geoai-py 0.13.0__py2.py3-none-any.whl → 0.13.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
geoai/__init__.py CHANGED
@@ -2,7 +2,7 @@
2
2
 
3
3
  __author__ = """Qiusheng Wu"""
4
4
  __email__ = "giswqs@gmail.com"
5
- __version__ = "0.13.0"
5
+ __version__ = "0.13.2"
6
6
 
7
7
 
8
8
  import os
@@ -190,6 +190,8 @@ class GeoAgent(Agent):
190
190
  *,
191
191
  model: str = "llama3.1",
192
192
  map_instance: Optional[leafmap.Map] = None,
193
+ system_prompt: str = "default",
194
+ model_args: dict = None,
193
195
  **kwargs: Any,
194
196
  ) -> None:
195
197
  """Initialize the GeoAgent.
@@ -197,21 +199,25 @@ class GeoAgent(Agent):
197
199
  Args:
198
200
  model: Model identifier (default: "llama3.1").
199
201
  map_instance: Optional existing map instance.
202
+ model_args: Additional keyword arguments for the model.
200
203
  **kwargs: Additional keyword arguments for the model.
201
204
  """
202
205
  self.session: MapSession = MapSession(map_instance)
203
206
  self.tools: MapTools = MapTools(self.session)
204
207
 
208
+ if model_args is None:
209
+ model_args = {}
210
+
205
211
  # --- save a model factory we can call each turn ---
206
212
  if model == "llama3.1":
207
213
  self._model_factory: Callable[[], OllamaModel] = (
208
214
  lambda: create_ollama_model(
209
- host="http://localhost:11434", model_id=model, **kwargs
215
+ host="http://localhost:11434", model_id=model, **model_args
210
216
  )
211
217
  )
212
218
  elif isinstance(model, str):
213
219
  self._model_factory: Callable[[], BedrockModel] = (
214
- lambda: create_bedrock_model(model_id=model, **kwargs)
220
+ lambda: create_bedrock_model(model_id=model, **model_args)
215
221
  )
216
222
  elif isinstance(model, OllamaModel):
217
223
  # Extract configuration from existing OllamaModel and create new instances
@@ -220,7 +226,7 @@ class GeoAgent(Agent):
220
226
  client_args = model.client_args
221
227
  self._model_factory: Callable[[], OllamaModel] = (
222
228
  lambda: create_ollama_model(
223
- host=host, model_id=model_id, client_args=client_args, **kwargs
229
+ host=host, model_id=model_id, client_args=client_args, **model_args
224
230
  )
225
231
  )
226
232
  elif isinstance(model, OpenAIModel):
@@ -229,7 +235,7 @@ class GeoAgent(Agent):
229
235
  client_args = model.client_args.copy()
230
236
  self._model_factory: Callable[[], OpenAIModel] = (
231
237
  lambda mid=model_id, client_args=client_args: create_openai_model(
232
- model_id=mid, client_args=client_args, **kwargs
238
+ model_id=mid, client_args=client_args, **model_args
233
239
  )
234
240
  )
235
241
  elif isinstance(model, AnthropicModel):
@@ -238,7 +244,7 @@ class GeoAgent(Agent):
238
244
  client_args = model.client_args.copy()
239
245
  self._model_factory: Callable[[], AnthropicModel] = (
240
246
  lambda mid=model_id, client_args=client_args: create_anthropic_model(
241
- model_id=mid, client_args=client_args, **kwargs
247
+ model_id=mid, client_args=client_args, **model_args
242
248
  )
243
249
  )
244
250
  else:
@@ -247,6 +253,28 @@ class GeoAgent(Agent):
247
253
  # build initial model (first turn)
248
254
  model = self._model_factory()
249
255
 
256
+ if system_prompt == "default":
257
+ system_prompt = """
258
+ You are a map control agent. Call tools with MINIMAL parameters only.
259
+
260
+ CRITICAL: Treat all kwargs parameters as optional parameters.
261
+ CRITICAL: NEVER include optional parameters unless user explicitly asks for them.
262
+
263
+ TOOL CALL RULES:
264
+ - zoom_to(zoom=N) - ONLY zoom parameter, OMIT options completely
265
+ - add_cog_layer(url='X') - NEVER include bands, nodata, opacity, etc.
266
+ - fly_to(longitude=N, latitude=N) - NEVER include zoom parameter
267
+ - add_basemap(name='X') - NEVER include any other parameters
268
+ - add_marker(lng_lat=[lon,lat]) - NEVER include popup or options
269
+
270
+ - remove_layer(name='X') - call get_layer_names() to get the layer name closest to
271
+ the name of the layer you want to remove before calling this tool
272
+
273
+ - add_overture_3d_buildings(kwargs={}) - kwargs parameter required by tool validation
274
+ FORBIDDEN: Optional parameters, string representations like '{}' or '[1,2,3]'
275
+ REQUIRED: Minimal tool calls with only what's absolutely necessary
276
+ """
277
+
250
278
  super().__init__(
251
279
  name="Leafmap Visualization Agent",
252
280
  model=model,
@@ -276,20 +304,7 @@ class GeoAgent(Agent):
276
304
  self.tools.add_marker,
277
305
  self.tools.set_pitch,
278
306
  ],
279
- system_prompt="You are a map control agent. Call tools with MINIMAL parameters only.\n\n"
280
- + "CRITICAL: Treat all kwargs parameters as optional parameters.\n"
281
- + "CRITICAL: NEVER include optional parameters unless user explicitly asks for them.\n\n"
282
- + "TOOL CALL RULES:\n"
283
- + "- zoom_to(zoom=N) - ONLY zoom parameter, OMIT options completely\n"
284
- + "- add_cog_layer(url='X') - NEVER include bands, nodata, opacity, etc.\n"
285
- + "- fly_to(longitude=N, latitude=N) - NEVER include zoom parameter\n"
286
- + "- add_basemap(name='X') - NEVER include any other parameters\n"
287
- + "- add_marker(lng_lat=[lon,lat]) - NEVER include popup or options\n\n"
288
- + "- remove_layer(name='X') - call get_layer_names() to get the layer name closest to"
289
- + "the name of the layer you want to remove before calling this tool\n\n"
290
- + "- add_overture_3d_buildings(kwargs={}) - kwargs parameter required by tool validation\n"
291
- + "FORBIDDEN: Optional parameters, string representations like '{}' or '[1,2,3]'\n"
292
- + "REQUIRED: Minimal tool calls with only what's absolutely necessary",
307
+ system_prompt=system_prompt,
293
308
  callback_handler=None,
294
309
  )
295
310
 
@@ -389,7 +404,7 @@ class GeoAgent(Agent):
389
404
  ),
390
405
  (
391
406
  "Add GeoJSON",
392
- "Add vector layer: https://github.com/opengeos/datasets/releases/download/us/us_states.geojson",
407
+ "Add GeoJSON layer: https://github.com/opengeos/datasets/releases/download/us/us_states.geojson",
393
408
  ),
394
409
  ("Remove layer", "Remove layer OpenTopoMap"),
395
410
  ("Save map", "Save the map as demo.html and return the path"),
geoai/agents/map_tools.py CHANGED
@@ -115,7 +115,7 @@ class MapTools:
115
115
  visible: bool = True,
116
116
  bands: Optional[List[int]] = None,
117
117
  nodata: Optional[Union[int, float]] = 0,
118
- titiler_endpoint: str = "https://giswqs-titiler-endpoint.hf.space",
118
+ titiler_endpoint: str = None,
119
119
  ) -> str:
120
120
  """Add a Cloud Optimized GeoTIFF (COG) layer to the map.
121
121
 
geoai/train.py CHANGED
@@ -2625,6 +2625,8 @@ def semantic_inference_on_geotiff(
2625
2625
  num_channels: int = 3,
2626
2626
  num_classes: int = 2,
2627
2627
  device: Optional[torch.device] = None,
2628
+ probability_path: Optional[str] = None,
2629
+ probability_threshold: Optional[float] = None,
2628
2630
  quiet: bool = False,
2629
2631
  **kwargs: Any,
2630
2632
  ) -> Tuple[str, float]:
@@ -2641,6 +2643,11 @@ def semantic_inference_on_geotiff(
2641
2643
  num_channels (int): Number of channels to use from the input image.
2642
2644
  num_classes (int): Number of classes in the model output.
2643
2645
  device (torch.device, optional): Device to run inference on.
2646
+ probability_path (str, optional): Path to save probability map. If provided,
2647
+ the normalized class probabilities will be saved as a multi-band raster.
2648
+ probability_threshold (float, optional): Probability threshold for binary classification.
2649
+ Only used when num_classes=2. If provided, pixels with class 1 probability >= threshold
2650
+ are classified as class 1, otherwise class 0. If None (default), uses argmax.
2644
2651
  quiet (bool): If True, suppress progress bar. Defaults to False.
2645
2652
  **kwargs: Additional arguments.
2646
2653
 
@@ -2811,10 +2818,19 @@ def semantic_inference_on_geotiff(
2811
2818
  / count_accumulator[valid_pixels]
2812
2819
  )
2813
2820
 
2814
- # Take argmax to get final class predictions
2815
- mask[valid_pixels] = np.argmax(
2816
- normalized_probs[:, valid_pixels], axis=0
2817
- ).astype(np.uint8)
2821
+ # Apply threshold for binary classification or use argmax
2822
+ if probability_threshold is not None and num_classes == 2:
2823
+ # Use threshold: classify as class 1 if probability >= threshold
2824
+ mask[valid_pixels] = (
2825
+ normalized_probs[1, valid_pixels] >= probability_threshold
2826
+ ).astype(np.uint8)
2827
+ if not quiet:
2828
+ print(f"Using probability threshold: {probability_threshold}")
2829
+ else:
2830
+ # Take argmax to get final class predictions
2831
+ mask[valid_pixels] = np.argmax(
2832
+ normalized_probs[:, valid_pixels], axis=0
2833
+ ).astype(np.uint8)
2818
2834
 
2819
2835
  # Check class distribution in predictions (summary only)
2820
2836
  unique_classes, class_counts = np.unique(
@@ -2839,6 +2855,29 @@ def semantic_inference_on_geotiff(
2839
2855
  if not quiet:
2840
2856
  print(f"Saved prediction to {output_path}")
2841
2857
 
2858
+ # Save probability map if requested
2859
+ if probability_path is not None:
2860
+ prob_dir = os.path.abspath(os.path.dirname(probability_path))
2861
+ os.makedirs(prob_dir, exist_ok=True)
2862
+
2863
+ # Prepare probability output metadata
2864
+ prob_meta = meta.copy()
2865
+ prob_meta.update({"count": num_classes, "dtype": "float32"})
2866
+
2867
+ # Save normalized probabilities
2868
+ with rasterio.open(probability_path, "w", **prob_meta) as dst:
2869
+ for class_idx in range(num_classes):
2870
+ # Normalize probabilities
2871
+ prob_band = np.zeros((height, width), dtype=np.float32)
2872
+ prob_band[valid_pixels] = (
2873
+ prob_accumulator[class_idx, valid_pixels]
2874
+ / count_accumulator[valid_pixels]
2875
+ )
2876
+ dst.write(prob_band, class_idx + 1)
2877
+
2878
+ if not quiet:
2879
+ print(f"Saved probability map to {probability_path}")
2880
+
2842
2881
  return output_path, inference_time
2843
2882
 
2844
2883
 
@@ -2853,6 +2892,8 @@ def semantic_inference_on_image(
2853
2892
  num_classes: int = 2,
2854
2893
  device: Optional[torch.device] = None,
2855
2894
  binary_output: bool = True,
2895
+ probability_path: Optional[str] = None,
2896
+ probability_threshold: Optional[float] = None,
2856
2897
  quiet: bool = False,
2857
2898
  **kwargs: Any,
2858
2899
  ) -> Tuple[str, float]:
@@ -2870,6 +2911,11 @@ def semantic_inference_on_image(
2870
2911
  num_classes (int): Number of classes in the model output.
2871
2912
  device (torch.device, optional): Device to run inference on.
2872
2913
  binary_output (bool): If True, convert multi-class output to binary (class > 0).
2914
+ probability_path (str, optional): Path to save probability map. If provided,
2915
+ the normalized class probabilities will be saved as a multi-band raster.
2916
+ probability_threshold (float, optional): Probability threshold for binary classification.
2917
+ Only used when num_classes=2. If provided, pixels with class 1 probability >= threshold
2918
+ are classified as class 1, otherwise class 0. If None (default), uses argmax.
2873
2919
  quiet (bool): If True, suppress progress bar. Defaults to False.
2874
2920
  **kwargs: Additional arguments.
2875
2921
 
@@ -3056,10 +3102,19 @@ def semantic_inference_on_image(
3056
3102
  / count_accumulator[valid_pixels]
3057
3103
  )
3058
3104
 
3059
- # Take argmax to get final class predictions
3060
- mask[valid_pixels] = np.argmax(
3061
- normalized_probs[:, valid_pixels], axis=0
3062
- ).astype(np.uint8)
3105
+ # Apply threshold for binary classification or use argmax
3106
+ if probability_threshold is not None and num_classes == 2:
3107
+ # Use threshold: classify as class 1 if probability >= threshold
3108
+ mask[valid_pixels] = (
3109
+ normalized_probs[1, valid_pixels] >= probability_threshold
3110
+ ).astype(np.uint8)
3111
+ if not quiet:
3112
+ print(f"Using probability threshold: {probability_threshold}")
3113
+ else:
3114
+ # Take argmax to get final class predictions
3115
+ mask[valid_pixels] = np.argmax(
3116
+ normalized_probs[:, valid_pixels], axis=0
3117
+ ).astype(np.uint8)
3063
3118
 
3064
3119
  # Check class distribution in predictions before binary conversion
3065
3120
  unique_classes, class_counts = np.unique(mask, return_counts=True)
@@ -3116,6 +3171,40 @@ def semantic_inference_on_image(
3116
3171
  if not quiet:
3117
3172
  print(f"Saved prediction to {output_path}")
3118
3173
 
3174
+ # Save probability map if requested
3175
+ if probability_path is not None:
3176
+ prob_dir = os.path.abspath(os.path.dirname(probability_path))
3177
+ os.makedirs(prob_dir, exist_ok=True)
3178
+
3179
+ # For regular images, we'll save as a multi-channel TIFF
3180
+ # since we need to preserve floating point values
3181
+ import rasterio
3182
+ from rasterio.transform import from_bounds
3183
+
3184
+ # Create a simple affine transform (identity transform for pixel coordinates)
3185
+ transform = from_bounds(0, 0, width, height, width, height)
3186
+
3187
+ # Prepare probability output metadata
3188
+ prob_meta = {
3189
+ "driver": "GTiff",
3190
+ "height": height,
3191
+ "width": width,
3192
+ "count": num_classes,
3193
+ "dtype": "float32",
3194
+ "transform": transform,
3195
+ }
3196
+
3197
+ # Save normalized probabilities
3198
+ with rasterio.open(probability_path, "w", **prob_meta) as dst:
3199
+ for class_idx in range(num_classes):
3200
+ # Normalize probabilities
3201
+ prob_band = np.zeros((height, width), dtype=np.float32)
3202
+ prob_band[valid_pixels] = normalized_probs[class_idx, valid_pixels]
3203
+ dst.write(prob_band, class_idx + 1)
3204
+
3205
+ if not quiet:
3206
+ print(f"Saved probability map to {probability_path}")
3207
+
3119
3208
  return output_path, inference_time
3120
3209
 
3121
3210
 
@@ -3131,6 +3220,8 @@ def semantic_segmentation(
3131
3220
  overlap: int = 256,
3132
3221
  batch_size: int = 4,
3133
3222
  device: Optional[torch.device] = None,
3223
+ probability_path: Optional[str] = None,
3224
+ probability_threshold: Optional[float] = None,
3134
3225
  quiet: bool = False,
3135
3226
  **kwargs: Any,
3136
3227
  ) -> None:
@@ -3152,6 +3243,12 @@ def semantic_segmentation(
3152
3243
  overlap (int): Overlap between adjacent windows.
3153
3244
  batch_size (int): Batch size for inference.
3154
3245
  device (torch.device, optional): Device to run inference on.
3246
+ probability_path (str, optional): Path to save probability map. If provided,
3247
+ the normalized class probabilities will be saved as a multi-band raster.
3248
+ probability_threshold (float, optional): Probability threshold for binary classification.
3249
+ Only used when num_classes=2. If provided, pixels with class 1 probability >= threshold
3250
+ are classified as class 1, otherwise class 0. If None (default), uses argmax.
3251
+ Must be between 0 and 1.
3155
3252
  quiet (bool): If True, suppress progress bar. Defaults to False.
3156
3253
  **kwargs: Additional arguments.
3157
3254
 
@@ -3205,6 +3302,15 @@ def semantic_segmentation(
3205
3302
  model.to(device)
3206
3303
  model.eval()
3207
3304
 
3305
+ # Validate probability_threshold
3306
+ if probability_threshold is not None:
3307
+ if not (0 <= probability_threshold <= 1):
3308
+ raise ValueError("probability_threshold must be between 0 and 1")
3309
+ if num_classes != 2:
3310
+ raise ValueError(
3311
+ "probability_threshold is only supported for binary classification (num_classes=2)"
3312
+ )
3313
+
3208
3314
  # Use appropriate inference function based on file format
3209
3315
  if is_geotiff:
3210
3316
  semantic_inference_on_geotiff(
@@ -3217,6 +3323,8 @@ def semantic_segmentation(
3217
3323
  num_channels=num_channels,
3218
3324
  num_classes=num_classes,
3219
3325
  device=device,
3326
+ probability_path=probability_path,
3327
+ probability_threshold=probability_threshold,
3220
3328
  quiet=quiet,
3221
3329
  **kwargs,
3222
3330
  )
@@ -3235,6 +3343,8 @@ def semantic_segmentation(
3235
3343
  num_classes=num_classes,
3236
3344
  device=device,
3237
3345
  binary_output=True, # Convert to binary output for better visualization
3346
+ probability_path=probability_path,
3347
+ probability_threshold=probability_threshold,
3238
3348
  quiet=quiet,
3239
3349
  **kwargs,
3240
3350
  )
geoai/utils.py CHANGED
@@ -7522,7 +7522,11 @@ def write_colormap(
7522
7522
 
7523
7523
 
7524
7524
  def plot_performance_metrics(
7525
- history_path: str, figsize: Tuple[int, int] = (15, 5), verbose: bool = True
7525
+ history_path: str,
7526
+ figsize: Tuple[int, int] = (15, 5),
7527
+ verbose: bool = True,
7528
+ save_path: Optional[str] = None,
7529
+ kwargs: Optional[Dict] = None,
7526
7530
  ) -> None:
7527
7531
  """Plot performance metrics from a history object.
7528
7532
 
@@ -7531,6 +7535,8 @@ def plot_performance_metrics(
7531
7535
  figsize: The figure size.
7532
7536
  verbose: Whether to print the best and final metrics.
7533
7537
  """
7538
+ if kwargs is None:
7539
+ kwargs = {}
7534
7540
  history = torch.load(history_path)
7535
7541
 
7536
7542
  # Handle different key naming conventions
@@ -7579,6 +7585,14 @@ def plot_performance_metrics(
7579
7585
  plt.grid(True)
7580
7586
 
7581
7587
  plt.tight_layout()
7588
+
7589
+ if save_path:
7590
+ if "dpi" not in kwargs:
7591
+ kwargs["dpi"] = 150
7592
+ if "bbox_inches" not in kwargs:
7593
+ kwargs["bbox_inches"] = "tight"
7594
+ plt.savefig(save_path, **kwargs)
7595
+
7582
7596
  plt.show()
7583
7597
 
7584
7598
  if verbose:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: geoai-py
3
- Version: 0.13.0
3
+ Version: 0.13.2
4
4
  Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
5
5
  Author-email: Qiusheng Wu <giswqs@gmail.com>
6
6
  License: MIT License
@@ -1,4 +1,4 @@
1
- geoai/__init__.py,sha256=rKb_wHNQVHEFMzIYMkEXwp3_SlYN2YBzPvPFunMlZbs,3851
1
+ geoai/__init__.py,sha256=4gwrJIsRBRP9mcJZMjX3TXxCtV_61kmf7ewRRkcDjiM,3851
2
2
  geoai/change_detection.py,sha256=XkJjMEU1nD8uX3-nQy7NEmz8cukVeSaRxKJHlrv8xPM,59636
3
3
  geoai/classify.py,sha256=0DcComVR6vKU4qWtH2oHVeXc7ZTcV0mFvdXRtlNmolo,35637
4
4
  geoai/detectron2.py,sha256=dOOFM9M9-6PV8q2A4-mnIPrz7yTo-MpEvDiAW34nl0w,14610
@@ -11,14 +11,14 @@ geoai/map_widgets.py,sha256=QLmkILsztNaRXRULHKOd7Glb7S0pEWXSK9-P8S5AuzQ,5856
11
11
  geoai/sam.py,sha256=O6S-kGiFn7YEcFbfWFItZZQOhnsm6-GlunxQLY0daEs,34345
12
12
  geoai/segment.py,sha256=yBGTxA-ti8lBpk7WVaBOp6yP23HkaulKJQk88acrmZ0,43788
13
13
  geoai/segmentation.py,sha256=7yEzBSKCyHW1dNssoK0rdvhxi2IXsIQIFSga817KdI4,11535
14
- geoai/train.py,sha256=r9eioaBpc2eg6hckkGVI3aGhQZffKas_UVRj-AWruu8,136049
15
- geoai/utils.py,sha256=ECl5IWkGQA7-_50Ws27T5EMIg_88EJuIktI8gprviBw,300932
14
+ geoai/train.py,sha256=QDG0z6VmvHmzJC-oujZb2YSxnNEBloU_lmEgSygPM6U,141818
15
+ geoai/utils.py,sha256=lpyhytBeDLiqWz31syeRvpbT5AUn3cOblKU57uDD9sU,301265
16
16
  geoai/agents/__init__.py,sha256=NndUtQ5-i8Zuim8CJftCZYKbCvrkDXj9iLVtiBtc_qE,178
17
- geoai/agents/geo_agents.py,sha256=6vr5Asp18q_JD4aG9ZmebS7eNEseGsfrlZ0ChRKjLXk,21177
18
- geoai/agents/map_tools.py,sha256=7aepLzzKHYPEyj43lTTgWZJme8DQP6dgPUNK4yeRqNE,60707
19
- geoai_py-0.13.0.dist-info/licenses/LICENSE,sha256=vN2L5U7cZ6ZkOHFmc8WiGlsogWsZc5dllMeNxnKVOZg,1070
20
- geoai_py-0.13.0.dist-info/METADATA,sha256=FP9x9Q2HS08x__vjOtpLlHNX2Q7NGGe7bnRCN4EMCOw,10345
21
- geoai_py-0.13.0.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
22
- geoai_py-0.13.0.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
23
- geoai_py-0.13.0.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
24
- geoai_py-0.13.0.dist-info/RECORD,,
17
+ geoai/agents/geo_agents.py,sha256=4tLntKBL_FgTQsUVzReP9acbYotnfjMRc5BYwW9WEyE,21431
18
+ geoai/agents/map_tools.py,sha256=OK5uB0VUHjjUnc-DYRy2CQ__kyUIARSCPBucGabO0Xw,60669
19
+ geoai_py-0.13.2.dist-info/licenses/LICENSE,sha256=vN2L5U7cZ6ZkOHFmc8WiGlsogWsZc5dllMeNxnKVOZg,1070
20
+ geoai_py-0.13.2.dist-info/METADATA,sha256=wGO4OHdq1ubtroaqbEciKq1jHmJD8C_krbZTJByFP98,10345
21
+ geoai_py-0.13.2.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
22
+ geoai_py-0.13.2.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
23
+ geoai_py-0.13.2.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
24
+ geoai_py-0.13.2.dist-info/RECORD,,