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
9
+ span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
10
+ td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
11
+ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
12
+ .hll { background-color: #ffffcc }
13
+ .c { color: #3D7B7B; font-style: italic } /* Comment */
14
+ .err { border: 1px solid #FF0000 } /* Error */
15
+ .k { color: #008000; font-weight: bold } /* Keyword */
16
+ .o { color: #666666 } /* Operator */
17
+ .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */
18
+ .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */
19
+ .cp { color: #9C6500 } /* Comment.Preproc */
20
+ .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */
21
+ .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */
22
+ .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
23
+ .gd { color: #A00000 } /* Generic.Deleted */
24
+ .ge { font-style: italic } /* Generic.Emph */
25
+ .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
26
+ .gr { color: #E40000 } /* Generic.Error */
27
+ .gh { color: #000080; font-weight: bold } /* Generic.Heading */
28
+ .gi { color: #008400 } /* Generic.Inserted */
29
+ .go { color: #717171 } /* Generic.Output */
30
+ .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
31
+ .gs { font-weight: bold } /* Generic.Strong */
32
+ .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
33
+ .gt { color: #0044DD } /* Generic.Traceback */
34
+ .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
35
+ .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
36
+ .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
37
+ .kp { color: #008000 } /* Keyword.Pseudo */
38
+ .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
39
+ .kt { color: #B00040 } /* Keyword.Type */
40
+ .m { color: #666666 } /* Literal.Number */
41
+ .s { color: #BA2121 } /* Literal.String */
42
+ .na { color: #687822 } /* Name.Attribute */
43
+ .nb { color: #008000 } /* Name.Builtin */
44
+ .nc { color: #0000FF; font-weight: bold } /* Name.Class */
45
+ .no { color: #880000 } /* Name.Constant */
46
+ .nd { color: #AA22FF } /* Name.Decorator */
47
+ .ni { color: #717171; font-weight: bold } /* Name.Entity */
48
+ .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */
49
+ .nf { color: #0000FF } /* Name.Function */
50
+ .nl { color: #767600 } /* Name.Label */
51
+ .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
52
+ .nt { color: #008000; font-weight: bold } /* Name.Tag */
53
+ .nv { color: #19177C } /* Name.Variable */
54
+ .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
55
+ .w { color: #bbbbbb } /* Text.Whitespace */
56
+ .mb { color: #666666 } /* Literal.Number.Bin */
57
+ .mf { color: #666666 } /* Literal.Number.Float */
58
+ .mh { color: #666666 } /* Literal.Number.Hex */
59
+ .mi { color: #666666 } /* Literal.Number.Integer */
60
+ .mo { color: #666666 } /* Literal.Number.Oct */
61
+ .sa { color: #BA2121 } /* Literal.String.Affix */
62
+ .sb { color: #BA2121 } /* Literal.String.Backtick */
63
+ .sc { color: #BA2121 } /* Literal.String.Char */
64
+ .dl { color: #BA2121 } /* Literal.String.Delimiter */
65
+ .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
66
+ .s2 { color: #BA2121 } /* Literal.String.Double */
67
+ .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */
68
+ .sh { color: #BA2121 } /* Literal.String.Heredoc */
69
+ .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */
70
+ .sx { color: #008000 } /* Literal.String.Other */
71
+ .sr { color: #A45A77 } /* Literal.String.Regex */
72
+ .s1 { color: #BA2121 } /* Literal.String.Single */
73
+ .ss { color: #19177C } /* Literal.String.Symbol */
74
+ .bp { color: #008000 } /* Name.Builtin.Pseudo */
75
+ .fm { color: #0000FF } /* Name.Function.Magic */
76
+ .vc { color: #19177C } /* Name.Variable.Class */
77
+ .vg { color: #19177C } /* Name.Variable.Global */
78
+ .vi { color: #19177C } /* Name.Variable.Instance */
79
+ .vm { color: #19177C } /* Name.Variable.Magic */
80
+ .il { color: #666666 } /* Literal.Number.Integer.Long */</style>
81
+ </head>
82
+ <body>
83
+ <div><?xml version="1.0" encoding="utf-8"?>
84
+ <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
85
+ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
86
+ <head>
87
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
88
+ <meta name="generator" content="Docutils 0.20.1: https://docutils.sourceforge.io/" />
89
+ <title>&lt;string&gt;</title>
90
+ <style type="text/css">
91
+
92
+ /*
93
+ :Author: David Goodger (goodger@python.org)
94
+ :Id: $Id: html4css1.css 8954 2022-01-20 10:10:25Z milde $
95
+ :Copyright: This stylesheet has been placed in the public domain.
96
+
97
+ Default cascading style sheet for the HTML output of Docutils.
98
+
99
+ See https://docutils.sourceforge.io/docs/howto/html-stylesheets.html for how to
100
+ customize this style sheet.
101
+ */
102
+
103
+ /* used to remove borders from tables and images */
104
+ .borderless, table.borderless td, table.borderless th {
105
+ border: 0 }
106
+
107
+ table.borderless td, table.borderless th {
108
+ /* Override padding for "table.docutils td" with "! important".
109
+ The right padding separates the table cells. */
110
+ padding: 0 0.5em 0 0 ! important }
111
+
112
+ .first {
113
+ /* Override more specific margin styles with "! important". */
114
+ margin-top: 0 ! important }
115
+
116
+ .last, .with-subtitle {
117
+ margin-bottom: 0 ! important }
118
+
119
+ .hidden {
120
+ display: none }
121
+
122
+ .subscript {
123
+ vertical-align: sub;
124
+ font-size: smaller }
125
+
126
+ .superscript {
127
+ vertical-align: super;
128
+ font-size: smaller }
129
+
130
+ a.toc-backref {
131
+ text-decoration: none ;
132
+ color: black }
133
+
134
+ blockquote.epigraph {
135
+ margin: 2em 5em ; }
136
+
137
+ dl.docutils dd {
138
+ margin-bottom: 0.5em }
139
+
140
+ object[type="image/svg+xml"], object[type="application/x-shockwave-flash"] {
141
+ overflow: hidden;
142
+ }
143
+
144
+ /* Uncomment (and remove this text!) to get bold-faced definition list terms
145
+ dl.docutils dt {
146
+ font-weight: bold }
147
+ */
148
+
149
+ div.abstract {
150
+ margin: 2em 5em }
151
+
152
+ div.abstract p.topic-title {
153
+ font-weight: bold ;
154
+ text-align: center }
155
+
156
+ div.admonition, div.attention, div.caution, div.danger, div.error,
157
+ div.hint, div.important, div.note, div.tip, div.warning {
158
+ margin: 2em ;
159
+ border: medium outset ;
160
+ padding: 1em }
161
+
162
+ div.admonition p.admonition-title, div.hint p.admonition-title,
163
+ div.important p.admonition-title, div.note p.admonition-title,
164
+ div.tip p.admonition-title {
165
+ font-weight: bold ;
166
+ font-family: sans-serif }
167
+
168
+ div.attention p.admonition-title, div.caution p.admonition-title,
169
+ div.danger p.admonition-title, div.error p.admonition-title,
170
+ div.warning p.admonition-title, .code .error {
171
+ color: red ;
172
+ font-weight: bold ;
173
+ font-family: sans-serif }
174
+
175
+ /* Uncomment (and remove this text!) to get reduced vertical space in
176
+ compound paragraphs.
177
+ div.compound .compound-first, div.compound .compound-middle {
178
+ margin-bottom: 0.5em }
179
+
180
+ div.compound .compound-last, div.compound .compound-middle {
181
+ margin-top: 0.5em }
182
+ */
183
+
184
+ div.dedication {
185
+ margin: 2em 5em ;
186
+ text-align: center ;
187
+ font-style: italic }
188
+
189
+ div.dedication p.topic-title {
190
+ font-weight: bold ;
191
+ font-style: normal }
192
+
193
+ div.figure {
194
+ margin-left: 2em ;
195
+ margin-right: 2em }
196
+
197
+ div.footer, div.header {
198
+ clear: both;
199
+ font-size: smaller }
200
+
201
+ div.line-block {
202
+ display: block ;
203
+ margin-top: 1em ;
204
+ margin-bottom: 1em }
205
+
206
+ div.line-block div.line-block {
207
+ margin-top: 0 ;
208
+ margin-bottom: 0 ;
209
+ margin-left: 1.5em }
210
+
211
+ div.sidebar {
212
+ margin: 0 0 0.5em 1em ;
213
+ border: medium outset ;
214
+ padding: 1em ;
215
+ background-color: #ffffee ;
216
+ width: 40% ;
217
+ float: right ;
218
+ clear: right }
219
+
220
+ div.sidebar p.rubric {
221
+ font-family: sans-serif ;
222
+ font-size: medium }
223
+
224
+ div.system-messages {
225
+ margin: 5em }
226
+
227
+ div.system-messages h1 {
228
+ color: red }
229
+
230
+ div.system-message {
231
+ border: medium outset ;
232
+ padding: 1em }
233
+
234
+ div.system-message p.system-message-title {
235
+ color: red ;
236
+ font-weight: bold }
237
+
238
+ div.topic {
239
+ margin: 2em }
240
+
241
+ h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
242
+ h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
243
+ margin-top: 0.4em }
244
+
245
+ h1.title {
246
+ text-align: center }
247
+
248
+ h2.subtitle {
249
+ text-align: center }
250
+
251
+ hr.docutils {
252
+ width: 75% }
253
+
254
+ img.align-left, .figure.align-left, object.align-left, table.align-left {
255
+ clear: left ;
256
+ float: left ;
257
+ margin-right: 1em }
258
+
259
+ img.align-right, .figure.align-right, object.align-right, table.align-right {
260
+ clear: right ;
261
+ float: right ;
262
+ margin-left: 1em }
263
+
264
+ img.align-center, .figure.align-center, object.align-center {
265
+ display: block;
266
+ margin-left: auto;
267
+ margin-right: auto;
268
+ }
269
+
270
+ table.align-center {
271
+ margin-left: auto;
272
+ margin-right: auto;
273
+ }
274
+
275
+ .align-left {
276
+ text-align: left }
277
+
278
+ .align-center {
279
+ clear: both ;
280
+ text-align: center }
281
+
282
+ .align-right {
283
+ text-align: right }
284
+
285
+ /* reset inner alignment in figures */
286
+ div.align-right {
287
+ text-align: inherit }
288
+
289
+ /* div.align-center * { */
290
+ /* text-align: left } */
291
+
292
+ .align-top {
293
+ vertical-align: top }
294
+
295
+ .align-middle {
296
+ vertical-align: middle }
297
+
298
+ .align-bottom {
299
+ vertical-align: bottom }
300
+
301
+ ol.simple, ul.simple {
302
+ margin-bottom: 1em }
303
+
304
+ ol.arabic {
305
+ list-style: decimal }
306
+
307
+ ol.loweralpha {
308
+ list-style: lower-alpha }
309
+
310
+ ol.upperalpha {
311
+ list-style: upper-alpha }
312
+
313
+ ol.lowerroman {
314
+ list-style: lower-roman }
315
+
316
+ ol.upperroman {
317
+ list-style: upper-roman }
318
+
319
+ p.attribution {
320
+ text-align: right ;
321
+ margin-left: 50% }
322
+
323
+ p.caption {
324
+ font-style: italic }
325
+
326
+ p.credits {
327
+ font-style: italic ;
328
+ font-size: smaller }
329
+
330
+ p.label {
331
+ white-space: nowrap }
332
+
333
+ p.rubric {
334
+ font-weight: bold ;
335
+ font-size: larger ;
336
+ color: maroon ;
337
+ text-align: center }
338
+
339
+ p.sidebar-title {
340
+ font-family: sans-serif ;
341
+ font-weight: bold ;
342
+ font-size: larger }
343
+
344
+ p.sidebar-subtitle {
345
+ font-family: sans-serif ;
346
+ font-weight: bold }
347
+
348
+ p.topic-title {
349
+ font-weight: bold }
350
+
351
+ pre.address {
352
+ margin-bottom: 0 ;
353
+ margin-top: 0 ;
354
+ font: inherit }
355
+
356
+ pre.literal-block, pre.doctest-block, pre.math, pre.code {
357
+ margin-left: 2em ;
358
+ margin-right: 2em }
359
+
360
+ pre.code .ln { color: grey; } /* line numbers */
361
+ pre.code, code { background-color: #eeeeee }
362
+ pre.code .comment, code .comment { color: #5C6576 }
363
+ pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
364
+ pre.code .literal.string, code .literal.string { color: #0C5404 }
365
+ pre.code .name.builtin, code .name.builtin { color: #352B84 }
366
+ pre.code .deleted, code .deleted { background-color: #DEB0A1}
367
+ pre.code .inserted, code .inserted { background-color: #A3D289}
368
+
369
+ span.classifier {
370
+ font-family: sans-serif ;
371
+ font-style: oblique }
372
+
373
+ span.classifier-delimiter {
374
+ font-family: sans-serif ;
375
+ font-weight: bold }
376
+
377
+ span.interpreted {
378
+ font-family: sans-serif }
379
+
380
+ span.option {
381
+ white-space: nowrap }
382
+
383
+ span.pre {
384
+ white-space: pre }
385
+
386
+ span.problematic {
387
+ color: red }
388
+
389
+ span.section-subtitle {
390
+ /* font-size relative to parent (h1..h6 element) */
391
+ font-size: 80% }
392
+
393
+ table.citation {
394
+ border-left: solid 1px gray;
395
+ margin-left: 1px }
396
+
397
+ table.docinfo {
398
+ margin: 2em 4em }
399
+
400
+ table.docutils {
401
+ margin-top: 0.5em ;
402
+ margin-bottom: 0.5em }
403
+
404
+ table.footnote {
405
+ border-left: solid 1px black;
406
+ margin-left: 1px }
407
+
408
+ table.docutils td, table.docutils th,
409
+ table.docinfo td, table.docinfo th {
410
+ padding-left: 0.5em ;
411
+ padding-right: 0.5em ;
412
+ vertical-align: top }
413
+
414
+ table.docutils th.field-name, table.docinfo th.docinfo-name {
415
+ font-weight: bold ;
416
+ text-align: left ;
417
+ white-space: nowrap ;
418
+ padding-left: 0 }
419
+
420
+ /* "booktabs" style (no vertical lines) */
421
+ table.docutils.booktabs {
422
+ border: 0px;
423
+ border-top: 2px solid;
424
+ border-bottom: 2px solid;
425
+ border-collapse: collapse;
426
+ }
427
+ table.docutils.booktabs * {
428
+ border: 0px;
429
+ }
430
+ table.docutils.booktabs th {
431
+ border-bottom: thin solid;
432
+ text-align: left;
433
+ }
434
+
435
+ h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
436
+ h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
437
+ font-size: 100% }
438
+
439
+ ul.auto-toc {
440
+ list-style-type: none }
441
+
442
+ </style>
443
+ </head>
444
+ <body>
445
+ <div class="document">
446
+
447
+
448
+ <p>&quot;&quot;&quot;
449
+ Interval Data
450
+ =============</p>
451
+ <p>This example adds a second dimension. The second dimension is an interval, of the form interval_from, interval_to.
452
+ It is also known as binned data, where each 'bin' is bounded between and upper and lower limit.</p>
453
+ <p>An interval is relevant in geology, when analysing drill hole data.</p>
454
+ <p>Intervals are also encountered in metallurgy, but in that discipline they are often called fractions,
455
+ e.g. size fractions. In that case the typical nomenclature is size_retained, size passing, since the data
456
+ originates from a sieve stack.</p>
457
+ <p>&quot;&quot;&quot;
458
+ import logging</p>
459
+ <p>import pandas as pd
460
+ import plotly.io
461
+ from matplotlib import pyplot as plt</p>
462
+ <p>from elphick.geomet import Sample, IntervalSample
463
+ from elphick.geomet.data.downloader import Downloader
464
+ from elphick.geomet.utils.pandas import weight_average
465
+ import plotly.graph_objects as go</p>
466
+ <p># %%
467
+ logging.basicConfig(level=logging.INFO,</p>
468
+ <div class="system-message">
469
+ <p class="system-message-title">System Message: ERROR/3 (<tt class="docutils">&lt;string&gt;</tt>, line 28)</p>
470
+ Unexpected indentation.</div>
471
+ <blockquote>
472
+ format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s',
473
+ datefmt='%Y-%m-%dT%H:%M:%S%z',
474
+ )</blockquote>
475
+ <p># %%
476
+ #
477
+ # Create a MassComposition object
478
+ # -------------------------------
479
+ #
480
+ # We get some demo data in the form of a pandas DataFrame
481
+ # We create this object as 1D based on the pandas index</p>
482
+ <p>iron_ore_sample_data: pd.DataFrame = Downloader().load_data(datafile='iron_ore_sample_A072391.zip', show_report=False)
483
+ df_data: pd.DataFrame = iron_ore_sample_data
484
+ df_data.head()</p>
485
+ <p># %%</p>
486
+ <p>obj_mc: Sample = Sample(df_data, name='Drill program')
487
+ obj_mc</p>
488
+ <p># %%</p>
489
+ <p>obj_mc.aggregate</p>
490
+ <p># %%
491
+ #
492
+ # Use the normal pandas groupby-apply as needed. Here we leverage the weight_average function
493
+ # from utils.pandas</p>
494
+ <p>hole_average: pd.DataFrame = obj_mc.data.groupby('DHID').apply(weight_average)
495
+ hole_average</p>
496
+ <p># %%
497
+ #
498
+ # We will now make a 2D dataset using DHID and the intervals.
499
+ df_data['DHID'] = df_data['DHID'].astype('category')
500
+ df_data = df_data.reset_index(drop=True).set_index(['DHID', 'interval_from', 'interval_to'])</p>
501
+ <p>obj_mc_2d: IntervalSample = IntervalSample(df_data, name='Drill program')
502
+ print(obj_mc_2d)</p>
503
+ <p># %%
504
+ obj_mc_2d.aggregate</p>
505
+ <p># %%
506
+ obj_mc_2d.data.groupby('DHID').apply(weight_average, <a href="#system-message-1"><span class="problematic" id="problematic-1">**</span></a>{'mass_wet': 'mass_wet', 'moisture_column_name': 'H2O'})</p>
507
+ <div class="system-message" id="system-message-1">
508
+ <p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">&lt;string&gt;</tt>, line 73); <em><a href="#problematic-1">backlink</a></em></p>
509
+ Inline strong start-string without end-string.</div>
510
+ <p># %%
511
+ #
512
+ # View some plots
513
+ #</p>
514
+ <p>fig: go.Figure = obj_mc_2d.plot_parallel(color='DHID')
515
+ plotly.io.show(fig)</p>
516
+ <p># %%
517
+ obj_mc_2d.query('DHID==&quot;CBS02&quot;').reset_index('DHID').plot_intervals(variables=['mass_dry', 'Fe', 'SiO2', 'Al2O3'],</p>
518
+ <div class="system-message">
519
+ <p class="system-message-title">System Message: ERROR/3 (<tt class="docutils">&lt;string&gt;</tt>, line 86)</p>
520
+ Unexpected indentation.</div>
521
+ <blockquote>
522
+ cumulative=False)</blockquote>
523
+ </div>
524
+ </body>
525
+ </html>
526
+ </div>
527
+ <pre><div class="highlight"><pre><span></span><span class="sd">&quot;&quot;&quot;</span>
528
+ <span class="sd">Interval Data</span>
529
+ <span class="sd">=============</span>
530
+
531
+ <span class="sd">This example adds a second dimension. The second dimension is an interval, of the form interval_from, interval_to.</span>
532
+ <span class="sd">It is also known as binned data, where each &#39;bin&#39; is bounded between and upper and lower limit.</span>
533
+
534
+ <span class="sd">An interval is relevant in geology, when analysing drill hole data.</span>
535
+
536
+ <span class="sd">Intervals are also encountered in metallurgy, but in that discipline they are often called fractions,</span>
537
+ <span class="sd">e.g. size fractions. In that case the typical nomenclature is size_retained, size passing, since the data</span>
538
+ <span class="sd">originates from a sieve stack.</span>
539
+
540
+ <span class="sd">&quot;&quot;&quot;</span>
541
+ <span class="kn">import</span> <span class="nn">logging</span>
542
+
543
+ <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
544
+ <span class="kn">import</span> <span class="nn">plotly.io</span>
545
+ <span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
546
+
547
+ <span class="kn">from</span> <span class="nn">elphick.geomet</span> <span class="kn">import</span> <span class="n">Sample</span><span class="p">,</span> <span class="n">IntervalSample</span>
548
+ <span class="kn">from</span> <span class="nn">elphick.geomet.data.downloader</span> <span class="kn">import</span> <span class="n">Downloader</span>
549
+ <span class="kn">from</span> <span class="nn">elphick.geomet.utils.pandas</span> <span class="kn">import</span> <span class="n">weight_average</span>
550
+ <span class="kn">import</span> <span class="nn">plotly.graph_objects</span> <span class="k">as</span> <span class="nn">go</span>
551
+
552
+ <span class="c1"># %%</span>
553
+ <span class="n">logging</span><span class="o">.</span><span class="n">basicConfig</span><span class="p">(</span><span class="n">level</span><span class="o">=</span><span class="n">logging</span><span class="o">.</span><span class="n">INFO</span><span class="p">,</span>
554
+ <span class="nb">format</span><span class="o">=</span><span class="s1">&#39;</span><span class="si">%(asctime)s</span><span class="s1"> </span><span class="si">%(levelname)s</span><span class="s1"> </span><span class="si">%(module)s</span><span class="s1"> - </span><span class="si">%(funcName)s</span><span class="s1">: </span><span class="si">%(message)s</span><span class="s1">&#39;</span><span class="p">,</span>
555
+ <span class="n">datefmt</span><span class="o">=</span><span class="s1">&#39;%Y-%m-</span><span class="si">%d</span><span class="s1">T%H:%M:%S%z&#39;</span><span class="p">,</span>
556
+ <span class="p">)</span>
557
+
558
+ <span class="c1"># %%</span>
559
+ <span class="c1">#</span>
560
+ <span class="c1"># Create a MassComposition object</span>
561
+ <span class="c1"># -------------------------------</span>
562
+ <span class="c1">#</span>
563
+ <span class="c1"># We get some demo data in the form of a pandas DataFrame</span>
564
+ <span class="c1"># We create this object as 1D based on the pandas index</span>
565
+
566
+ <span class="n">iron_ore_sample_data</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span> <span class="o">=</span> <span class="n">Downloader</span><span class="p">()</span><span class="o">.</span><span class="n">load_data</span><span class="p">(</span><span class="n">datafile</span><span class="o">=</span><span class="s1">&#39;iron_ore_sample_A072391.zip&#39;</span><span class="p">,</span> <span class="n">show_report</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
567
+ <span class="n">df_data</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span> <span class="o">=</span> <span class="n">iron_ore_sample_data</span>
568
+ <span class="n">df_data</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
569
+
570
+ <span class="c1"># %%</span>
571
+
572
+ <span class="n">obj_mc</span><span class="p">:</span> <span class="n">Sample</span> <span class="o">=</span> <span class="n">Sample</span><span class="p">(</span><span class="n">df_data</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;Drill program&#39;</span><span class="p">)</span>
573
+ <span class="n">obj_mc</span>
574
+
575
+ <span class="c1"># %%</span>
576
+
577
+ <span class="n">obj_mc</span><span class="o">.</span><span class="n">aggregate</span>
578
+
579
+ <span class="c1"># %%</span>
580
+ <span class="c1">#</span>
581
+ <span class="c1"># Use the normal pandas groupby-apply as needed. Here we leverage the weight_average function</span>
582
+ <span class="c1"># from utils.pandas</span>
583
+
584
+ <span class="n">hole_average</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span> <span class="o">=</span> <span class="n">obj_mc</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;DHID&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">weight_average</span><span class="p">)</span>
585
+ <span class="n">hole_average</span>
586
+
587
+ <span class="c1"># %%</span>
588
+ <span class="c1">#</span>
589
+ <span class="c1"># We will now make a 2D dataset using DHID and the intervals.</span>
590
+ <span class="n">df_data</span><span class="p">[</span><span class="s1">&#39;DHID&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df_data</span><span class="p">[</span><span class="s1">&#39;DHID&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;category&#39;</span><span class="p">)</span>
591
+ <span class="n">df_data</span> <span class="o">=</span> <span class="n">df_data</span><span class="o">.</span><span class="n">reset_index</span><span class="p">(</span><span class="n">drop</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">set_index</span><span class="p">([</span><span class="s1">&#39;DHID&#39;</span><span class="p">,</span> <span class="s1">&#39;interval_from&#39;</span><span class="p">,</span> <span class="s1">&#39;interval_to&#39;</span><span class="p">])</span>
592
+
593
+ <span class="n">obj_mc_2d</span><span class="p">:</span> <span class="n">IntervalSample</span> <span class="o">=</span> <span class="n">IntervalSample</span><span class="p">(</span><span class="n">df_data</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;Drill program&#39;</span><span class="p">)</span>
594
+ <span class="nb">print</span><span class="p">(</span><span class="n">obj_mc_2d</span><span class="p">)</span>
595
+
596
+ <span class="c1"># %%</span>
597
+ <span class="n">obj_mc_2d</span><span class="o">.</span><span class="n">aggregate</span>
598
+
599
+ <span class="c1"># %%</span>
600
+ <span class="n">obj_mc_2d</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;DHID&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">weight_average</span><span class="p">,</span> <span class="o">**</span><span class="p">{</span><span class="s1">&#39;mass_wet&#39;</span><span class="p">:</span> <span class="s1">&#39;mass_wet&#39;</span><span class="p">,</span> <span class="s1">&#39;moisture_column_name&#39;</span><span class="p">:</span> <span class="s1">&#39;H2O&#39;</span><span class="p">})</span>
601
+
602
+ <span class="c1"># %%</span>
603
+ <span class="c1">#</span>
604
+ <span class="c1"># View some plots</span>
605
+ <span class="c1">#</span>
606
+
607
+ <span class="n">fig</span><span class="p">:</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span> <span class="o">=</span> <span class="n">obj_mc_2d</span><span class="o">.</span><span class="n">plot_parallel</span><span class="p">(</span><span class="n">color</span><span class="o">=</span><span class="s1">&#39;DHID&#39;</span><span class="p">)</span>
608
+ <span class="n">plotly</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">fig</span><span class="p">)</span>
609
+
610
+ <span class="c1"># %%</span>
611
+ <span class="n">obj_mc_2d</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="s1">&#39;DHID==&quot;CBS02&quot;&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">(</span><span class="s1">&#39;DHID&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">plot_intervals</span><span class="p">(</span><span class="n">variables</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;mass_dry&#39;</span><span class="p">,</span> <span class="s1">&#39;Fe&#39;</span><span class="p">,</span> <span class="s1">&#39;SiO2&#39;</span><span class="p">,</span> <span class="s1">&#39;Al2O3&#39;</span><span class="p">],</span>
612
+ <span class="n">cumulative</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
613
+ </pre></div>
614
+ </pre>
615
+ </body>
616
+ </html>
617
+