geoai-py 0.8.3__py2.py3-none-any.whl → 0.9.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- geoai/__init__.py +1 -1
- geoai/change_detection.py +1568 -0
- geoai/classify.py +58 -57
- geoai/detectron2.py +466 -0
- geoai/download.py +74 -68
- geoai/extract.py +186 -141
- geoai/geoai.py +13 -11
- geoai/hf.py +14 -12
- geoai/segment.py +44 -39
- geoai/segmentation.py +10 -9
- geoai/train.py +372 -241
- geoai/utils.py +198 -123
- {geoai_py-0.8.3.dist-info → geoai_py-0.9.1.dist-info}/METADATA +5 -1
- geoai_py-0.9.1.dist-info/RECORD +19 -0
- geoai_py-0.8.3.dist-info/RECORD +0 -17
- {geoai_py-0.8.3.dist-info → geoai_py-0.9.1.dist-info}/WHEEL +0 -0
- {geoai_py-0.8.3.dist-info → geoai_py-0.9.1.dist-info}/entry_points.txt +0 -0
- {geoai_py-0.8.3.dist-info → geoai_py-0.9.1.dist-info}/licenses/LICENSE +0 -0
- {geoai_py-0.8.3.dist-info → geoai_py-0.9.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1568 @@
|
|
1
|
+
"""Change detection module for remote sensing imagery using torchange."""
|
2
|
+
|
3
|
+
import os
|
4
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5
|
+
|
6
|
+
import cv2
|
7
|
+
import matplotlib.pyplot as plt
|
8
|
+
import numpy as np
|
9
|
+
import rasterio
|
10
|
+
from rasterio.windows import from_bounds
|
11
|
+
from skimage.transform import resize
|
12
|
+
from torchange.models.segment_any_change import AnyChange, show_change_masks
|
13
|
+
|
14
|
+
from .utils import download_file
|
15
|
+
|
16
|
+
|
17
|
+
class ChangeDetection:
|
18
|
+
"""A class for change detection on geospatial imagery using torchange and SAM."""
|
19
|
+
|
20
|
+
def __init__(self, sam_model_type="vit_h", sam_checkpoint=None):
|
21
|
+
"""
|
22
|
+
Initialize the ChangeDetection class.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
sam_model_type (str): SAM model type ('vit_h', 'vit_l', 'vit_b')
|
26
|
+
sam_checkpoint (str): Path to SAM checkpoint file
|
27
|
+
"""
|
28
|
+
self.sam_model_type = sam_model_type
|
29
|
+
self.sam_checkpoint = sam_checkpoint
|
30
|
+
self.model = None
|
31
|
+
self._init_model()
|
32
|
+
|
33
|
+
def _init_model(self):
|
34
|
+
"""Initialize the AnyChange model."""
|
35
|
+
if self.sam_checkpoint is None:
|
36
|
+
self.sam_checkpoint = download_checkpoint(self.sam_model_type)
|
37
|
+
|
38
|
+
self.model = AnyChange(self.sam_model_type, sam_checkpoint=self.sam_checkpoint)
|
39
|
+
|
40
|
+
# Set default hyperparameters
|
41
|
+
self.model.make_mask_generator(
|
42
|
+
points_per_side=32,
|
43
|
+
stability_score_thresh=0.95,
|
44
|
+
)
|
45
|
+
self.model.set_hyperparameters(
|
46
|
+
change_confidence_threshold=145,
|
47
|
+
use_normalized_feature=True,
|
48
|
+
bitemporal_match=True,
|
49
|
+
)
|
50
|
+
|
51
|
+
def set_hyperparameters(
|
52
|
+
self,
|
53
|
+
change_confidence_threshold: int = 155,
|
54
|
+
auto_threshold: bool = False,
|
55
|
+
use_normalized_feature: bool = True,
|
56
|
+
area_thresh: float = 0.8,
|
57
|
+
match_hist: bool = False,
|
58
|
+
object_sim_thresh: int = 60,
|
59
|
+
bitemporal_match: bool = True,
|
60
|
+
**kwargs: Any,
|
61
|
+
) -> None:
|
62
|
+
"""
|
63
|
+
Set hyperparameters for the change detection model.
|
64
|
+
|
65
|
+
Args:
|
66
|
+
change_confidence_threshold (int): Change confidence threshold for SAM
|
67
|
+
auto_threshold (bool): Whether to use auto threshold for SAM
|
68
|
+
use_normalized_feature (bool): Whether to use normalized feature for SAM
|
69
|
+
area_thresh (float): Area threshold for SAM
|
70
|
+
match_hist (bool): Whether to use match hist for SAM
|
71
|
+
object_sim_thresh (int): Object similarity threshold for SAM
|
72
|
+
bitemporal_match (bool): Whether to use bitemporal match for SAM
|
73
|
+
**kwargs: Keyword arguments for model hyperparameters
|
74
|
+
"""
|
75
|
+
if self.model:
|
76
|
+
self.model.set_hyperparameters(
|
77
|
+
change_confidence_threshold=change_confidence_threshold,
|
78
|
+
auto_threshold=auto_threshold,
|
79
|
+
use_normalized_feature=use_normalized_feature,
|
80
|
+
area_thresh=area_thresh,
|
81
|
+
match_hist=match_hist,
|
82
|
+
object_sim_thresh=object_sim_thresh,
|
83
|
+
bitemporal_match=bitemporal_match,
|
84
|
+
**kwargs,
|
85
|
+
)
|
86
|
+
|
87
|
+
def set_mask_generator_params(
|
88
|
+
self,
|
89
|
+
points_per_side: int = 32,
|
90
|
+
points_per_batch: int = 64,
|
91
|
+
pred_iou_thresh: float = 0.5,
|
92
|
+
stability_score_thresh: float = 0.95,
|
93
|
+
stability_score_offset: float = 1.0,
|
94
|
+
box_nms_thresh: float = 0.7,
|
95
|
+
point_grids: Optional[List] = None,
|
96
|
+
min_mask_region_area: int = 0,
|
97
|
+
**kwargs: Any,
|
98
|
+
) -> None:
|
99
|
+
"""
|
100
|
+
Set mask generator parameters.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
points_per_side (int): Number of points per side for SAM
|
104
|
+
points_per_batch (int): Number of points per batch for SAM
|
105
|
+
pred_iou_thresh (float): IoU threshold for SAM
|
106
|
+
stability_score_thresh (float): Stability score threshold for SAM
|
107
|
+
stability_score_offset (float): Stability score offset for SAM
|
108
|
+
box_nms_thresh (float): NMS threshold for SAM
|
109
|
+
point_grids (list): Point grids for SAM
|
110
|
+
min_mask_region_area (int): Minimum mask region area for SAM
|
111
|
+
**kwargs: Keyword arguments for mask generator
|
112
|
+
"""
|
113
|
+
if self.model:
|
114
|
+
self.model.make_mask_generator(
|
115
|
+
points_per_side=points_per_side,
|
116
|
+
points_per_batch=points_per_batch,
|
117
|
+
pred_iou_thresh=pred_iou_thresh,
|
118
|
+
stability_score_thresh=stability_score_thresh,
|
119
|
+
stability_score_offset=stability_score_offset,
|
120
|
+
box_nms_thresh=box_nms_thresh,
|
121
|
+
point_grids=point_grids,
|
122
|
+
min_mask_region_area=min_mask_region_area,
|
123
|
+
**kwargs,
|
124
|
+
)
|
125
|
+
|
126
|
+
def _read_and_align_images(self, image1_path, image2_path, target_size=1024):
|
127
|
+
"""
|
128
|
+
Read and align two GeoTIFF images, handling different extents and projections.
|
129
|
+
|
130
|
+
Args:
|
131
|
+
image1_path (str): Path to first image
|
132
|
+
image2_path (str): Path to second image
|
133
|
+
target_size (int): Target size for processing (default 1024 for torchange)
|
134
|
+
|
135
|
+
Returns:
|
136
|
+
tuple: (aligned_img1, aligned_img2, transform, crs, bounds)
|
137
|
+
"""
|
138
|
+
with rasterio.open(image1_path) as src1, rasterio.open(image2_path) as src2:
|
139
|
+
# Get the intersection of bounds
|
140
|
+
bounds1 = src1.bounds
|
141
|
+
bounds2 = src2.bounds
|
142
|
+
|
143
|
+
# Calculate intersection bounds
|
144
|
+
left = max(bounds1.left, bounds2.left)
|
145
|
+
bottom = max(bounds1.bottom, bounds2.bottom)
|
146
|
+
right = min(bounds1.right, bounds2.right)
|
147
|
+
top = min(bounds1.top, bounds2.top)
|
148
|
+
|
149
|
+
if left >= right or bottom >= top:
|
150
|
+
raise ValueError("Images do not overlap")
|
151
|
+
|
152
|
+
intersection_bounds = (left, bottom, right, top)
|
153
|
+
|
154
|
+
# Read the intersecting area from both images
|
155
|
+
window1 = from_bounds(*intersection_bounds, src1.transform)
|
156
|
+
window2 = from_bounds(*intersection_bounds, src2.transform)
|
157
|
+
|
158
|
+
# Read data
|
159
|
+
img1_data = src1.read(window=window1)
|
160
|
+
img2_data = src2.read(window=window2)
|
161
|
+
|
162
|
+
# Get transform for the intersecting area
|
163
|
+
transform = src1.window_transform(window1)
|
164
|
+
crs = src1.crs
|
165
|
+
|
166
|
+
# Convert from (bands, height, width) to (height, width, bands)
|
167
|
+
img1_data = np.transpose(img1_data, (1, 2, 0))
|
168
|
+
img2_data = np.transpose(img2_data, (1, 2, 0))
|
169
|
+
|
170
|
+
# Use only RGB bands (first 3 channels) for torchange
|
171
|
+
if img1_data.shape[2] >= 3:
|
172
|
+
img1_data = img1_data[:, :, :3]
|
173
|
+
if img2_data.shape[2] >= 3:
|
174
|
+
img2_data = img2_data[:, :, :3]
|
175
|
+
|
176
|
+
# Normalize to 0-255 range if needed
|
177
|
+
if img1_data.dtype != np.uint8:
|
178
|
+
img1_data = (
|
179
|
+
(img1_data - img1_data.min())
|
180
|
+
/ (img1_data.max() - img1_data.min())
|
181
|
+
* 255
|
182
|
+
).astype(np.uint8)
|
183
|
+
if img2_data.dtype != np.uint8:
|
184
|
+
img2_data = (
|
185
|
+
(img2_data - img2_data.min())
|
186
|
+
/ (img2_data.max() - img2_data.min())
|
187
|
+
* 255
|
188
|
+
).astype(np.uint8)
|
189
|
+
|
190
|
+
# Store original size for later use
|
191
|
+
original_shape = img1_data.shape[:2]
|
192
|
+
|
193
|
+
# Resize to target size for torchange processing
|
194
|
+
if img1_data.shape[0] != target_size or img1_data.shape[1] != target_size:
|
195
|
+
img1_resized = resize(
|
196
|
+
img1_data, (target_size, target_size), preserve_range=True
|
197
|
+
).astype(np.uint8)
|
198
|
+
img2_resized = resize(
|
199
|
+
img2_data, (target_size, target_size), preserve_range=True
|
200
|
+
).astype(np.uint8)
|
201
|
+
else:
|
202
|
+
img1_resized = img1_data
|
203
|
+
img2_resized = img2_data
|
204
|
+
|
205
|
+
return (img1_resized, img2_resized, transform, crs, original_shape)
|
206
|
+
|
207
|
+
def detect_changes(
|
208
|
+
self,
|
209
|
+
image1_path: str,
|
210
|
+
image2_path: str,
|
211
|
+
output_path: Optional[str] = None,
|
212
|
+
target_size: int = 1024,
|
213
|
+
return_results: bool = True,
|
214
|
+
export_probability: bool = False,
|
215
|
+
probability_output_path: Optional[str] = None,
|
216
|
+
export_instance_masks: bool = False,
|
217
|
+
instance_masks_output_path: Optional[str] = None,
|
218
|
+
return_detailed_results: bool = False,
|
219
|
+
) -> Union[Tuple[Any, np.ndarray, np.ndarray], Dict[str, Any], None]:
|
220
|
+
"""
|
221
|
+
Detect changes between two GeoTIFF images with instance segmentation.
|
222
|
+
|
223
|
+
Args:
|
224
|
+
image1_path (str): Path to first image
|
225
|
+
image2_path (str): Path to second image
|
226
|
+
output_path (str): Optional path to save binary change mask as GeoTIFF
|
227
|
+
target_size (int): Target size for processing
|
228
|
+
return_results (bool): Whether to return results
|
229
|
+
export_probability (bool): Whether to export probability mask
|
230
|
+
probability_output_path (str): Path to save probability mask (required if export_probability=True)
|
231
|
+
export_instance_masks (bool): Whether to export instance segmentation masks
|
232
|
+
instance_masks_output_path (str): Path to save instance masks (required if export_instance_masks=True)
|
233
|
+
return_detailed_results (bool): Whether to return detailed mask information
|
234
|
+
|
235
|
+
Returns:
|
236
|
+
tuple: (change_masks, img1, img2) if return_results=True
|
237
|
+
dict: Detailed results if return_detailed_results=True
|
238
|
+
"""
|
239
|
+
# Read and align images
|
240
|
+
(img1, img2, transform, crs, original_shape) = self._read_and_align_images(
|
241
|
+
image1_path, image2_path, target_size
|
242
|
+
)
|
243
|
+
|
244
|
+
# Detect changes
|
245
|
+
change_masks, _, _ = self.model.forward(img1, img2)
|
246
|
+
|
247
|
+
# If output path specified, save binary mask as GeoTIFF
|
248
|
+
if output_path:
|
249
|
+
self._save_change_mask(
|
250
|
+
change_masks, output_path, transform, crs, original_shape, target_size
|
251
|
+
)
|
252
|
+
|
253
|
+
# If probability export requested, save probability mask
|
254
|
+
if export_probability:
|
255
|
+
if probability_output_path is None:
|
256
|
+
raise ValueError(
|
257
|
+
"probability_output_path must be specified when export_probability=True"
|
258
|
+
)
|
259
|
+
self._save_probability_mask(
|
260
|
+
change_masks,
|
261
|
+
probability_output_path,
|
262
|
+
transform,
|
263
|
+
crs,
|
264
|
+
original_shape,
|
265
|
+
target_size,
|
266
|
+
)
|
267
|
+
|
268
|
+
# If instance masks export requested, save instance segmentation masks
|
269
|
+
if export_instance_masks:
|
270
|
+
if instance_masks_output_path is None:
|
271
|
+
raise ValueError(
|
272
|
+
"instance_masks_output_path must be specified when export_instance_masks=True"
|
273
|
+
)
|
274
|
+
num_instances = self._save_instance_segmentation_masks(
|
275
|
+
change_masks,
|
276
|
+
instance_masks_output_path,
|
277
|
+
transform,
|
278
|
+
crs,
|
279
|
+
original_shape,
|
280
|
+
target_size,
|
281
|
+
)
|
282
|
+
|
283
|
+
# Also save instance scores if requested
|
284
|
+
scores_path = instance_masks_output_path.replace(".tif", "_scores.tif")
|
285
|
+
self._save_instance_scores_mask(
|
286
|
+
change_masks,
|
287
|
+
scores_path,
|
288
|
+
transform,
|
289
|
+
crs,
|
290
|
+
original_shape,
|
291
|
+
target_size,
|
292
|
+
)
|
293
|
+
|
294
|
+
# Return detailed results if requested
|
295
|
+
if return_detailed_results:
|
296
|
+
return self._extract_detailed_results(
|
297
|
+
change_masks, transform, crs, original_shape, target_size
|
298
|
+
)
|
299
|
+
|
300
|
+
if return_results:
|
301
|
+
return change_masks, img1, img2
|
302
|
+
|
303
|
+
def _save_change_mask(
|
304
|
+
self, change_masks, output_path, transform, crs, original_shape, target_size
|
305
|
+
):
|
306
|
+
"""
|
307
|
+
Save change masks as a GeoTIFF with proper georeference.
|
308
|
+
|
309
|
+
Args:
|
310
|
+
change_masks: Change detection masks (MaskData object)
|
311
|
+
output_path (str): Output file path
|
312
|
+
transform: Rasterio transform
|
313
|
+
crs: Coordinate reference system
|
314
|
+
original_shape (tuple): Original image shape
|
315
|
+
target_size (int): Processing target size
|
316
|
+
"""
|
317
|
+
# Convert MaskData to binary mask by decoding RLE masks
|
318
|
+
combined_mask = np.zeros((target_size, target_size), dtype=bool)
|
319
|
+
|
320
|
+
# Extract RLE masks from MaskData object
|
321
|
+
mask_items = dict(change_masks.items())
|
322
|
+
if "rles" in mask_items:
|
323
|
+
rles = mask_items["rles"]
|
324
|
+
for rle in rles:
|
325
|
+
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
|
326
|
+
try:
|
327
|
+
# Decode RLE to binary mask
|
328
|
+
size = rle["size"]
|
329
|
+
counts = rle["counts"]
|
330
|
+
|
331
|
+
# Create binary mask from RLE counts
|
332
|
+
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
|
333
|
+
pos = 0
|
334
|
+
value = 0
|
335
|
+
|
336
|
+
for count in counts:
|
337
|
+
if pos + count <= len(mask):
|
338
|
+
if value == 1:
|
339
|
+
mask[pos : pos + count] = 1
|
340
|
+
pos += count
|
341
|
+
value = 1 - value # Toggle between 0 and 1
|
342
|
+
else:
|
343
|
+
break
|
344
|
+
|
345
|
+
# RLE is column-major, reshape and transpose
|
346
|
+
mask = mask.reshape(size).T
|
347
|
+
if mask.shape == (target_size, target_size):
|
348
|
+
combined_mask = np.logical_or(
|
349
|
+
combined_mask, mask.astype(bool)
|
350
|
+
)
|
351
|
+
|
352
|
+
except Exception as e:
|
353
|
+
print(f"Warning: Failed to decode RLE mask: {e}")
|
354
|
+
continue
|
355
|
+
|
356
|
+
# Convert to uint8 first, then resize if needed
|
357
|
+
combined_mask_uint8 = combined_mask.astype(np.uint8) * 255
|
358
|
+
|
359
|
+
# Resize back to original shape if needed
|
360
|
+
if original_shape != (target_size, target_size):
|
361
|
+
# Use precise resize
|
362
|
+
combined_mask_resized = resize(
|
363
|
+
combined_mask_uint8.astype(np.float32),
|
364
|
+
original_shape,
|
365
|
+
preserve_range=True,
|
366
|
+
anti_aliasing=False,
|
367
|
+
order=0,
|
368
|
+
)
|
369
|
+
combined_mask = (combined_mask_resized > 127).astype(np.uint8) * 255
|
370
|
+
else:
|
371
|
+
combined_mask = combined_mask_uint8
|
372
|
+
|
373
|
+
# Save as GeoTIFF
|
374
|
+
with rasterio.open(
|
375
|
+
output_path,
|
376
|
+
"w",
|
377
|
+
driver="GTiff",
|
378
|
+
height=combined_mask.shape[0],
|
379
|
+
width=combined_mask.shape[1],
|
380
|
+
count=1,
|
381
|
+
dtype=combined_mask.dtype,
|
382
|
+
crs=crs,
|
383
|
+
transform=transform,
|
384
|
+
compress="lzw",
|
385
|
+
) as dst:
|
386
|
+
dst.write(combined_mask, 1)
|
387
|
+
|
388
|
+
def _save_probability_mask(
|
389
|
+
self, change_masks, output_path, transform, crs, original_shape, target_size
|
390
|
+
):
|
391
|
+
"""
|
392
|
+
Save probability masks as a GeoTIFF with proper georeference.
|
393
|
+
|
394
|
+
Args:
|
395
|
+
change_masks: Change detection masks (MaskData object)
|
396
|
+
output_path (str): Output file path
|
397
|
+
transform: Rasterio transform
|
398
|
+
crs: Coordinate reference system
|
399
|
+
original_shape (tuple): Original image shape
|
400
|
+
target_size (int): Processing target size
|
401
|
+
"""
|
402
|
+
# Extract mask components for probability calculation
|
403
|
+
mask_items = dict(change_masks.items())
|
404
|
+
rles = mask_items.get("rles", [])
|
405
|
+
iou_preds = mask_items.get("iou_preds", None)
|
406
|
+
stability_scores = mask_items.get("stability_score", None)
|
407
|
+
change_confidence = mask_items.get("change_confidence", None)
|
408
|
+
areas = mask_items.get("areas", None)
|
409
|
+
|
410
|
+
# Convert tensors to numpy if needed
|
411
|
+
if iou_preds is not None:
|
412
|
+
iou_preds = iou_preds.detach().cpu().numpy()
|
413
|
+
if stability_scores is not None:
|
414
|
+
stability_scores = stability_scores.detach().cpu().numpy()
|
415
|
+
if change_confidence is not None:
|
416
|
+
change_confidence = change_confidence.detach().cpu().numpy()
|
417
|
+
if areas is not None:
|
418
|
+
areas = areas.detach().cpu().numpy()
|
419
|
+
|
420
|
+
# Create probability mask
|
421
|
+
probability_mask = np.zeros((target_size, target_size), dtype=np.float32)
|
422
|
+
|
423
|
+
# Process each mask with probability weighting
|
424
|
+
for i, rle in enumerate(rles):
|
425
|
+
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
|
426
|
+
try:
|
427
|
+
# Decode RLE to binary mask
|
428
|
+
size = rle["size"]
|
429
|
+
counts = rle["counts"]
|
430
|
+
|
431
|
+
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
|
432
|
+
pos = 0
|
433
|
+
value = 0
|
434
|
+
|
435
|
+
for count in counts:
|
436
|
+
if pos + count <= len(mask):
|
437
|
+
if value == 1:
|
438
|
+
mask[pos : pos + count] = 1
|
439
|
+
pos += count
|
440
|
+
value = 1 - value
|
441
|
+
else:
|
442
|
+
break
|
443
|
+
|
444
|
+
mask = mask.reshape(size).T
|
445
|
+
if mask.shape != (target_size, target_size):
|
446
|
+
continue
|
447
|
+
|
448
|
+
mask_bool = mask.astype(bool)
|
449
|
+
|
450
|
+
# Calculate probability using multiple factors
|
451
|
+
prob_components = []
|
452
|
+
|
453
|
+
# IoU prediction (0-1, higher is better)
|
454
|
+
if iou_preds is not None and i < len(iou_preds):
|
455
|
+
iou_score = float(iou_preds[i])
|
456
|
+
prob_components.append(("iou", iou_score))
|
457
|
+
else:
|
458
|
+
prob_components.append(("iou", 0.8))
|
459
|
+
|
460
|
+
# Stability score (0-1, higher is better)
|
461
|
+
if stability_scores is not None and i < len(stability_scores):
|
462
|
+
stability = float(stability_scores[i])
|
463
|
+
prob_components.append(("stability", stability))
|
464
|
+
else:
|
465
|
+
prob_components.append(("stability", 0.8))
|
466
|
+
|
467
|
+
# Change confidence (normalize based on threshold)
|
468
|
+
if change_confidence is not None and i < len(change_confidence):
|
469
|
+
conf = float(change_confidence[i])
|
470
|
+
# Normalize confidence: threshold is 145, values above indicate higher confidence
|
471
|
+
if conf >= 145:
|
472
|
+
conf_normalized = 0.5 + min(0.5, (conf - 145) / 145)
|
473
|
+
else:
|
474
|
+
conf_normalized = max(0.0, conf / 145 * 0.5)
|
475
|
+
prob_components.append(("confidence", conf_normalized))
|
476
|
+
else:
|
477
|
+
prob_components.append(("confidence", 0.5))
|
478
|
+
|
479
|
+
# Area-based weight (normalize using log scale)
|
480
|
+
if areas is not None and i < len(areas):
|
481
|
+
area = float(areas[i])
|
482
|
+
area_normalized = 0.2 + 0.8 * min(1.0, np.log(area + 1) / 15.0)
|
483
|
+
prob_components.append(("area", area_normalized))
|
484
|
+
else:
|
485
|
+
prob_components.append(("area", 0.6))
|
486
|
+
|
487
|
+
# Calculate weighted probability
|
488
|
+
weights = {
|
489
|
+
"iou": 0.3,
|
490
|
+
"stability": 0.3,
|
491
|
+
"confidence": 0.35,
|
492
|
+
"area": 0.05,
|
493
|
+
}
|
494
|
+
prob_weight = sum(
|
495
|
+
weights[name] * value for name, value in prob_components
|
496
|
+
)
|
497
|
+
prob_weight = np.clip(prob_weight, 0.0, 1.0)
|
498
|
+
|
499
|
+
# Add to probability mask (take maximum where masks overlap)
|
500
|
+
current_prob = probability_mask[mask_bool]
|
501
|
+
new_prob = np.maximum(current_prob, prob_weight)
|
502
|
+
probability_mask[mask_bool] = new_prob
|
503
|
+
|
504
|
+
except Exception as e:
|
505
|
+
print(f"Warning: Failed to process probability mask {i}: {e}")
|
506
|
+
continue
|
507
|
+
|
508
|
+
# Resize back to original shape if needed
|
509
|
+
if original_shape != (target_size, target_size):
|
510
|
+
prob_resized = resize(
|
511
|
+
probability_mask,
|
512
|
+
original_shape,
|
513
|
+
preserve_range=True,
|
514
|
+
anti_aliasing=True,
|
515
|
+
order=1,
|
516
|
+
)
|
517
|
+
prob_final = np.clip(prob_resized, 0.0, 1.0)
|
518
|
+
else:
|
519
|
+
prob_final = probability_mask
|
520
|
+
|
521
|
+
# Save as float32 GeoTIFF
|
522
|
+
with rasterio.open(
|
523
|
+
output_path,
|
524
|
+
"w",
|
525
|
+
driver="GTiff",
|
526
|
+
height=prob_final.shape[0],
|
527
|
+
width=prob_final.shape[1],
|
528
|
+
count=1,
|
529
|
+
dtype=rasterio.float32,
|
530
|
+
crs=crs,
|
531
|
+
transform=transform,
|
532
|
+
compress="lzw",
|
533
|
+
) as dst:
|
534
|
+
dst.write(prob_final.astype(np.float32), 1)
|
535
|
+
|
536
|
+
def visualize_changes(
|
537
|
+
self, image1_path: str, image2_path: str, figsize: Tuple[int, int] = (15, 5)
|
538
|
+
) -> plt.Figure:
|
539
|
+
"""
|
540
|
+
Visualize change detection results.
|
541
|
+
|
542
|
+
Args:
|
543
|
+
image1_path (str): Path to first image
|
544
|
+
image2_path (str): Path to second image
|
545
|
+
figsize (tuple): Figure size
|
546
|
+
|
547
|
+
Returns:
|
548
|
+
matplotlib.figure.Figure: The figure object
|
549
|
+
"""
|
550
|
+
change_masks, img1, img2 = self.detect_changes(
|
551
|
+
image1_path, image2_path, return_results=True
|
552
|
+
)
|
553
|
+
|
554
|
+
# Use torchange's visualization function
|
555
|
+
fig, _ = show_change_masks(img1, img2, change_masks)
|
556
|
+
fig.set_size_inches(figsize)
|
557
|
+
|
558
|
+
return fig
|
559
|
+
|
560
|
+
def visualize_results(self, image1_path, image2_path, binary_path, prob_path):
|
561
|
+
"""Create enhanced visualization with probability analysis."""
|
562
|
+
|
563
|
+
# Load data
|
564
|
+
with rasterio.open(image1_path) as src:
|
565
|
+
img1 = src.read([1, 2, 3])
|
566
|
+
img1 = np.transpose(img1, (1, 2, 0))
|
567
|
+
|
568
|
+
with rasterio.open(image2_path) as src:
|
569
|
+
img2 = src.read([1, 2, 3])
|
570
|
+
img2 = np.transpose(img2, (1, 2, 0))
|
571
|
+
|
572
|
+
with rasterio.open(binary_path) as src:
|
573
|
+
binary_mask = src.read(1)
|
574
|
+
|
575
|
+
with rasterio.open(prob_path) as src:
|
576
|
+
prob_mask = src.read(1)
|
577
|
+
|
578
|
+
# Create comprehensive visualization
|
579
|
+
fig, axes = plt.subplots(2, 4, figsize=(24, 12))
|
580
|
+
|
581
|
+
# Crop for better visualization
|
582
|
+
h, w = img1.shape[:2]
|
583
|
+
y1, y2 = h // 4, 3 * h // 4
|
584
|
+
x1, x2 = w // 4, 3 * w // 4
|
585
|
+
|
586
|
+
img1_crop = img1[y1:y2, x1:x2]
|
587
|
+
img2_crop = img2[y1:y2, x1:x2]
|
588
|
+
binary_crop = binary_mask[y1:y2, x1:x2]
|
589
|
+
prob_crop = prob_mask[y1:y2, x1:x2]
|
590
|
+
|
591
|
+
# Row 1: Original and overlays
|
592
|
+
axes[0, 0].imshow(img1_crop)
|
593
|
+
axes[0, 0].set_title("2019 Image", fontweight="bold")
|
594
|
+
axes[0, 0].axis("off")
|
595
|
+
|
596
|
+
axes[0, 1].imshow(img2_crop)
|
597
|
+
axes[0, 1].set_title("2022 Image", fontweight="bold")
|
598
|
+
axes[0, 1].axis("off")
|
599
|
+
|
600
|
+
# Binary overlay
|
601
|
+
overlay_binary = img2_crop.copy()
|
602
|
+
overlay_binary[binary_crop > 0] = [255, 0, 0]
|
603
|
+
axes[0, 2].imshow(overlay_binary)
|
604
|
+
axes[0, 2].set_title("Binary Changes\n(Red = Change)", fontweight="bold")
|
605
|
+
axes[0, 2].axis("off")
|
606
|
+
|
607
|
+
# Probability heatmap
|
608
|
+
im1 = axes[0, 3].imshow(prob_crop, cmap="hot", vmin=0, vmax=1)
|
609
|
+
axes[0, 3].set_title(
|
610
|
+
"Probability Heatmap\n(White = High Confidence)", fontweight="bold"
|
611
|
+
)
|
612
|
+
axes[0, 3].axis("off")
|
613
|
+
plt.colorbar(im1, ax=axes[0, 3], shrink=0.8)
|
614
|
+
|
615
|
+
# Row 2: Detailed probability analysis
|
616
|
+
# Confidence levels overlay
|
617
|
+
overlay_conf = img2_crop.copy()
|
618
|
+
high_conf = prob_crop > 0.7
|
619
|
+
med_conf = (prob_crop > 0.4) & (prob_crop <= 0.7)
|
620
|
+
low_conf = (prob_crop > 0.1) & (prob_crop <= 0.4)
|
621
|
+
|
622
|
+
overlay_conf[high_conf] = [255, 0, 0] # Red for high
|
623
|
+
overlay_conf[med_conf] = [255, 165, 0] # Orange for medium
|
624
|
+
overlay_conf[low_conf] = [255, 255, 0] # Yellow for low
|
625
|
+
|
626
|
+
axes[1, 0].imshow(overlay_conf)
|
627
|
+
axes[1, 0].set_title(
|
628
|
+
"Confidence Levels\n(Red>0.7, Orange>0.4, Yellow>0.1)", fontweight="bold"
|
629
|
+
)
|
630
|
+
axes[1, 0].axis("off")
|
631
|
+
|
632
|
+
# Thresholded probability (>0.5)
|
633
|
+
overlay_thresh = img2_crop.copy()
|
634
|
+
high_prob = prob_crop > 0.5
|
635
|
+
overlay_thresh[high_prob] = [255, 0, 0]
|
636
|
+
axes[1, 1].imshow(overlay_thresh)
|
637
|
+
axes[1, 1].set_title(
|
638
|
+
"High Confidence Only\n(Probability > 0.5)", fontweight="bold"
|
639
|
+
)
|
640
|
+
axes[1, 1].axis("off")
|
641
|
+
|
642
|
+
# Probability histogram
|
643
|
+
prob_values = prob_crop[prob_crop > 0]
|
644
|
+
if len(prob_values) > 0:
|
645
|
+
axes[1, 2].hist(
|
646
|
+
prob_values, bins=50, alpha=0.7, color="red", edgecolor="black"
|
647
|
+
)
|
648
|
+
axes[1, 2].axvline(
|
649
|
+
x=0.5, color="blue", linestyle="--", label="0.5 threshold"
|
650
|
+
)
|
651
|
+
axes[1, 2].axvline(
|
652
|
+
x=0.7, color="green", linestyle="--", label="0.7 threshold"
|
653
|
+
)
|
654
|
+
axes[1, 2].set_xlabel("Change Probability")
|
655
|
+
axes[1, 2].set_ylabel("Pixel Count")
|
656
|
+
axes[1, 2].set_title(
|
657
|
+
f"Probability Distribution\n({len(prob_values):,} pixels)"
|
658
|
+
)
|
659
|
+
axes[1, 2].legend()
|
660
|
+
axes[1, 2].grid(True, alpha=0.3)
|
661
|
+
|
662
|
+
# Statistics text
|
663
|
+
stats_text = f"""Probability Statistics:
|
664
|
+
Min: {np.min(prob_values):.3f}
|
665
|
+
Max: {np.max(prob_values):.3f}
|
666
|
+
Mean: {np.mean(prob_values):.3f}
|
667
|
+
Median: {np.median(prob_values):.3f}
|
668
|
+
|
669
|
+
Confidence Levels:
|
670
|
+
High (>0.7): {np.sum(prob_crop > 0.7):,}
|
671
|
+
Med (0.4-0.7): {np.sum((prob_crop > 0.4) & (prob_crop <= 0.7)):,}
|
672
|
+
Low (0.1-0.4): {np.sum((prob_crop > 0.1) & (prob_crop <= 0.4)):,}"""
|
673
|
+
|
674
|
+
axes[1, 3].text(
|
675
|
+
0.05,
|
676
|
+
0.95,
|
677
|
+
stats_text,
|
678
|
+
transform=axes[1, 3].transAxes,
|
679
|
+
fontsize=11,
|
680
|
+
verticalalignment="top",
|
681
|
+
fontfamily="monospace",
|
682
|
+
)
|
683
|
+
axes[1, 3].set_xlim(0, 1)
|
684
|
+
axes[1, 3].set_ylim(0, 1)
|
685
|
+
axes[1, 3].axis("off")
|
686
|
+
axes[1, 3].set_title("Statistics Summary", fontweight="bold")
|
687
|
+
|
688
|
+
plt.tight_layout()
|
689
|
+
plt.suptitle(
|
690
|
+
"Enhanced Probability-Based Change Detection",
|
691
|
+
fontsize=16,
|
692
|
+
fontweight="bold",
|
693
|
+
y=0.98,
|
694
|
+
)
|
695
|
+
|
696
|
+
plt.savefig("enhanced_probability_results.png", dpi=150, bbox_inches="tight")
|
697
|
+
plt.show()
|
698
|
+
|
699
|
+
print("💾 Enhanced visualization saved as 'enhanced_probability_results.png'")
|
700
|
+
|
701
|
+
def create_split_comparison(
|
702
|
+
self,
|
703
|
+
image1_path,
|
704
|
+
image2_path,
|
705
|
+
binary_path,
|
706
|
+
prob_path,
|
707
|
+
output_path="split_comparison.png",
|
708
|
+
):
|
709
|
+
"""Create a split comparison visualization showing before/after with change overlay."""
|
710
|
+
|
711
|
+
# Load data
|
712
|
+
with rasterio.open(image1_path) as src:
|
713
|
+
img1 = src.read([1, 2, 3])
|
714
|
+
img1 = np.transpose(img1, (1, 2, 0))
|
715
|
+
if img1.dtype != np.uint8:
|
716
|
+
img1 = ((img1 - img1.min()) / (img1.max() - img1.min()) * 255).astype(
|
717
|
+
np.uint8
|
718
|
+
)
|
719
|
+
|
720
|
+
with rasterio.open(image2_path) as src:
|
721
|
+
img2 = src.read([1, 2, 3])
|
722
|
+
img2 = np.transpose(img2, (1, 2, 0))
|
723
|
+
if img2.dtype != np.uint8:
|
724
|
+
img2 = ((img2 - img2.min()) / (img2.max() - img2.min()) * 255).astype(
|
725
|
+
np.uint8
|
726
|
+
)
|
727
|
+
|
728
|
+
with rasterio.open(prob_path) as src:
|
729
|
+
prob_mask = src.read(1)
|
730
|
+
|
731
|
+
# Ensure all arrays have the same shape
|
732
|
+
h, w = img1.shape[:2]
|
733
|
+
if prob_mask.shape != (h, w):
|
734
|
+
prob_mask = resize(
|
735
|
+
prob_mask, (h, w), preserve_range=True, anti_aliasing=True, order=1
|
736
|
+
)
|
737
|
+
|
738
|
+
# Create split comparison
|
739
|
+
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
|
740
|
+
|
741
|
+
# Create combined image - left half is 2019, right half is 2022
|
742
|
+
combined_img = np.zeros_like(img1)
|
743
|
+
combined_img[:, : w // 2] = img1[:, : w // 2]
|
744
|
+
combined_img[:, w // 2 :] = img2[:, w // 2 :]
|
745
|
+
|
746
|
+
# Create overlay with changes - ensure prob_mask is 2D and matches image dimensions
|
747
|
+
overlay = combined_img.copy()
|
748
|
+
high_conf_changes = prob_mask > 0.5
|
749
|
+
|
750
|
+
# Apply overlay only where changes are detected
|
751
|
+
if len(overlay.shape) == 3: # RGB image
|
752
|
+
overlay[high_conf_changes] = [255, 0, 0] # Red for high confidence changes
|
753
|
+
|
754
|
+
# Blend overlay with original
|
755
|
+
blended = cv2.addWeighted(combined_img, 0.7, overlay, 0.3, 0)
|
756
|
+
|
757
|
+
ax.imshow(blended)
|
758
|
+
ax.axvline(x=w // 2, color="white", linewidth=3, linestyle="--", alpha=0.8)
|
759
|
+
ax.text(
|
760
|
+
w // 4,
|
761
|
+
50,
|
762
|
+
"2019",
|
763
|
+
fontsize=20,
|
764
|
+
color="white",
|
765
|
+
ha="center",
|
766
|
+
bbox={"boxstyle": "round,pad=0.3", "facecolor": "black", "alpha": 0.8},
|
767
|
+
)
|
768
|
+
ax.text(
|
769
|
+
3 * w // 4,
|
770
|
+
50,
|
771
|
+
"2022",
|
772
|
+
fontsize=20,
|
773
|
+
color="white",
|
774
|
+
ha="center",
|
775
|
+
bbox={"boxstyle": "round,pad=0.3", "facecolor": "black", "alpha": 0.8},
|
776
|
+
)
|
777
|
+
|
778
|
+
ax.set_title(
|
779
|
+
"Split Comparison with Change Detection\n(Red = High Confidence Changes)",
|
780
|
+
fontsize=16,
|
781
|
+
fontweight="bold",
|
782
|
+
pad=20,
|
783
|
+
)
|
784
|
+
ax.axis("off")
|
785
|
+
|
786
|
+
plt.tight_layout()
|
787
|
+
plt.savefig(output_path, dpi=150, bbox_inches="tight")
|
788
|
+
plt.show()
|
789
|
+
|
790
|
+
print(f"💾 Split comparison saved as '{output_path}'")
|
791
|
+
|
792
|
+
def analyze_instances(
|
793
|
+
self, instance_mask_path, scores_path, output_path="instance_analysis.png"
|
794
|
+
):
|
795
|
+
"""Analyze and visualize instance segmentation results."""
|
796
|
+
|
797
|
+
# Load instance mask and scores
|
798
|
+
with rasterio.open(instance_mask_path) as src:
|
799
|
+
instance_mask = src.read(1)
|
800
|
+
|
801
|
+
with rasterio.open(scores_path) as src:
|
802
|
+
scores_mask = src.read(1)
|
803
|
+
|
804
|
+
# Get unique instances (excluding background)
|
805
|
+
unique_instances = np.unique(instance_mask)
|
806
|
+
unique_instances = unique_instances[unique_instances > 0]
|
807
|
+
|
808
|
+
# Calculate statistics for each instance
|
809
|
+
instance_stats = []
|
810
|
+
for instance_id in unique_instances:
|
811
|
+
mask = instance_mask == instance_id
|
812
|
+
area = np.sum(mask)
|
813
|
+
score = np.mean(scores_mask[mask])
|
814
|
+
instance_stats.append({"id": instance_id, "area": area, "score": score})
|
815
|
+
|
816
|
+
# Sort by score
|
817
|
+
instance_stats.sort(key=lambda x: x["score"], reverse=True)
|
818
|
+
|
819
|
+
# Create visualization
|
820
|
+
fig, axes = plt.subplots(2, 2, figsize=(16, 12))
|
821
|
+
|
822
|
+
# 1. Instance segmentation visualization
|
823
|
+
colored_mask = np.zeros((*instance_mask.shape, 3), dtype=np.uint8)
|
824
|
+
colors = plt.cm.Set3(np.linspace(0, 1, len(unique_instances)))
|
825
|
+
|
826
|
+
for i, instance_id in enumerate(unique_instances):
|
827
|
+
mask = instance_mask == instance_id
|
828
|
+
colored_mask[mask] = (colors[i][:3] * 255).astype(np.uint8)
|
829
|
+
|
830
|
+
axes[0, 0].imshow(colored_mask)
|
831
|
+
axes[0, 0].set_title(
|
832
|
+
f"Instance Segmentation\n({len(unique_instances)} instances)",
|
833
|
+
fontweight="bold",
|
834
|
+
)
|
835
|
+
axes[0, 0].axis("off")
|
836
|
+
|
837
|
+
# 2. Scores heatmap
|
838
|
+
im = axes[0, 1].imshow(scores_mask, cmap="viridis", vmin=0, vmax=1)
|
839
|
+
axes[0, 1].set_title("Instance Confidence Scores", fontweight="bold")
|
840
|
+
axes[0, 1].axis("off")
|
841
|
+
plt.colorbar(im, ax=axes[0, 1], shrink=0.8)
|
842
|
+
|
843
|
+
# 3. Score distribution
|
844
|
+
all_scores = [stat["score"] for stat in instance_stats]
|
845
|
+
axes[1, 0].hist(
|
846
|
+
all_scores, bins=20, alpha=0.7, color="skyblue", edgecolor="black"
|
847
|
+
)
|
848
|
+
axes[1, 0].axvline(
|
849
|
+
x=np.mean(all_scores),
|
850
|
+
color="red",
|
851
|
+
linestyle="--",
|
852
|
+
label=f"Mean: {np.mean(all_scores):.3f}",
|
853
|
+
)
|
854
|
+
axes[1, 0].set_xlabel("Confidence Score")
|
855
|
+
axes[1, 0].set_ylabel("Instance Count")
|
856
|
+
axes[1, 0].set_title("Score Distribution", fontweight="bold")
|
857
|
+
axes[1, 0].legend()
|
858
|
+
axes[1, 0].grid(True, alpha=0.3)
|
859
|
+
|
860
|
+
# 4. Top instances by score
|
861
|
+
top_instances = instance_stats[:10]
|
862
|
+
instance_ids = [stat["id"] for stat in top_instances]
|
863
|
+
scores = [stat["score"] for stat in top_instances]
|
864
|
+
areas = [stat["area"] for stat in top_instances]
|
865
|
+
|
866
|
+
bars = axes[1, 1].bar(
|
867
|
+
range(len(top_instances)), scores, color="coral", alpha=0.7
|
868
|
+
)
|
869
|
+
axes[1, 1].set_xlabel("Top 10 Instances")
|
870
|
+
axes[1, 1].set_ylabel("Confidence Score")
|
871
|
+
axes[1, 1].set_title("Top Instances by Confidence", fontweight="bold")
|
872
|
+
axes[1, 1].set_xticks(range(len(top_instances)))
|
873
|
+
axes[1, 1].set_xticklabels([f"#{id}" for id in instance_ids], rotation=45)
|
874
|
+
|
875
|
+
# Add area info as text on bars
|
876
|
+
for i, (bar, area) in enumerate(zip(bars, areas)):
|
877
|
+
height = bar.get_height()
|
878
|
+
axes[1, 1].text(
|
879
|
+
bar.get_x() + bar.get_width() / 2.0,
|
880
|
+
height,
|
881
|
+
f"{area}px",
|
882
|
+
ha="center",
|
883
|
+
va="bottom",
|
884
|
+
fontsize=8,
|
885
|
+
)
|
886
|
+
|
887
|
+
plt.tight_layout()
|
888
|
+
plt.savefig(output_path, dpi=150, bbox_inches="tight")
|
889
|
+
plt.show()
|
890
|
+
|
891
|
+
# Print summary statistics
|
892
|
+
print(f"\n📊 Instance Analysis Summary:")
|
893
|
+
print(f" Total instances: {len(unique_instances)}")
|
894
|
+
print(f" Average confidence: {np.mean(all_scores):.3f}")
|
895
|
+
print(f" Score range: {np.min(all_scores):.3f} - {np.max(all_scores):.3f}")
|
896
|
+
print(f" Total change area: {sum(areas):,} pixels")
|
897
|
+
|
898
|
+
print(f"\n💾 Instance analysis saved as '{output_path}'")
|
899
|
+
|
900
|
+
return instance_stats
|
901
|
+
|
902
|
+
def create_comprehensive_report(
|
903
|
+
self, results_dict, output_path="comprehensive_report.png"
|
904
|
+
):
|
905
|
+
"""Create a comprehensive visualization report from detailed results."""
|
906
|
+
|
907
|
+
if not results_dict or "masks" not in results_dict:
|
908
|
+
print("❌ No detailed results provided")
|
909
|
+
return
|
910
|
+
|
911
|
+
masks = results_dict["masks"]
|
912
|
+
stats = results_dict["statistics"]
|
913
|
+
|
914
|
+
# Create comprehensive visualization
|
915
|
+
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
|
916
|
+
|
917
|
+
# 1. Score distributions
|
918
|
+
if "iou_predictions" in stats:
|
919
|
+
iou_scores = [
|
920
|
+
mask["iou_pred"] for mask in masks if mask["iou_pred"] is not None
|
921
|
+
]
|
922
|
+
axes[0, 0].hist(
|
923
|
+
iou_scores, bins=20, alpha=0.7, color="lightblue", edgecolor="black"
|
924
|
+
)
|
925
|
+
axes[0, 0].axvline(
|
926
|
+
x=stats["iou_predictions"]["mean"],
|
927
|
+
color="red",
|
928
|
+
linestyle="--",
|
929
|
+
label=f"Mean: {stats['iou_predictions']['mean']:.3f}",
|
930
|
+
)
|
931
|
+
axes[0, 0].set_xlabel("IoU Score")
|
932
|
+
axes[0, 0].set_ylabel("Count")
|
933
|
+
axes[0, 0].set_title("IoU Predictions Distribution", fontweight="bold")
|
934
|
+
axes[0, 0].legend()
|
935
|
+
axes[0, 0].grid(True, alpha=0.3)
|
936
|
+
|
937
|
+
# 2. Stability scores
|
938
|
+
if "stability_scores" in stats:
|
939
|
+
stability_scores = [
|
940
|
+
mask["stability_score"]
|
941
|
+
for mask in masks
|
942
|
+
if mask["stability_score"] is not None
|
943
|
+
]
|
944
|
+
axes[0, 1].hist(
|
945
|
+
stability_scores,
|
946
|
+
bins=20,
|
947
|
+
alpha=0.7,
|
948
|
+
color="lightgreen",
|
949
|
+
edgecolor="black",
|
950
|
+
)
|
951
|
+
axes[0, 1].axvline(
|
952
|
+
x=stats["stability_scores"]["mean"],
|
953
|
+
color="red",
|
954
|
+
linestyle="--",
|
955
|
+
label=f"Mean: {stats['stability_scores']['mean']:.3f}",
|
956
|
+
)
|
957
|
+
axes[0, 1].set_xlabel("Stability Score")
|
958
|
+
axes[0, 1].set_ylabel("Count")
|
959
|
+
axes[0, 1].set_title("Stability Scores Distribution", fontweight="bold")
|
960
|
+
axes[0, 1].legend()
|
961
|
+
axes[0, 1].grid(True, alpha=0.3)
|
962
|
+
|
963
|
+
# 3. Change confidence
|
964
|
+
if "change_confidence" in stats:
|
965
|
+
change_conf = [
|
966
|
+
mask["change_confidence"]
|
967
|
+
for mask in masks
|
968
|
+
if mask["change_confidence"] is not None
|
969
|
+
]
|
970
|
+
axes[0, 2].hist(
|
971
|
+
change_conf, bins=20, alpha=0.7, color="lightyellow", edgecolor="black"
|
972
|
+
)
|
973
|
+
axes[0, 2].axvline(
|
974
|
+
x=stats["change_confidence"]["mean"],
|
975
|
+
color="red",
|
976
|
+
linestyle="--",
|
977
|
+
label=f"Mean: {stats['change_confidence']['mean']:.1f}",
|
978
|
+
)
|
979
|
+
axes[0, 2].set_xlabel("Change Confidence")
|
980
|
+
axes[0, 2].set_ylabel("Count")
|
981
|
+
axes[0, 2].set_title("Change Confidence Distribution", fontweight="bold")
|
982
|
+
axes[0, 2].legend()
|
983
|
+
axes[0, 2].grid(True, alpha=0.3)
|
984
|
+
|
985
|
+
# 4. Area distribution
|
986
|
+
if "areas" in stats:
|
987
|
+
areas = [mask["area"] for mask in masks if mask["area"] is not None]
|
988
|
+
axes[1, 0].hist(
|
989
|
+
areas, bins=20, alpha=0.7, color="lightcoral", edgecolor="black"
|
990
|
+
)
|
991
|
+
axes[1, 0].axvline(
|
992
|
+
x=stats["areas"]["mean"],
|
993
|
+
color="red",
|
994
|
+
linestyle="--",
|
995
|
+
label=f"Mean: {stats['areas']['mean']:.1f}",
|
996
|
+
)
|
997
|
+
axes[1, 0].set_xlabel("Area (pixels)")
|
998
|
+
axes[1, 0].set_ylabel("Count")
|
999
|
+
axes[1, 0].set_title("Area Distribution", fontweight="bold")
|
1000
|
+
axes[1, 0].legend()
|
1001
|
+
axes[1, 0].grid(True, alpha=0.3)
|
1002
|
+
|
1003
|
+
# 5. Combined confidence vs area scatter
|
1004
|
+
combined_conf = [
|
1005
|
+
mask["combined_confidence"]
|
1006
|
+
for mask in masks
|
1007
|
+
if "combined_confidence" in mask
|
1008
|
+
]
|
1009
|
+
areas_for_scatter = [
|
1010
|
+
mask["area"]
|
1011
|
+
for mask in masks
|
1012
|
+
if "combined_confidence" in mask and mask["area"] is not None
|
1013
|
+
]
|
1014
|
+
|
1015
|
+
if combined_conf and areas_for_scatter:
|
1016
|
+
scatter = axes[1, 1].scatter(
|
1017
|
+
areas_for_scatter,
|
1018
|
+
combined_conf,
|
1019
|
+
alpha=0.6,
|
1020
|
+
c=combined_conf,
|
1021
|
+
cmap="viridis",
|
1022
|
+
s=50,
|
1023
|
+
)
|
1024
|
+
axes[1, 1].set_xlabel("Area (pixels)")
|
1025
|
+
axes[1, 1].set_ylabel("Combined Confidence")
|
1026
|
+
axes[1, 1].set_title("Confidence vs Area", fontweight="bold")
|
1027
|
+
axes[1, 1].grid(True, alpha=0.3)
|
1028
|
+
plt.colorbar(scatter, ax=axes[1, 1], shrink=0.8)
|
1029
|
+
|
1030
|
+
# 6. Summary statistics text
|
1031
|
+
summary_text = f"""Detection Summary:
|
1032
|
+
Total Instances: {len(masks)}
|
1033
|
+
Processing Size: {results_dict['summary']['target_size']}
|
1034
|
+
Original Shape: {results_dict['summary']['original_shape']}
|
1035
|
+
|
1036
|
+
Quality Metrics:"""
|
1037
|
+
|
1038
|
+
if "iou_predictions" in stats:
|
1039
|
+
summary_text += f"""
|
1040
|
+
IoU Predictions:
|
1041
|
+
Mean: {stats['iou_predictions']['mean']:.3f}
|
1042
|
+
Range: {stats['iou_predictions']['min']:.3f} - {stats['iou_predictions']['max']:.3f}"""
|
1043
|
+
|
1044
|
+
if "stability_scores" in stats:
|
1045
|
+
summary_text += f"""
|
1046
|
+
Stability Scores:
|
1047
|
+
Mean: {stats['stability_scores']['mean']:.3f}
|
1048
|
+
Range: {stats['stability_scores']['min']:.3f} - {stats['stability_scores']['max']:.3f}"""
|
1049
|
+
|
1050
|
+
if "change_confidence" in stats:
|
1051
|
+
summary_text += f"""
|
1052
|
+
Change Confidence:
|
1053
|
+
Mean: {stats['change_confidence']['mean']:.1f}
|
1054
|
+
Range: {stats['change_confidence']['min']:.1f} - {stats['change_confidence']['max']:.1f}"""
|
1055
|
+
|
1056
|
+
if "areas" in stats:
|
1057
|
+
summary_text += f"""
|
1058
|
+
Areas:
|
1059
|
+
Mean: {stats['areas']['mean']:.1f}
|
1060
|
+
Total: {stats['areas']['total']:,.0f} pixels"""
|
1061
|
+
|
1062
|
+
axes[1, 2].text(
|
1063
|
+
0.05,
|
1064
|
+
0.95,
|
1065
|
+
summary_text,
|
1066
|
+
transform=axes[1, 2].transAxes,
|
1067
|
+
fontsize=10,
|
1068
|
+
verticalalignment="top",
|
1069
|
+
fontfamily="monospace",
|
1070
|
+
)
|
1071
|
+
axes[1, 2].set_xlim(0, 1)
|
1072
|
+
axes[1, 2].set_ylim(0, 1)
|
1073
|
+
axes[1, 2].axis("off")
|
1074
|
+
axes[1, 2].set_title("Summary Statistics", fontweight="bold")
|
1075
|
+
|
1076
|
+
plt.tight_layout()
|
1077
|
+
plt.suptitle(
|
1078
|
+
"Comprehensive Change Detection Report",
|
1079
|
+
fontsize=16,
|
1080
|
+
fontweight="bold",
|
1081
|
+
y=0.98,
|
1082
|
+
)
|
1083
|
+
plt.savefig(output_path, dpi=150, bbox_inches="tight")
|
1084
|
+
plt.show()
|
1085
|
+
|
1086
|
+
print(f"💾 Comprehensive report saved as '{output_path}'")
|
1087
|
+
|
1088
|
+
def run_complete_analysis(
|
1089
|
+
self, image1_path, image2_path, output_dir="change_detection_results"
|
1090
|
+
):
|
1091
|
+
"""Run complete change detection analysis with all outputs and visualizations."""
|
1092
|
+
|
1093
|
+
# Create output directory
|
1094
|
+
os.makedirs(output_dir, exist_ok=True)
|
1095
|
+
|
1096
|
+
# Define output paths
|
1097
|
+
binary_path = os.path.join(output_dir, "binary_mask.tif")
|
1098
|
+
prob_path = os.path.join(output_dir, "probability_mask.tif")
|
1099
|
+
instance_path = os.path.join(output_dir, "instance_masks.tif")
|
1100
|
+
|
1101
|
+
print("🔍 Running complete change detection analysis...")
|
1102
|
+
|
1103
|
+
# Run detection with all outputs
|
1104
|
+
results = self.detect_changes(
|
1105
|
+
image1_path,
|
1106
|
+
image2_path,
|
1107
|
+
output_path=binary_path,
|
1108
|
+
export_probability=True,
|
1109
|
+
probability_output_path=prob_path,
|
1110
|
+
export_instance_masks=True,
|
1111
|
+
instance_masks_output_path=instance_path,
|
1112
|
+
return_detailed_results=True,
|
1113
|
+
return_results=False,
|
1114
|
+
)
|
1115
|
+
|
1116
|
+
print("📊 Creating visualizations...")
|
1117
|
+
|
1118
|
+
# Create all visualizations
|
1119
|
+
self.visualize_results(image1_path, image2_path, binary_path, prob_path)
|
1120
|
+
|
1121
|
+
self.create_split_comparison(
|
1122
|
+
image1_path,
|
1123
|
+
image2_path,
|
1124
|
+
binary_path,
|
1125
|
+
prob_path,
|
1126
|
+
os.path.join(output_dir, "split_comparison.png"),
|
1127
|
+
)
|
1128
|
+
|
1129
|
+
scores_path = instance_path.replace(".tif", "_scores.tif")
|
1130
|
+
self.analyze_instances(
|
1131
|
+
instance_path,
|
1132
|
+
scores_path,
|
1133
|
+
os.path.join(output_dir, "instance_analysis.png"),
|
1134
|
+
)
|
1135
|
+
|
1136
|
+
self.create_comprehensive_report(
|
1137
|
+
results, os.path.join(output_dir, "comprehensive_report.png")
|
1138
|
+
)
|
1139
|
+
|
1140
|
+
print(f"✅ Complete analysis finished! Results saved to: {output_dir}")
|
1141
|
+
return results
|
1142
|
+
|
1143
|
+
def _save_instance_segmentation_masks(
|
1144
|
+
self, change_masks, output_path, transform, crs, original_shape, target_size
|
1145
|
+
):
|
1146
|
+
"""
|
1147
|
+
Save instance segmentation masks as a single GeoTIFF where each instance has a unique ID.
|
1148
|
+
|
1149
|
+
Args:
|
1150
|
+
change_masks: Change detection masks (MaskData object)
|
1151
|
+
output_path (str): Output path for instance segmentation GeoTIFF
|
1152
|
+
transform: Rasterio transform
|
1153
|
+
crs: Coordinate reference system
|
1154
|
+
original_shape (tuple): Original image shape
|
1155
|
+
target_size (int): Processing target size
|
1156
|
+
"""
|
1157
|
+
# Extract mask components
|
1158
|
+
mask_items = dict(change_masks.items())
|
1159
|
+
rles = mask_items.get("rles", [])
|
1160
|
+
|
1161
|
+
# Create instance segmentation mask (each instance gets unique ID)
|
1162
|
+
instance_mask = np.zeros((target_size, target_size), dtype=np.uint16)
|
1163
|
+
|
1164
|
+
# Process each mask and assign unique instance ID
|
1165
|
+
for instance_id, rle in enumerate(rles, start=1):
|
1166
|
+
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
|
1167
|
+
try:
|
1168
|
+
# Decode RLE to binary mask
|
1169
|
+
size = rle["size"]
|
1170
|
+
counts = rle["counts"]
|
1171
|
+
|
1172
|
+
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
|
1173
|
+
pos = 0
|
1174
|
+
value = 0
|
1175
|
+
|
1176
|
+
for count in counts:
|
1177
|
+
if pos + count <= len(mask):
|
1178
|
+
if value == 1:
|
1179
|
+
mask[pos : pos + count] = 1
|
1180
|
+
pos += count
|
1181
|
+
value = 1 - value
|
1182
|
+
else:
|
1183
|
+
break
|
1184
|
+
|
1185
|
+
# RLE is column-major, reshape and transpose
|
1186
|
+
mask = mask.reshape(size).T
|
1187
|
+
if mask.shape != (target_size, target_size):
|
1188
|
+
continue
|
1189
|
+
|
1190
|
+
# Assign instance ID to this mask
|
1191
|
+
instance_mask[mask.astype(bool)] = instance_id
|
1192
|
+
|
1193
|
+
except Exception as e:
|
1194
|
+
print(f"Warning: Failed to process mask {instance_id}: {e}")
|
1195
|
+
continue
|
1196
|
+
|
1197
|
+
# Resize back to original shape if needed
|
1198
|
+
if original_shape != (target_size, target_size):
|
1199
|
+
instance_mask_resized = resize(
|
1200
|
+
instance_mask.astype(np.float32),
|
1201
|
+
original_shape,
|
1202
|
+
preserve_range=True,
|
1203
|
+
anti_aliasing=False,
|
1204
|
+
order=0,
|
1205
|
+
)
|
1206
|
+
instance_mask_final = np.round(instance_mask_resized).astype(np.uint16)
|
1207
|
+
else:
|
1208
|
+
instance_mask_final = instance_mask
|
1209
|
+
|
1210
|
+
# Save as GeoTIFF
|
1211
|
+
with rasterio.open(
|
1212
|
+
output_path,
|
1213
|
+
"w",
|
1214
|
+
driver="GTiff",
|
1215
|
+
height=instance_mask_final.shape[0],
|
1216
|
+
width=instance_mask_final.shape[1],
|
1217
|
+
count=1,
|
1218
|
+
dtype=instance_mask_final.dtype,
|
1219
|
+
crs=crs,
|
1220
|
+
transform=transform,
|
1221
|
+
compress="lzw",
|
1222
|
+
) as dst:
|
1223
|
+
dst.write(instance_mask_final, 1)
|
1224
|
+
|
1225
|
+
# Add metadata
|
1226
|
+
dst.update_tags(
|
1227
|
+
description="Instance segmentation mask with unique IDs for each change object",
|
1228
|
+
total_instances=str(len(rles)),
|
1229
|
+
background_value="0",
|
1230
|
+
instance_range=f"1-{len(rles)}",
|
1231
|
+
)
|
1232
|
+
|
1233
|
+
print(
|
1234
|
+
f"Saved instance segmentation mask with {len(rles)} instances to {output_path}"
|
1235
|
+
)
|
1236
|
+
return len(rles)
|
1237
|
+
|
1238
|
+
def _save_instance_scores_mask(
|
1239
|
+
self, change_masks, output_path, transform, crs, original_shape, target_size
|
1240
|
+
):
|
1241
|
+
"""
|
1242
|
+
Save instance scores/probability mask as a GeoTIFF where each instance has its confidence score.
|
1243
|
+
|
1244
|
+
Args:
|
1245
|
+
change_masks: Change detection masks (MaskData object)
|
1246
|
+
output_path (str): Output path for instance scores GeoTIFF
|
1247
|
+
transform: Rasterio transform
|
1248
|
+
crs: Coordinate reference system
|
1249
|
+
original_shape (tuple): Original image shape
|
1250
|
+
target_size (int): Processing target size
|
1251
|
+
"""
|
1252
|
+
# Extract mask components
|
1253
|
+
mask_items = dict(change_masks.items())
|
1254
|
+
rles = mask_items.get("rles", [])
|
1255
|
+
iou_preds = mask_items.get("iou_preds", None)
|
1256
|
+
stability_scores = mask_items.get("stability_score", None)
|
1257
|
+
change_confidence = mask_items.get("change_confidence", None)
|
1258
|
+
|
1259
|
+
# Convert tensors to numpy if needed
|
1260
|
+
if iou_preds is not None:
|
1261
|
+
iou_preds = iou_preds.detach().cpu().numpy()
|
1262
|
+
if stability_scores is not None:
|
1263
|
+
stability_scores = stability_scores.detach().cpu().numpy()
|
1264
|
+
if change_confidence is not None:
|
1265
|
+
change_confidence = change_confidence.detach().cpu().numpy()
|
1266
|
+
|
1267
|
+
# Create instance scores mask
|
1268
|
+
scores_mask = np.zeros((target_size, target_size), dtype=np.float32)
|
1269
|
+
|
1270
|
+
# Process each mask and assign confidence score
|
1271
|
+
for instance_id, rle in enumerate(rles):
|
1272
|
+
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
|
1273
|
+
try:
|
1274
|
+
# Decode RLE to binary mask
|
1275
|
+
size = rle["size"]
|
1276
|
+
counts = rle["counts"]
|
1277
|
+
|
1278
|
+
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
|
1279
|
+
pos = 0
|
1280
|
+
value = 0
|
1281
|
+
|
1282
|
+
for count in counts:
|
1283
|
+
if pos + count <= len(mask):
|
1284
|
+
if value == 1:
|
1285
|
+
mask[pos : pos + count] = 1
|
1286
|
+
pos += count
|
1287
|
+
value = 1 - value
|
1288
|
+
else:
|
1289
|
+
break
|
1290
|
+
|
1291
|
+
# RLE is column-major, reshape and transpose
|
1292
|
+
mask = mask.reshape(size).T
|
1293
|
+
if mask.shape != (target_size, target_size):
|
1294
|
+
continue
|
1295
|
+
|
1296
|
+
# Calculate combined confidence score
|
1297
|
+
confidence_score = 0.5 # Default
|
1298
|
+
if iou_preds is not None and instance_id < len(iou_preds):
|
1299
|
+
iou_score = float(iou_preds[instance_id])
|
1300
|
+
|
1301
|
+
if stability_scores is not None and instance_id < len(
|
1302
|
+
stability_scores
|
1303
|
+
):
|
1304
|
+
stability_score = float(stability_scores[instance_id])
|
1305
|
+
|
1306
|
+
if change_confidence is not None and instance_id < len(
|
1307
|
+
change_confidence
|
1308
|
+
):
|
1309
|
+
change_conf = float(change_confidence[instance_id])
|
1310
|
+
# Normalize change confidence (typically around 145 threshold)
|
1311
|
+
change_conf_norm = max(
|
1312
|
+
0.0, min(1.0, abs(change_conf) / 200.0)
|
1313
|
+
)
|
1314
|
+
|
1315
|
+
# Weighted combination of scores
|
1316
|
+
confidence_score = (
|
1317
|
+
0.35 * iou_score
|
1318
|
+
+ 0.35 * stability_score
|
1319
|
+
+ 0.3 * change_conf_norm
|
1320
|
+
)
|
1321
|
+
else:
|
1322
|
+
confidence_score = 0.5 * (iou_score + stability_score)
|
1323
|
+
else:
|
1324
|
+
confidence_score = iou_score
|
1325
|
+
|
1326
|
+
# Assign confidence score to this mask
|
1327
|
+
scores_mask[mask.astype(bool)] = confidence_score
|
1328
|
+
|
1329
|
+
except Exception as e:
|
1330
|
+
print(
|
1331
|
+
f"Warning: Failed to process scores for mask {instance_id}: {e}"
|
1332
|
+
)
|
1333
|
+
continue
|
1334
|
+
|
1335
|
+
# Resize back to original shape if needed
|
1336
|
+
if original_shape != (target_size, target_size):
|
1337
|
+
scores_mask_resized = resize(
|
1338
|
+
scores_mask,
|
1339
|
+
original_shape,
|
1340
|
+
preserve_range=True,
|
1341
|
+
anti_aliasing=True,
|
1342
|
+
order=1,
|
1343
|
+
)
|
1344
|
+
scores_mask_final = np.clip(scores_mask_resized, 0.0, 1.0).astype(
|
1345
|
+
np.float32
|
1346
|
+
)
|
1347
|
+
else:
|
1348
|
+
scores_mask_final = scores_mask
|
1349
|
+
|
1350
|
+
# Save as GeoTIFF
|
1351
|
+
with rasterio.open(
|
1352
|
+
output_path,
|
1353
|
+
"w",
|
1354
|
+
driver="GTiff",
|
1355
|
+
height=scores_mask_final.shape[0],
|
1356
|
+
width=scores_mask_final.shape[1],
|
1357
|
+
count=1,
|
1358
|
+
dtype=scores_mask_final.dtype,
|
1359
|
+
crs=crs,
|
1360
|
+
transform=transform,
|
1361
|
+
compress="lzw",
|
1362
|
+
) as dst:
|
1363
|
+
dst.write(scores_mask_final, 1)
|
1364
|
+
|
1365
|
+
# Add metadata
|
1366
|
+
dst.update_tags(
|
1367
|
+
description="Instance scores mask with confidence values for each change object",
|
1368
|
+
total_instances=str(len(rles)),
|
1369
|
+
background_value="0.0",
|
1370
|
+
score_range="0.0-1.0",
|
1371
|
+
)
|
1372
|
+
|
1373
|
+
print(f"Saved instance scores mask with {len(rles)} instances to {output_path}")
|
1374
|
+
return len(rles)
|
1375
|
+
|
1376
|
+
def _extract_detailed_results(
|
1377
|
+
self, change_masks, transform, crs, original_shape, target_size
|
1378
|
+
):
|
1379
|
+
"""
|
1380
|
+
Extract detailed results from change masks.
|
1381
|
+
|
1382
|
+
Args:
|
1383
|
+
change_masks: Change detection masks (MaskData object)
|
1384
|
+
transform: Rasterio transform
|
1385
|
+
crs: Coordinate reference system
|
1386
|
+
original_shape (tuple): Original image shape
|
1387
|
+
target_size (int): Processing target size
|
1388
|
+
|
1389
|
+
Returns:
|
1390
|
+
dict: Detailed results with mask information and statistics
|
1391
|
+
"""
|
1392
|
+
# Extract mask components
|
1393
|
+
mask_items = dict(change_masks.items())
|
1394
|
+
rles = mask_items.get("rles", [])
|
1395
|
+
iou_preds = mask_items.get("iou_preds", None)
|
1396
|
+
stability_scores = mask_items.get("stability_score", None)
|
1397
|
+
change_confidence = mask_items.get("change_confidence", None)
|
1398
|
+
areas = mask_items.get("areas", None)
|
1399
|
+
boxes = mask_items.get("boxes", None)
|
1400
|
+
points = mask_items.get("points", None)
|
1401
|
+
|
1402
|
+
# Convert tensors to numpy if needed
|
1403
|
+
if iou_preds is not None:
|
1404
|
+
iou_preds = iou_preds.detach().cpu().numpy()
|
1405
|
+
if stability_scores is not None:
|
1406
|
+
stability_scores = stability_scores.detach().cpu().numpy()
|
1407
|
+
if change_confidence is not None:
|
1408
|
+
change_confidence = change_confidence.detach().cpu().numpy()
|
1409
|
+
if areas is not None:
|
1410
|
+
areas = areas.detach().cpu().numpy()
|
1411
|
+
if boxes is not None:
|
1412
|
+
boxes = boxes.detach().cpu().numpy()
|
1413
|
+
if points is not None:
|
1414
|
+
points = points.detach().cpu().numpy()
|
1415
|
+
|
1416
|
+
# Calculate statistics
|
1417
|
+
results = {
|
1418
|
+
"summary": {
|
1419
|
+
"total_masks": len(rles),
|
1420
|
+
"target_size": target_size,
|
1421
|
+
"original_shape": original_shape,
|
1422
|
+
"crs": str(crs),
|
1423
|
+
"transform": transform.to_gdal(),
|
1424
|
+
},
|
1425
|
+
"statistics": {},
|
1426
|
+
"masks": [],
|
1427
|
+
}
|
1428
|
+
|
1429
|
+
# Calculate statistics for each metric
|
1430
|
+
if iou_preds is not None and len(iou_preds) > 0:
|
1431
|
+
results["statistics"]["iou_predictions"] = {
|
1432
|
+
"mean": float(np.mean(iou_preds)),
|
1433
|
+
"std": float(np.std(iou_preds)),
|
1434
|
+
"min": float(np.min(iou_preds)),
|
1435
|
+
"max": float(np.max(iou_preds)),
|
1436
|
+
"median": float(np.median(iou_preds)),
|
1437
|
+
}
|
1438
|
+
|
1439
|
+
if stability_scores is not None and len(stability_scores) > 0:
|
1440
|
+
results["statistics"]["stability_scores"] = {
|
1441
|
+
"mean": float(np.mean(stability_scores)),
|
1442
|
+
"std": float(np.std(stability_scores)),
|
1443
|
+
"min": float(np.min(stability_scores)),
|
1444
|
+
"max": float(np.max(stability_scores)),
|
1445
|
+
"median": float(np.median(stability_scores)),
|
1446
|
+
}
|
1447
|
+
|
1448
|
+
if change_confidence is not None and len(change_confidence) > 0:
|
1449
|
+
results["statistics"]["change_confidence"] = {
|
1450
|
+
"mean": float(np.mean(change_confidence)),
|
1451
|
+
"std": float(np.std(change_confidence)),
|
1452
|
+
"min": float(np.min(change_confidence)),
|
1453
|
+
"max": float(np.max(change_confidence)),
|
1454
|
+
"median": float(np.median(change_confidence)),
|
1455
|
+
}
|
1456
|
+
|
1457
|
+
if areas is not None and len(areas) > 0:
|
1458
|
+
results["statistics"]["areas"] = {
|
1459
|
+
"mean": float(np.mean(areas)),
|
1460
|
+
"std": float(np.std(areas)),
|
1461
|
+
"min": float(np.min(areas)),
|
1462
|
+
"max": float(np.max(areas)),
|
1463
|
+
"median": float(np.median(areas)),
|
1464
|
+
"total": float(np.sum(areas)),
|
1465
|
+
}
|
1466
|
+
|
1467
|
+
# Extract individual mask details
|
1468
|
+
for i in range(len(rles)):
|
1469
|
+
mask_info = {
|
1470
|
+
"mask_id": i,
|
1471
|
+
"iou_pred": (
|
1472
|
+
float(iou_preds[i])
|
1473
|
+
if iou_preds is not None and i < len(iou_preds)
|
1474
|
+
else None
|
1475
|
+
),
|
1476
|
+
"stability_score": (
|
1477
|
+
float(stability_scores[i])
|
1478
|
+
if stability_scores is not None and i < len(stability_scores)
|
1479
|
+
else None
|
1480
|
+
),
|
1481
|
+
"change_confidence": (
|
1482
|
+
float(change_confidence[i])
|
1483
|
+
if change_confidence is not None and i < len(change_confidence)
|
1484
|
+
else None
|
1485
|
+
),
|
1486
|
+
"area": int(areas[i]) if areas is not None and i < len(areas) else None,
|
1487
|
+
"bbox": (
|
1488
|
+
boxes[i].tolist() if boxes is not None and i < len(boxes) else None
|
1489
|
+
),
|
1490
|
+
"center_point": (
|
1491
|
+
points[i].tolist()
|
1492
|
+
if points is not None and i < len(points)
|
1493
|
+
else None
|
1494
|
+
),
|
1495
|
+
}
|
1496
|
+
|
1497
|
+
# Calculate combined confidence score
|
1498
|
+
if all(
|
1499
|
+
v is not None
|
1500
|
+
for v in [
|
1501
|
+
mask_info["iou_pred"],
|
1502
|
+
mask_info["stability_score"],
|
1503
|
+
mask_info["change_confidence"],
|
1504
|
+
]
|
1505
|
+
):
|
1506
|
+
# Normalize change confidence (145 is typical threshold)
|
1507
|
+
conf_norm = max(0.0, min(1.0, mask_info["change_confidence"] / 145.0))
|
1508
|
+
combined_score = (
|
1509
|
+
0.3 * mask_info["iou_pred"]
|
1510
|
+
+ 0.3 * mask_info["stability_score"]
|
1511
|
+
+ 0.4 * conf_norm
|
1512
|
+
)
|
1513
|
+
mask_info["combined_confidence"] = float(combined_score)
|
1514
|
+
|
1515
|
+
results["masks"].append(mask_info)
|
1516
|
+
|
1517
|
+
# Sort masks by combined confidence if available
|
1518
|
+
if results["masks"] and "combined_confidence" in results["masks"][0]:
|
1519
|
+
results["masks"].sort(key=lambda x: x["combined_confidence"], reverse=True)
|
1520
|
+
|
1521
|
+
return results
|
1522
|
+
|
1523
|
+
|
1524
|
+
def download_checkpoint(
|
1525
|
+
model_type: str = "vit_h", checkpoint_dir: Optional[str] = None
|
1526
|
+
) -> str:
|
1527
|
+
"""Download the SAM model checkpoint.
|
1528
|
+
|
1529
|
+
Args:
|
1530
|
+
model_type (str, optional): The model type. Can be one of ['vit_h', 'vit_l', 'vit_b'].
|
1531
|
+
Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details.
|
1532
|
+
checkpoint_dir (str, optional): The checkpoint_dir directory. Defaults to None,
|
1533
|
+
which uses "~/.cache/torch/hub/checkpoints".
|
1534
|
+
"""
|
1535
|
+
|
1536
|
+
model_types = {
|
1537
|
+
"vit_h": {
|
1538
|
+
"name": "sam_vit_h_4b8939.pth",
|
1539
|
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
|
1540
|
+
},
|
1541
|
+
"vit_l": {
|
1542
|
+
"name": "sam_vit_l_0b3195.pth",
|
1543
|
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
|
1544
|
+
},
|
1545
|
+
"vit_b": {
|
1546
|
+
"name": "sam_vit_b_01ec64.pth",
|
1547
|
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
|
1548
|
+
},
|
1549
|
+
}
|
1550
|
+
|
1551
|
+
if model_type not in model_types:
|
1552
|
+
raise ValueError(
|
1553
|
+
f"Invalid model_type: {model_type}. It must be one of {', '.join(model_types)}"
|
1554
|
+
)
|
1555
|
+
|
1556
|
+
if checkpoint_dir is None:
|
1557
|
+
checkpoint_dir = os.environ.get(
|
1558
|
+
"TORCH_HOME", os.path.expanduser("~/.cache/torch/hub/checkpoints")
|
1559
|
+
)
|
1560
|
+
|
1561
|
+
checkpoint = os.path.join(checkpoint_dir, model_types[model_type]["name"])
|
1562
|
+
if not os.path.exists(checkpoint):
|
1563
|
+
print(f"Model checkpoint for {model_type} not found.")
|
1564
|
+
url = model_types[model_type]["url"]
|
1565
|
+
if isinstance(url, str):
|
1566
|
+
download_file(url, checkpoint)
|
1567
|
+
|
1568
|
+
return checkpoint
|