geoai-py 0.26.0__py2.py3-none-any.whl → 0.27.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
geoai/utils.py CHANGED
@@ -24,7 +24,6 @@ from typing import (
24
24
  )
25
25
 
26
26
  # Third-Party Libraries
27
- import cv2
28
27
  import geopandas as gpd
29
28
  import leafmap
30
29
  import matplotlib.pyplot as plt
@@ -6109,6 +6108,8 @@ def masks_to_vector(
6109
6108
  Returns:
6110
6109
  Any: GeoDataFrame with building footprints
6111
6110
  """
6111
+ import cv2 # Lazy import to avoid QGIS opencv conflicts
6112
+
6112
6113
  # Set default output path if not provided
6113
6114
  # if output_path is None:
6114
6115
  # output_path = os.path.splitext(mask_path)[0] + ".geojson"
@@ -7136,6 +7137,7 @@ def orthogonalize(
7136
7137
  Returns:
7137
7138
  Any: A GeoDataFrame containing the orthogonalized features.
7138
7139
  """
7140
+ import cv2 # Lazy import to avoid QGIS opencv conflicts
7139
7141
 
7140
7142
  from functools import partial
7141
7143
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: geoai-py
3
- Version: 0.26.0
3
+ Version: 0.27.0
4
4
  Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
5
5
  Author-email: Qiusheng Wu <giswqs@gmail.com>
6
6
  License: MIT License
@@ -71,7 +71,7 @@ Dynamic: license-file
71
71
  [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/geoai.svg)](https://anaconda.org/conda-forge/geoai)
72
72
  [![Conda Recipe](https://img.shields.io/badge/recipe-geoai-green.svg)](https://github.com/conda-forge/geoai-py-feedstock)
73
73
  [![image](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
74
- [![image](https://img.shields.io/badge/YouTube-Tutorials-red)](https://tinyurl.com/GeoAI-Tutorials)
74
+ [![image](https://img.shields.io/badge/YouTube-Tutorials-red)](https://www.youtube.com/playlist?list=PLAxJ4-o7ZoPcvENqwaPa_QwbbkZ5sctZE)
75
75
  [![QGIS](https://img.shields.io/badge/QGIS-plugin-orange.svg)](https://opengeoai.org/qgis_plugin)
76
76
 
77
77
  [![logo](https://raw.githubusercontent.com/opengeos/geoai/master/docs/assets/logo_rect.png)](https://github.com/opengeos/geoai/blob/master/docs/assets/logo.png)
@@ -91,7 +91,7 @@ The package provides five core capabilities:
91
91
  5. Interactive visualization through integration with [Leafmap](https://github.com/opengeos/leafmap/) and [MapLibre](https://github.com/eoda-dev/py-maplibregl).
92
92
  6. Seamless QGIS integration via a dedicated GeoAI plugin, enabling users to run AI-powered geospatial workflows directly within the QGIS desktop environment, without writing code.
93
93
 
94
- GeoAI addresses the growing demand for accessible AI tools in geospatial research by providing high-level APIs that abstract complex machine learning workflows while maintaining flexibility for advanced users. The package supports multiple data formats (GeoTIFF, JPEG2000,GeoJSON, Shapefile, GeoPackage) and includes automatic device management for GPU acceleration when available. With over 10 modules and extensive notebook examples, GeoAI serves as both a research tool and educational resource for the geospatial AI community.
94
+ GeoAI addresses the growing demand for accessible AI tools in geospatial research by providing high-level APIs that abstract complex machine learning workflows while maintaining flexibility for advanced users. The package supports multiple data formats (GeoTIFF, JPEG2000, GeoJSON, Shapefile, GeoPackage) and includes automatic device management for GPU acceleration when available. With over 10 modules and extensive notebook examples, GeoAI serves as both a research tool and educational resource for the geospatial AI community.
95
95
 
96
96
  ## 📝 Statement of Need
97
97
 
@@ -130,7 +130,7 @@ If you find GeoAI useful in your research, please consider citing the following
130
130
 
131
131
  - Integration with [PyTorch Segmentation Models](https://github.com/qubvel-org/segmentation_models.pytorch) for automatic feature extraction
132
132
  - Specialized segmentation algorithms optimized for satellite and aerial imagery
133
- - Streamlined workflows for segmenting buildings, water bodies, wetlands,solar panels, etc.
133
+ - Streamlined workflows for segmenting buildings, water bodies, wetlands, solar panels, etc.
134
134
  - Export capabilities to standard geospatial formats (GeoJSON, Shapefile, GeoPackage, GeoParquet)
135
135
 
136
136
  ### 🔍 Image Classification
@@ -1,25 +1,26 @@
1
- geoai/__init__.py,sha256=i5Kxxvdo0uANDhtMtzYoRWKhn0vIVOEAAH4Yy5ozXvY,5577
2
- geoai/auto.py,sha256=-jlyk9mO9n8BiUnrN9OZ1GU9B4PFwINSoYMfEeDVDNk,69219
3
- geoai/change_detection.py,sha256=g9-cVHO2hPdJf-VSAN2NckX2v0EfNgCUdiCRVnhjLyc,60387
1
+ geoai/__init__.py,sha256=d8cG_w4R0kSi2Rve1cUS2tPRs9brjik61xhbNR8Sgl4,6187
2
+ geoai/auto.py,sha256=WX3J_I9XpZxZnviaLK5YsIzTxueDpMB7kMPL9OlKClc,69396
3
+ geoai/change_detection.py,sha256=d_7PgR6-rHjKX2fwGO3Ld3M8OFUW0vhQdDo_2SOwjTE,60441
4
4
  geoai/classify.py,sha256=0DcComVR6vKU4qWtH2oHVeXc7ZTcV0mFvdXRtlNmolo,35637
5
- geoai/detectron2.py,sha256=dOOFM9M9-6PV8q2A4-mnIPrz7yTo-MpEvDiAW34nl0w,14610
5
+ geoai/detectron2.py,sha256=kfk3pLUfOL0gpBPhTpTNILXJAbcF-uBZQI9ZHKlhP84,14723
6
6
  geoai/dinov3.py,sha256=u4Lulihhvs4wTgi84RjRw8jWQpB8omQSl-dVVryNVus,40377
7
7
  geoai/download.py,sha256=i3hUKYnh9O5bKCioJuK4uEph-x-4AA0JT34u-km5L7o,47785
8
- geoai/extract.py,sha256=595MBcSaFx-gQLIEv5g3oEM90QA5In4L59GPVgBOlQc,122092
8
+ geoai/extract.py,sha256=ZeV5R4-HQKA46VgqlvmGK5GRA-OQv5sbGDQ5TmgKjsg,122277
9
9
  geoai/geoai.py,sha256=OskDN2AiiQj8mxjJY8vlF3fY5LszurEDpYPRFQkUTZk,10214
10
10
  geoai/hf.py,sha256=HbfJfpO6XnANKhmFOBvpwULiC65TeMlnLNtyQHHmlKA,17248
11
11
  geoai/landcover_train.py,sha256=QuuTOAVCfNqVarkrKVZRFQRcPM5poA_3_PRc9GduKpc,24713
12
12
  geoai/landcover_utils.py,sha256=ETNhPORZk84BUvpzZvTiJ85AgAJ4fhPlIf4WgQsHYJU,14231
13
13
  geoai/map_widgets.py,sha256=HECIBcLbDBtLaKKNt-xA5HqLNbJAjOpuVZnfN_MaQAE,25521
14
14
  geoai/moondream.py,sha256=sU8tXomWzRsjJqw9dhqtZfrQTkvDjbo5ARLP4AVfSQA,60922
15
- geoai/prithvi.py,sha256=hrMFB9oIcR2UIHwpbijuXrNGWniYO8hEW_RTGqxkRDM,40515
16
- geoai/sam.py,sha256=O6S-kGiFn7YEcFbfWFItZZQOhnsm6-GlunxQLY0daEs,34345
17
- geoai/segment.py,sha256=yBGTxA-ti8lBpk7WVaBOp6yP23HkaulKJQk88acrmZ0,43788
15
+ geoai/prithvi.py,sha256=qxPTCRKEqFODtIEXNftNTdh-1bBymq4uRnGs0uXMyn0,44407
16
+ geoai/sam.py,sha256=egMd5Mvmw67Ohms0vEwe5kbmyQ422aQug8FmtTAxxqs,34464
17
+ geoai/segment.py,sha256=k-bZZEj0ih_Sw6843WU7KYyEc0VzqC3Ly3Ev2G7Wz9c,44107
18
18
  geoai/segmentation.py,sha256=7yEzBSKCyHW1dNssoK0rdvhxi2IXsIQIFSga817KdI4,11535
19
+ geoai/timm_regress.py,sha256=e4sVqbnBJlWIngELhS_gnGtKSORZxKQhPAwBL068iLQ,56782
19
20
  geoai/timm_segment.py,sha256=GfvWmxT6t1S99-iZOf8PlsCkwodIUyrt0AwO_j6dCjE,38470
20
21
  geoai/timm_train.py,sha256=y_Sm9Fwe7bTsHEKdtPee5rGY7s01CbkAZKP1TwUDXlU,20551
21
22
  geoai/train.py,sha256=NtT5EDoHEQKFUcAdEy4zVkGsJU8pqzk8H9alfR90BSY,175838
22
- geoai/utils.py,sha256=8nf8_fnuCw6gdPeZ61lY5zpeoNOAjNNI--mxN9lySFA,372259
23
+ geoai/utils.py,sha256=UMyH-iyb9JFpPoDRS8JpmI-VShMlZp-AknorTuTuXUg,372371
23
24
  geoai/agents/__init__.py,sha256=K9htapECbC0h4BE2Ic4DW7GC6TuR9wNZ6HDZ2HkI6vI,310
24
25
  geoai/agents/catalog_models.py,sha256=19E-PiE7FvpGEiOi4gDMKPf257FOhLseuVGWJbOjrDs,2089
25
26
  geoai/agents/catalog_tools.py,sha256=psVw7-di65hhnJUFqWXFoOkbGaG2_sHrQhA5vdXp3x4,33597
@@ -31,9 +32,9 @@ geoai/tools/__init__.py,sha256=DE1kZOxzaW8C89TfOWQ3Vdv4WsBLV_SFiFWNWVWc4Ys,1922
31
32
  geoai/tools/cloudmask.py,sha256=qzvqVa8FAEgd8mePXBaV5Ptx4fHhwfS1BsYL0JAZBjM,14500
32
33
  geoai/tools/multiclean.py,sha256=TVwmWgeQyGIyUuCe10b6pGCtgIl8TkZmcgVXPimn9uM,11949
33
34
  geoai/tools/sr.py,sha256=kg6Zkq2wB2Ve7c1WblCfbDgd7hFkY65wWgFiD1zC7Vg,7018
34
- geoai_py-0.26.0.dist-info/licenses/LICENSE,sha256=TlBm8mRusRVB9yF2NTg-STcb71v69-XZaKaPdshqP2I,1074
35
- geoai_py-0.26.0.dist-info/METADATA,sha256=5kR92lHD9NwnZEdLkn42tWtwDAtjwH4nWfFYmA4E2ww,12065
36
- geoai_py-0.26.0.dist-info/WHEEL,sha256=Q6xS052dXadQWXcEVKSI037R6NoyqhUlJ5BcYz2iMP4,110
37
- geoai_py-0.26.0.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
38
- geoai_py-0.26.0.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
39
- geoai_py-0.26.0.dist-info/RECORD,,
35
+ geoai_py-0.27.0.dist-info/licenses/LICENSE,sha256=TlBm8mRusRVB9yF2NTg-STcb71v69-XZaKaPdshqP2I,1074
36
+ geoai_py-0.27.0.dist-info/METADATA,sha256=z6TFVHWq0p1st3NaSQ0Z8IbSk_N2zIfX5WD3Ekq6tok,12104
37
+ geoai_py-0.27.0.dist-info/WHEEL,sha256=Mk1ST5gDzEO5il5kYREiBnzzM469m5sI8ESPl7TRhJY,110
38
+ geoai_py-0.27.0.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
39
+ geoai_py-0.27.0.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
40
+ geoai_py-0.27.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.10.1)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py2-none-any
5
5
  Tag: py3-none-any