genhpf 1.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- genhpf/__init__.py +9 -0
- genhpf/configs/__init__.py +23 -0
- genhpf/configs/config.yaml +8 -0
- genhpf/configs/configs.py +240 -0
- genhpf/configs/constants.py +29 -0
- genhpf/configs/initialize.py +58 -0
- genhpf/configs/utils.py +29 -0
- genhpf/criterions/__init__.py +74 -0
- genhpf/criterions/binary_cross_entropy.py +114 -0
- genhpf/criterions/binary_cross_entropy_with_logits.py +115 -0
- genhpf/criterions/criterion.py +87 -0
- genhpf/criterions/cross_entropy.py +202 -0
- genhpf/criterions/multi_task_criterion.py +177 -0
- genhpf/criterions/simclr_criterion.py +84 -0
- genhpf/criterions/wav2vec2_criterion.py +130 -0
- genhpf/datasets/__init__.py +84 -0
- genhpf/datasets/dataset.py +109 -0
- genhpf/datasets/genhpf_dataset.py +451 -0
- genhpf/datasets/meds_dataset.py +232 -0
- genhpf/loggings/__init__.py +0 -0
- genhpf/loggings/meters.py +374 -0
- genhpf/loggings/metrics.py +155 -0
- genhpf/loggings/progress_bar.py +445 -0
- genhpf/models/__init__.py +73 -0
- genhpf/models/genhpf.py +244 -0
- genhpf/models/genhpf_mlm.py +64 -0
- genhpf/models/genhpf_predictor.py +73 -0
- genhpf/models/genhpf_simclr.py +58 -0
- genhpf/models/genhpf_wav2vec2.py +304 -0
- genhpf/modules/__init__.py +15 -0
- genhpf/modules/gather_layer.py +23 -0
- genhpf/modules/grad_multiply.py +12 -0
- genhpf/modules/gumbel_vector_quantizer.py +204 -0
- genhpf/modules/identity_layer.py +8 -0
- genhpf/modules/layer_norm.py +27 -0
- genhpf/modules/positional_encoding.py +24 -0
- genhpf/scripts/__init__.py +0 -0
- genhpf/scripts/preprocess/__init__.py +0 -0
- genhpf/scripts/preprocess/genhpf/README.md +75 -0
- genhpf/scripts/preprocess/genhpf/__init__.py +0 -0
- genhpf/scripts/preprocess/genhpf/ehrs/__init__.py +36 -0
- genhpf/scripts/preprocess/genhpf/ehrs/ehr.py +919 -0
- genhpf/scripts/preprocess/genhpf/ehrs/eicu.py +550 -0
- genhpf/scripts/preprocess/genhpf/ehrs/mimiciii.py +839 -0
- genhpf/scripts/preprocess/genhpf/ehrs/mimiciv.py +619 -0
- genhpf/scripts/preprocess/genhpf/main.py +175 -0
- genhpf/scripts/preprocess/genhpf/manifest.py +79 -0
- genhpf/scripts/preprocess/genhpf/sample_dataset.py +177 -0
- genhpf/scripts/preprocess/genhpf/utils/__init__.py +3 -0
- genhpf/scripts/preprocess/genhpf/utils/utils.py +16 -0
- genhpf/scripts/preprocess/manifest.py +83 -0
- genhpf/scripts/preprocess/preprocess_meds.py +674 -0
- genhpf/scripts/test.py +264 -0
- genhpf/scripts/train.py +365 -0
- genhpf/trainer.py +370 -0
- genhpf/utils/checkpoint_utils.py +171 -0
- genhpf/utils/data_utils.py +130 -0
- genhpf/utils/distributed_utils.py +497 -0
- genhpf/utils/file_io.py +170 -0
- genhpf/utils/pdb.py +38 -0
- genhpf/utils/utils.py +204 -0
- genhpf-1.0.11.dist-info/LICENSE +21 -0
- genhpf-1.0.11.dist-info/METADATA +202 -0
- genhpf-1.0.11.dist-info/RECORD +67 -0
- genhpf-1.0.11.dist-info/WHEEL +5 -0
- genhpf-1.0.11.dist-info/entry_points.txt +6 -0
- genhpf-1.0.11.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,839 @@
|
|
|
1
|
+
import glob
|
|
2
|
+
import logging
|
|
3
|
+
import os
|
|
4
|
+
from datetime import datetime
|
|
5
|
+
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import pyspark.sql.functions as F
|
|
8
|
+
from ehrs import EHR, register_ehr
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@register_ehr("mimiciii")
|
|
14
|
+
class MIMICIII(EHR):
|
|
15
|
+
def __init__(self, cfg):
|
|
16
|
+
super().__init__(cfg)
|
|
17
|
+
|
|
18
|
+
self.ehr_name = "mimiciii"
|
|
19
|
+
|
|
20
|
+
if self.data_dir is None:
|
|
21
|
+
self.data_dir = os.path.join(self.cache_dir, self.ehr_name)
|
|
22
|
+
|
|
23
|
+
if not os.path.exists(self.data_dir):
|
|
24
|
+
logger.info(
|
|
25
|
+
"Data is not found so try to download from the internet. "
|
|
26
|
+
"Note that this is a restricted-access resource. "
|
|
27
|
+
"Please log in to physionet.org with a credentialed user."
|
|
28
|
+
)
|
|
29
|
+
self.download_ehr_from_url(
|
|
30
|
+
url="https://physionet.org/files/mimiciii/1.4/", dest=self.data_dir
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
logger.info("Data directory is set to {}".format(self.data_dir))
|
|
34
|
+
|
|
35
|
+
if self.ccs_path is None:
|
|
36
|
+
self.ccs_path = os.path.join(self.cache_dir, "ccs_multi_dx_tool_2015.csv")
|
|
37
|
+
|
|
38
|
+
if not os.path.exists(self.ccs_path):
|
|
39
|
+
logger.info("`ccs_multi_dx_tool_2015.csv` is not found so try to download from the internet.")
|
|
40
|
+
self.download_ccs_from_url(self.cache_dir)
|
|
41
|
+
|
|
42
|
+
if self.ext is None:
|
|
43
|
+
self.ext = self.infer_data_extension()
|
|
44
|
+
|
|
45
|
+
# constants
|
|
46
|
+
self._icustay_fname = "ICUSTAYS" + self.ext
|
|
47
|
+
self._patient_fname = "PATIENTS" + self.ext
|
|
48
|
+
self._admission_fname = "ADMISSIONS" + self.ext
|
|
49
|
+
self._diagnosis_fname = "DIAGNOSES_ICD" + self.ext
|
|
50
|
+
|
|
51
|
+
# XXX more features? user choice?
|
|
52
|
+
self.tables = [
|
|
53
|
+
{
|
|
54
|
+
"fname": "LABEVENTS" + self.ext,
|
|
55
|
+
"timestamp": "CHARTTIME",
|
|
56
|
+
"timeoffsetunit": "abs",
|
|
57
|
+
"exclude": ["ROW_ID", "SUBJECT_ID"],
|
|
58
|
+
"code": ["ITEMID"],
|
|
59
|
+
"desc": ["D_LABITEMS" + self.ext],
|
|
60
|
+
"desc_key": ["LABEL"],
|
|
61
|
+
},
|
|
62
|
+
{
|
|
63
|
+
"fname": "PRESCRIPTIONS" + self.ext,
|
|
64
|
+
"timestamp": "STARTDATE",
|
|
65
|
+
"timeoffsetunit": "abs",
|
|
66
|
+
"exclude": ["ENDDATE", "GSN", "NDC", "ROW_ID", "SUBJECT_ID"],
|
|
67
|
+
},
|
|
68
|
+
{
|
|
69
|
+
"fname": "INPUTEVENTS_MV" + self.ext,
|
|
70
|
+
"timestamp": "STARTTIME",
|
|
71
|
+
"timeoffsetunit": "abs",
|
|
72
|
+
"exclude": [
|
|
73
|
+
"ENDTIME",
|
|
74
|
+
"STORETIME",
|
|
75
|
+
"CGID",
|
|
76
|
+
"ORDERID",
|
|
77
|
+
"LINKORDERID",
|
|
78
|
+
"ROW_ID",
|
|
79
|
+
"SUBJECT_ID",
|
|
80
|
+
"CONTINUEINNEXTDEPT",
|
|
81
|
+
"CANCELREASON",
|
|
82
|
+
"STATUSDESCRIPTION",
|
|
83
|
+
"COMMENTS_CANCELEDBY",
|
|
84
|
+
"COMMENTS_DATE",
|
|
85
|
+
],
|
|
86
|
+
"code": ["ITEMID"],
|
|
87
|
+
"desc": ["D_ITEMS" + self.ext],
|
|
88
|
+
"desc_key": ["LABEL"],
|
|
89
|
+
},
|
|
90
|
+
{
|
|
91
|
+
"fname": "INPUTEVENTS_CV" + self.ext,
|
|
92
|
+
"timestamp": "CHARTTIME",
|
|
93
|
+
"timeoffsetunit": "abs",
|
|
94
|
+
"exclude": [
|
|
95
|
+
"STORETIME",
|
|
96
|
+
"CGID",
|
|
97
|
+
"ORDERID",
|
|
98
|
+
"LINKORDERID",
|
|
99
|
+
"ROW_ID",
|
|
100
|
+
"STOPPED",
|
|
101
|
+
"SUBJECT_ID",
|
|
102
|
+
],
|
|
103
|
+
"code": ["ITEMID"],
|
|
104
|
+
"desc": ["D_ITEMS" + self.ext],
|
|
105
|
+
"desc_key": ["LABEL"],
|
|
106
|
+
},
|
|
107
|
+
]
|
|
108
|
+
|
|
109
|
+
if self.feature == "select":
|
|
110
|
+
extra_exclude_feature_dict = {
|
|
111
|
+
"LABEVENTS" + self.ext: ["VALUE", "FLAG"],
|
|
112
|
+
"PRESCRIPTIONS"
|
|
113
|
+
+ self.ext: [
|
|
114
|
+
"DRUG_TYPE",
|
|
115
|
+
"DRUG_NAME_POE",
|
|
116
|
+
"DRUG_NAME_GENERIC",
|
|
117
|
+
"FORMULARY_DRUG_CD",
|
|
118
|
+
"FORM_VAL_DISP",
|
|
119
|
+
"FORM_UNIT_DISP",
|
|
120
|
+
],
|
|
121
|
+
"INPUTEVENTS_MV"
|
|
122
|
+
+ self.ext: [
|
|
123
|
+
"AMOUNT",
|
|
124
|
+
"AMOUNTUOM",
|
|
125
|
+
"ORDERCATEGORYNAME",
|
|
126
|
+
"SECONDARYORDERCATEGORYNAME",
|
|
127
|
+
"ORDERCOMPONENTTYPEDESCRIPTION",
|
|
128
|
+
"ORDERCATEGORYDESCRIPTION",
|
|
129
|
+
"PATIENTWEIGHT",
|
|
130
|
+
"TOTALAMOUNT",
|
|
131
|
+
"TOTALAMOUNTUOM",
|
|
132
|
+
"ISOPENBAG",
|
|
133
|
+
"COMMENTS_EDITEDBY",
|
|
134
|
+
"ORIGINALAMOUNT",
|
|
135
|
+
"ORIGINALRATE",
|
|
136
|
+
],
|
|
137
|
+
"INPUTEVENTS_CV"
|
|
138
|
+
+ self.ext: [
|
|
139
|
+
"AMOUNT",
|
|
140
|
+
"AMOUNTUOM",
|
|
141
|
+
"NEWBOTTLE",
|
|
142
|
+
"ORIGINALAMOUNT",
|
|
143
|
+
"ORIGINALRATE",
|
|
144
|
+
"ORIGIANLAMOUNTUOM",
|
|
145
|
+
"ORIGINALRATE",
|
|
146
|
+
"ORIGINALRATEUOM",
|
|
147
|
+
"ORIGINALSITE",
|
|
148
|
+
],
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
for table in self.tables:
|
|
152
|
+
if table["fname"] in extra_exclude_feature_dict.keys():
|
|
153
|
+
exclude_target_list = extra_exclude_feature_dict[table["fname"]]
|
|
154
|
+
table["exclude"].extend(exclude_target_list)
|
|
155
|
+
|
|
156
|
+
if self.emb_type == "codebase":
|
|
157
|
+
feature_types_for_codebase_emb_dict = {
|
|
158
|
+
"LABEVENTS"
|
|
159
|
+
+ self.ext: {
|
|
160
|
+
"numeric_feat": ["VALUE", "VALUENUM"],
|
|
161
|
+
"categorical_feat": [],
|
|
162
|
+
"code_feat": ["ITEMID"],
|
|
163
|
+
},
|
|
164
|
+
"PRESCRIPTIONS"
|
|
165
|
+
+ self.ext: {
|
|
166
|
+
"numeric_feat": ["DOSE_VAL_RX", "FORM_VAL_DISP"],
|
|
167
|
+
"categorical_feat": [],
|
|
168
|
+
"code_feat": ["DRUG"],
|
|
169
|
+
},
|
|
170
|
+
"INPUTEVENTS_MV"
|
|
171
|
+
+ self.ext: {
|
|
172
|
+
"numeric_feat": [
|
|
173
|
+
"AMOUNT",
|
|
174
|
+
"RATE",
|
|
175
|
+
"PATIENTWEIGHT",
|
|
176
|
+
"TOTALAMOUNT",
|
|
177
|
+
"ORIGINALAMOUNT",
|
|
178
|
+
"ORIGINALRATE",
|
|
179
|
+
],
|
|
180
|
+
"categorical_feat": ["ISOPENBAG", "CONTINUEINNEXTDEPT", "CANCELREASON", "VALUECOUNTS"],
|
|
181
|
+
"code_feat": ["ITEMID"],
|
|
182
|
+
},
|
|
183
|
+
"INPUTEVENTS_CV"
|
|
184
|
+
+ self.ext: {
|
|
185
|
+
"numeric_feat": [
|
|
186
|
+
"AMOUNT",
|
|
187
|
+
"RATE",
|
|
188
|
+
"PATIENTWEIGHT",
|
|
189
|
+
"TOTALAMOUNT",
|
|
190
|
+
"ORIGINALAMOUNT",
|
|
191
|
+
"ORIGINALRATE",
|
|
192
|
+
],
|
|
193
|
+
"categorical_feat": ["ISOPENBAG", "CONTINUEINNEXTDEPT", "CANCELREASON", "VALUECOUNTS"],
|
|
194
|
+
"code_feat": ["ITEMID"],
|
|
195
|
+
},
|
|
196
|
+
}
|
|
197
|
+
|
|
198
|
+
for table in self.tables:
|
|
199
|
+
if table["fname"] in feature_types_for_codebase_emb_dict.keys():
|
|
200
|
+
feature_dict = feature_types_for_codebase_emb_dict[table["fname"]]
|
|
201
|
+
table.update(feature_dict)
|
|
202
|
+
|
|
203
|
+
if self.creatinine or self.bilirubin or self.platelets or self.wbc:
|
|
204
|
+
self.task_itemids = {
|
|
205
|
+
"creatinine": {
|
|
206
|
+
"fname": "LABEVENTS" + self.ext,
|
|
207
|
+
"timestamp": "CHARTTIME",
|
|
208
|
+
"timeoffsetunit": "abs",
|
|
209
|
+
"exclude": ["ROW_ID", "SUBJECT_ID", "VALUE", "VALUEUOM", "FLAG"],
|
|
210
|
+
"code": ["ITEMID"],
|
|
211
|
+
"value": ["VALUENUM"],
|
|
212
|
+
"itemid": [50912],
|
|
213
|
+
},
|
|
214
|
+
"bilirubin": {
|
|
215
|
+
"fname": "LABEVENTS" + self.ext,
|
|
216
|
+
"timestamp": "CHARTTIME",
|
|
217
|
+
"timeoffsetunit": "abs",
|
|
218
|
+
"exclude": ["ROW_ID", "SUBJECT_ID", "VALUE", "VALUEUOM", "FLAG"],
|
|
219
|
+
"code": ["ITEMID"],
|
|
220
|
+
"value": ["VALUENUM"],
|
|
221
|
+
"itemid": [50885],
|
|
222
|
+
},
|
|
223
|
+
"platelets": {
|
|
224
|
+
"fname": "LABEVENTS" + self.ext,
|
|
225
|
+
"timestamp": "CHARTTIME",
|
|
226
|
+
"timeoffsetunit": "abs",
|
|
227
|
+
"exclude": ["ROW_ID", "SUBJECT_ID", "VALUE", "VALUEUOM", "FLAG"],
|
|
228
|
+
"code": ["ITEMID"],
|
|
229
|
+
"value": ["VALUENUM"],
|
|
230
|
+
"itemid": [51265],
|
|
231
|
+
},
|
|
232
|
+
"wbc": {
|
|
233
|
+
"fname": "LABEVENTS" + self.ext,
|
|
234
|
+
"timestamp": "CHARTTIME",
|
|
235
|
+
"timeoffsetunit": "abs",
|
|
236
|
+
"exclude": ["ROW_ID", "SUBJECT_ID", "VALUE", "FLAG"],
|
|
237
|
+
"code": ["ITEMID"],
|
|
238
|
+
"value": ["VALUENUM"],
|
|
239
|
+
"itemid": [51300, 51301],
|
|
240
|
+
},
|
|
241
|
+
"dialysis": {
|
|
242
|
+
"tables": {
|
|
243
|
+
"chartevents": {
|
|
244
|
+
"fname": "CHARTEVENTS" + self.ext,
|
|
245
|
+
"timestamp": "CHARTTIME",
|
|
246
|
+
"timeoffsetunit": "abs",
|
|
247
|
+
"include": [
|
|
248
|
+
"ICUSTAY_ID",
|
|
249
|
+
"SUBJECT_ID",
|
|
250
|
+
"ITEMID",
|
|
251
|
+
"VALUE",
|
|
252
|
+
"VALUENUM",
|
|
253
|
+
"CHARTTIME",
|
|
254
|
+
"ERROR",
|
|
255
|
+
],
|
|
256
|
+
"itemid": {
|
|
257
|
+
"cv_ce": [
|
|
258
|
+
152,
|
|
259
|
+
148,
|
|
260
|
+
149,
|
|
261
|
+
146,
|
|
262
|
+
147,
|
|
263
|
+
151,
|
|
264
|
+
150,
|
|
265
|
+
7949,
|
|
266
|
+
229,
|
|
267
|
+
235,
|
|
268
|
+
241,
|
|
269
|
+
247,
|
|
270
|
+
253,
|
|
271
|
+
259,
|
|
272
|
+
265,
|
|
273
|
+
271,
|
|
274
|
+
582,
|
|
275
|
+
466,
|
|
276
|
+
917,
|
|
277
|
+
927,
|
|
278
|
+
6250,
|
|
279
|
+
],
|
|
280
|
+
"mv_ce": [
|
|
281
|
+
226118,
|
|
282
|
+
227357,
|
|
283
|
+
225725,
|
|
284
|
+
226499,
|
|
285
|
+
224154,
|
|
286
|
+
225810,
|
|
287
|
+
227639,
|
|
288
|
+
225183,
|
|
289
|
+
227438,
|
|
290
|
+
224191,
|
|
291
|
+
225806,
|
|
292
|
+
225807,
|
|
293
|
+
228004,
|
|
294
|
+
228005,
|
|
295
|
+
228006,
|
|
296
|
+
224144,
|
|
297
|
+
224145,
|
|
298
|
+
224149,
|
|
299
|
+
224150,
|
|
300
|
+
224151,
|
|
301
|
+
224152,
|
|
302
|
+
224153,
|
|
303
|
+
224404,
|
|
304
|
+
224406,
|
|
305
|
+
226457,
|
|
306
|
+
225959,
|
|
307
|
+
224135,
|
|
308
|
+
224139,
|
|
309
|
+
224146,
|
|
310
|
+
225323,
|
|
311
|
+
225740,
|
|
312
|
+
225776,
|
|
313
|
+
225951,
|
|
314
|
+
225952,
|
|
315
|
+
225953,
|
|
316
|
+
225954,
|
|
317
|
+
225956,
|
|
318
|
+
225958,
|
|
319
|
+
225961,
|
|
320
|
+
225963,
|
|
321
|
+
225965,
|
|
322
|
+
225976,
|
|
323
|
+
225977,
|
|
324
|
+
227124,
|
|
325
|
+
227290,
|
|
326
|
+
227638,
|
|
327
|
+
227640,
|
|
328
|
+
227753,
|
|
329
|
+
],
|
|
330
|
+
},
|
|
331
|
+
},
|
|
332
|
+
"inputevents_cv": {
|
|
333
|
+
"fname": "INPUTEVENTS_CV" + self.ext,
|
|
334
|
+
"timestamp": "CHARTTIME",
|
|
335
|
+
"timeoffsetunit": "abs",
|
|
336
|
+
"include": ["SUBJECT_ID", "ITEMID", "AMOUNT", "CHARTTIME"],
|
|
337
|
+
"itemid": {
|
|
338
|
+
"cv_ie": [
|
|
339
|
+
40788,
|
|
340
|
+
40907,
|
|
341
|
+
41063,
|
|
342
|
+
41147,
|
|
343
|
+
41307,
|
|
344
|
+
41460,
|
|
345
|
+
41620,
|
|
346
|
+
41711,
|
|
347
|
+
41791,
|
|
348
|
+
41792,
|
|
349
|
+
42562,
|
|
350
|
+
43829,
|
|
351
|
+
44037,
|
|
352
|
+
44188,
|
|
353
|
+
44526,
|
|
354
|
+
44527,
|
|
355
|
+
44584,
|
|
356
|
+
44591,
|
|
357
|
+
44698,
|
|
358
|
+
44927,
|
|
359
|
+
44954,
|
|
360
|
+
45157,
|
|
361
|
+
45268,
|
|
362
|
+
45352,
|
|
363
|
+
45353,
|
|
364
|
+
46012,
|
|
365
|
+
46013,
|
|
366
|
+
46172,
|
|
367
|
+
46173,
|
|
368
|
+
46250,
|
|
369
|
+
46262,
|
|
370
|
+
46292,
|
|
371
|
+
46293,
|
|
372
|
+
46311,
|
|
373
|
+
46389,
|
|
374
|
+
46574,
|
|
375
|
+
46681,
|
|
376
|
+
46720,
|
|
377
|
+
46769,
|
|
378
|
+
46773,
|
|
379
|
+
]
|
|
380
|
+
},
|
|
381
|
+
},
|
|
382
|
+
"outputevents": {
|
|
383
|
+
"fname": "OUTPUTEVENTS" + self.ext,
|
|
384
|
+
"timestamp": "CHARTTIME",
|
|
385
|
+
"timeoffsetunit": "abs",
|
|
386
|
+
"include": ["SUBJECT_ID", "ITEMID", "VALUE", "CHARTTIME"],
|
|
387
|
+
"itemid": {
|
|
388
|
+
"cv_oe": [
|
|
389
|
+
40386,
|
|
390
|
+
40425,
|
|
391
|
+
40426,
|
|
392
|
+
40507,
|
|
393
|
+
40613,
|
|
394
|
+
40624,
|
|
395
|
+
40690,
|
|
396
|
+
40745,
|
|
397
|
+
40789,
|
|
398
|
+
40881,
|
|
399
|
+
40910,
|
|
400
|
+
41016,
|
|
401
|
+
41034,
|
|
402
|
+
41069,
|
|
403
|
+
41112,
|
|
404
|
+
41250,
|
|
405
|
+
41374,
|
|
406
|
+
41417,
|
|
407
|
+
41500,
|
|
408
|
+
41527,
|
|
409
|
+
41623,
|
|
410
|
+
41635,
|
|
411
|
+
41713,
|
|
412
|
+
41750,
|
|
413
|
+
41829,
|
|
414
|
+
41842,
|
|
415
|
+
41897,
|
|
416
|
+
42289,
|
|
417
|
+
42388,
|
|
418
|
+
42464,
|
|
419
|
+
42524,
|
|
420
|
+
42536,
|
|
421
|
+
42868,
|
|
422
|
+
42928,
|
|
423
|
+
42972,
|
|
424
|
+
43016,
|
|
425
|
+
43052,
|
|
426
|
+
43098,
|
|
427
|
+
43115,
|
|
428
|
+
43687,
|
|
429
|
+
43941,
|
|
430
|
+
44027,
|
|
431
|
+
44085,
|
|
432
|
+
44193,
|
|
433
|
+
44199,
|
|
434
|
+
44216,
|
|
435
|
+
44286,
|
|
436
|
+
44567,
|
|
437
|
+
44843,
|
|
438
|
+
44845,
|
|
439
|
+
44857,
|
|
440
|
+
44901,
|
|
441
|
+
44943,
|
|
442
|
+
45479,
|
|
443
|
+
45828,
|
|
444
|
+
46230,
|
|
445
|
+
46232,
|
|
446
|
+
46394,
|
|
447
|
+
46464,
|
|
448
|
+
46712,
|
|
449
|
+
46713,
|
|
450
|
+
46715,
|
|
451
|
+
46741,
|
|
452
|
+
],
|
|
453
|
+
},
|
|
454
|
+
},
|
|
455
|
+
"inputevents_mv": {
|
|
456
|
+
"fname": "INPUTEVENTS_MV" + self.ext,
|
|
457
|
+
"timestamp": "STARTTIME",
|
|
458
|
+
"timeoffsetunit": "abs",
|
|
459
|
+
"include": ["SUBJECT_ID", "ITEMID", "AMOUNT", "STARTTIME"],
|
|
460
|
+
"itemid": {"mv_ie": [227536, 227525]},
|
|
461
|
+
},
|
|
462
|
+
"datetimeevents": {
|
|
463
|
+
"fname": "DATETIMEEVENTS" + self.ext,
|
|
464
|
+
"timestamp": "CHARTTIME",
|
|
465
|
+
"timeoffsetunit": "abs",
|
|
466
|
+
"include": ["SUBJECT_ID", "ITEMID", "CHARTTIME"],
|
|
467
|
+
"itemid": {"mv_de": [225318, 225319, 225321, 225322, 225324]},
|
|
468
|
+
},
|
|
469
|
+
"procedureevents_mv": {
|
|
470
|
+
"fname": "PROCEDUREEVENTS_MV" + self.ext,
|
|
471
|
+
"timestamp": "STARTTIME",
|
|
472
|
+
"timeoffsetunit": "abs",
|
|
473
|
+
"include": ["SUBJECT_ID", "ITEMID", "STARTTIME"],
|
|
474
|
+
"itemid": {
|
|
475
|
+
"mv_pe": [225441, 225802, 225803, 225805, 224270, 225809, 225955, 225436]
|
|
476
|
+
},
|
|
477
|
+
},
|
|
478
|
+
}
|
|
479
|
+
},
|
|
480
|
+
}
|
|
481
|
+
|
|
482
|
+
self.disch_map_dict = {
|
|
483
|
+
"DISC-TRAN CANCER/CHLDRN H": "Other",
|
|
484
|
+
"DISC-TRAN TO FEDERAL HC": "Other",
|
|
485
|
+
"DISCH-TRAN TO PSYCH HOSP": "Other",
|
|
486
|
+
"HOME": "Home",
|
|
487
|
+
"HOME HEALTH CARE": "Home",
|
|
488
|
+
"HOME WITH HOME IV PROVIDR": "Home",
|
|
489
|
+
"HOSPICE-HOME": "Other",
|
|
490
|
+
"HOSPICE-MEDICAL FACILITY": "Other",
|
|
491
|
+
"ICF": "Other",
|
|
492
|
+
"IN_ICU_MORTALITY": "IN_ICU_MORTALITY",
|
|
493
|
+
"LEFT AGAINST MEDICAL ADVI": "Other",
|
|
494
|
+
"LONG TERM CARE HOSPITAL": "Other",
|
|
495
|
+
"OTHER FACILITY": "Other",
|
|
496
|
+
"REHAB/DISTINCT PART HOSP": "Rehabilitation",
|
|
497
|
+
"SHORT TERM HOSPITAL": "Other",
|
|
498
|
+
"SNF": "Skilled Nursing Facility",
|
|
499
|
+
"SNF-MEDICAID ONLY CERTIF": "Skilled Nursing Facility",
|
|
500
|
+
"Death": "Death",
|
|
501
|
+
}
|
|
502
|
+
self._icustay_key = "ICUSTAY_ID"
|
|
503
|
+
self._hadm_key = "HADM_ID"
|
|
504
|
+
self._patient_key = "SUBJECT_ID"
|
|
505
|
+
|
|
506
|
+
self._determine_first_icu = "INTIME"
|
|
507
|
+
|
|
508
|
+
def build_cohorts(self, cached=False):
|
|
509
|
+
icustays = pd.read_csv(os.path.join(self.data_dir, self.icustay_fname))
|
|
510
|
+
|
|
511
|
+
icustays = self.make_compatible(icustays)
|
|
512
|
+
self.icustays = icustays
|
|
513
|
+
|
|
514
|
+
cohorts = super().build_cohorts(icustays, cached=cached)
|
|
515
|
+
|
|
516
|
+
return cohorts
|
|
517
|
+
|
|
518
|
+
def prepare_tasks(self, cohorts, spark, cached=False):
|
|
519
|
+
if cohorts is None and cached:
|
|
520
|
+
labeled_cohorts = self.load_from_cache(self.ehr_name + ".cohorts.labeled")
|
|
521
|
+
if labeled_cohorts is not None:
|
|
522
|
+
return labeled_cohorts
|
|
523
|
+
|
|
524
|
+
labeled_cohorts = super().prepare_tasks(cohorts, spark, cached)
|
|
525
|
+
|
|
526
|
+
if self.diagnosis:
|
|
527
|
+
logger.info("Start labeling cohorts for diagnosis prediction.")
|
|
528
|
+
# define diagnosis prediction task
|
|
529
|
+
diagnoses = pd.read_csv(os.path.join(self.data_dir, self.diagnosis_fname))
|
|
530
|
+
|
|
531
|
+
ccs_dx = pd.read_csv(self.ccs_path)
|
|
532
|
+
ccs_dx["'ICD-9-CM CODE'"] = ccs_dx["'ICD-9-CM CODE'"].str[1:-1].str.strip()
|
|
533
|
+
ccs_dx["'CCS LVL 1'"] = ccs_dx["'CCS LVL 1'"].str[1:-1]
|
|
534
|
+
lvl1 = {x: int(y) - 1 for _, (x, y) in ccs_dx[["'ICD-9-CM CODE'", "'CCS LVL 1'"]].iterrows()}
|
|
535
|
+
diagnoses["diagnosis"] = diagnoses["ICD9_CODE"].map(lvl1)
|
|
536
|
+
|
|
537
|
+
diagnoses = diagnoses[(diagnoses["diagnosis"].notnull()) & (diagnoses["diagnosis"] != 14)]
|
|
538
|
+
diagnoses.loc[diagnoses["diagnosis"] >= 14, "diagnosis"] -= 1
|
|
539
|
+
diagnoses = diagnoses.groupby(self.hadm_key)["diagnosis"].agg(lambda x: list(set(x))).to_frame()
|
|
540
|
+
labeled_cohorts = labeled_cohorts.merge(diagnoses, on=self.hadm_key, how="inner")
|
|
541
|
+
|
|
542
|
+
# labeled_cohorts = labeled_cohorts.drop(columns=["ICD9_CODE"])
|
|
543
|
+
|
|
544
|
+
logger.info(
|
|
545
|
+
"Done preparing diagnosis prediction for the given cohorts, Cohort Numbers: {}".format(
|
|
546
|
+
len(labeled_cohorts)
|
|
547
|
+
)
|
|
548
|
+
)
|
|
549
|
+
|
|
550
|
+
self.save_to_cache(labeled_cohorts, self.ehr_name + ".cohorts.labeled")
|
|
551
|
+
|
|
552
|
+
if self.bilirubin or self.platelets or self.creatinine or self.wbc:
|
|
553
|
+
logger.info("Start labeling cohorts for clinical task prediction.")
|
|
554
|
+
|
|
555
|
+
labeled_cohorts = spark.createDataFrame(labeled_cohorts)
|
|
556
|
+
|
|
557
|
+
if self.bilirubin:
|
|
558
|
+
labeled_cohorts = self.clinical_task(labeled_cohorts, "bilirubin", spark)
|
|
559
|
+
|
|
560
|
+
if self.platelets:
|
|
561
|
+
labeled_cohorts = self.clinical_task(labeled_cohorts, "platelets", spark)
|
|
562
|
+
|
|
563
|
+
if self.creatinine:
|
|
564
|
+
labeled_cohorts = self.clinical_task(labeled_cohorts, "creatinine", spark)
|
|
565
|
+
|
|
566
|
+
if self.wbc:
|
|
567
|
+
labeled_cohorts = self.clinical_task(labeled_cohorts, "wbc", spark)
|
|
568
|
+
# labeled_cohorts = labeled_cohorts.toPandas()
|
|
569
|
+
|
|
570
|
+
# self.save_to_cache(labeled_cohorts, self.ehr_name + ".cohorts.labeled.clinical_tasks")
|
|
571
|
+
|
|
572
|
+
logger.info("Done preparing clinical task prediction for the given cohorts")
|
|
573
|
+
|
|
574
|
+
# self.save_to_cache(labeled_cohorts, self.ehr_name + ".cohorts.labeled")
|
|
575
|
+
return labeled_cohorts
|
|
576
|
+
|
|
577
|
+
def make_compatible(self, icustays):
|
|
578
|
+
patients = pd.read_csv(os.path.join(self.data_dir, self.patient_fname))
|
|
579
|
+
admissions = pd.read_csv(os.path.join(self.data_dir, self.admission_fname))
|
|
580
|
+
|
|
581
|
+
# prepare icustays according to the appropriate format
|
|
582
|
+
icustays = icustays[icustays["FIRST_CAREUNIT"] == icustays["LAST_CAREUNIT"]]
|
|
583
|
+
|
|
584
|
+
icustays["INTIME"] = pd.to_datetime(icustays["INTIME"], infer_datetime_format=True, utc=True)
|
|
585
|
+
|
|
586
|
+
icustays["OUTTIME"] = pd.to_datetime(icustays["OUTTIME"], infer_datetime_format=True, utc=True)
|
|
587
|
+
icustays = icustays.drop(columns=["ROW_ID"])
|
|
588
|
+
|
|
589
|
+
# merge icustays with patients to get DOB
|
|
590
|
+
patients["DOB"] = pd.to_datetime(patients["DOB"], infer_datetime_format=True, utc=True)
|
|
591
|
+
patients = patients[patients["SUBJECT_ID"].isin(icustays["SUBJECT_ID"])]
|
|
592
|
+
patients = patients.drop(columns=["ROW_ID"])[["DOB", "SUBJECT_ID"]]
|
|
593
|
+
icustays = icustays.merge(patients, on="SUBJECT_ID", how="left")
|
|
594
|
+
|
|
595
|
+
def calculate_age(birth: datetime, now: datetime):
|
|
596
|
+
age = now.year - birth.year
|
|
597
|
+
if now.month < birth.month:
|
|
598
|
+
age -= 1
|
|
599
|
+
elif (now.month == birth.month) and (now.day < birth.day):
|
|
600
|
+
age -= 1
|
|
601
|
+
|
|
602
|
+
return age
|
|
603
|
+
|
|
604
|
+
icustays["AGE"] = icustays.apply(lambda x: calculate_age(x["DOB"], x["INTIME"]), axis=1)
|
|
605
|
+
|
|
606
|
+
# merge with admissions to get discharge information
|
|
607
|
+
icustays = pd.merge(
|
|
608
|
+
icustays.reset_index(drop=True),
|
|
609
|
+
admissions[["HADM_ID", "DISCHARGE_LOCATION", "DEATHTIME", "DISCHTIME"]],
|
|
610
|
+
how="left",
|
|
611
|
+
on="HADM_ID",
|
|
612
|
+
)
|
|
613
|
+
icustays["DISCHARGE_LOCATION"].replace("DEAD/EXPIRED", "Death", inplace=True)
|
|
614
|
+
|
|
615
|
+
icustays["DISCHTIME"] = pd.to_datetime(icustays["DISCHTIME"], infer_datetime_format=True, utc=True)
|
|
616
|
+
|
|
617
|
+
icustays["IN_ICU_MORTALITY"] = (
|
|
618
|
+
(icustays["INTIME"] < icustays["DISCHTIME"])
|
|
619
|
+
& (icustays["DISCHTIME"] <= icustays["OUTTIME"])
|
|
620
|
+
& (icustays["DISCHARGE_LOCATION"] == "Death")
|
|
621
|
+
)
|
|
622
|
+
icustays["DISCHARGE_LOCATION"] = icustays["DISCHARGE_LOCATION"].map(self.disch_map_dict)
|
|
623
|
+
|
|
624
|
+
icustays.rename(columns={"DISCHARGE_LOCATION": "HOS_DISCHARGE_LOCATION"}, inplace=True)
|
|
625
|
+
icustays["DISCHTIME"] = (icustays["DISCHTIME"] - icustays["INTIME"]).dt.total_seconds() // 60
|
|
626
|
+
icustays["OUTTIME"] = (icustays["OUTTIME"] - icustays["INTIME"]).dt.total_seconds() // 60
|
|
627
|
+
return icustays
|
|
628
|
+
|
|
629
|
+
def clinical_task(self, cohorts, task, spark):
|
|
630
|
+
fname = self.task_itemids[task]["fname"]
|
|
631
|
+
timestamp = self.task_itemids[task]["timestamp"]
|
|
632
|
+
timeoffsetunit = self.task_itemids[task]["timeoffsetunit"]
|
|
633
|
+
excludes = self.task_itemids[task]["exclude"]
|
|
634
|
+
code = self.task_itemids[task]["code"][0]
|
|
635
|
+
value = self.task_itemids[task]["value"][0]
|
|
636
|
+
itemid = self.task_itemids[task]["itemid"]
|
|
637
|
+
|
|
638
|
+
table = spark.read.csv(os.path.join(self.data_dir, fname), header=True)
|
|
639
|
+
table = table.drop(*excludes)
|
|
640
|
+
table = table.filter(F.col(code).isin(itemid)).filter(F.col(value).isNotNull())
|
|
641
|
+
|
|
642
|
+
merge = cohorts.join(table, on=self.hadm_key, how="inner")
|
|
643
|
+
|
|
644
|
+
if timeoffsetunit == "abs":
|
|
645
|
+
merge = merge.withColumn(timestamp, F.to_timestamp(timestamp))
|
|
646
|
+
|
|
647
|
+
# For Creatinine task, eliminate icus if patient went through dialysis treatment
|
|
648
|
+
# before (obs_size + pred_size) timestamp
|
|
649
|
+
# see https://github.com/MIT-LCP/mimic-code/blob/main/mimic-iii/concepts/rrt.sql
|
|
650
|
+
if task == "creatinine":
|
|
651
|
+
dialysis_tables = self.task_itemids["dialysis"]["tables"]
|
|
652
|
+
chartevents = spark.read.csv(os.path.join(self.data_dir, "CHARTEVENTS" + self.ext), header=True)
|
|
653
|
+
inputevents_cv = spark.read.csv(
|
|
654
|
+
os.path.join(self.data_dir, "INPUTEVENTS_CV" + self.ext), header=True
|
|
655
|
+
)
|
|
656
|
+
outputevents = spark.read.csv(os.path.join(self.data_dir, "OUTPUTEVENTS" + self.ext), header=True)
|
|
657
|
+
inputevents_mv = spark.read.csv(
|
|
658
|
+
os.path.join(self.data_dir, "INPUTEVENTS_MV" + self.ext), header=True
|
|
659
|
+
)
|
|
660
|
+
datetimeevents = spark.read.csv(
|
|
661
|
+
os.path.join(self.data_dir, "DATETIMEEVENTS" + self.ext), header=True
|
|
662
|
+
)
|
|
663
|
+
procedureevents_mv = spark.read.csv(
|
|
664
|
+
os.path.join(self.data_dir, "PROCEDUREEVENTS_MV" + self.ext), header=True
|
|
665
|
+
)
|
|
666
|
+
icustays = spark.read.csv(os.path.join(self.data_dir, "ICUSTAYS" + self.ext), header=True)
|
|
667
|
+
|
|
668
|
+
chartevents = chartevents.select(*dialysis_tables["chartevents"]["include"])
|
|
669
|
+
inputevents_cv = inputevents_cv.select(*dialysis_tables["inputevents_cv"]["include"])
|
|
670
|
+
outputevents = outputevents.select(*dialysis_tables["outputevents"]["include"])
|
|
671
|
+
inputevents_mv = inputevents_mv.select(*dialysis_tables["inputevents_mv"]["include"])
|
|
672
|
+
datetimeevents = datetimeevents.select(*dialysis_tables["datetimeevents"]["include"])
|
|
673
|
+
procedureevents_mv = procedureevents_mv.select(*dialysis_tables["procedureevents_mv"]["include"])
|
|
674
|
+
|
|
675
|
+
# Filter dialysis related tables with dialysis condition #TODO: check dialysis condition
|
|
676
|
+
cv_ce = (
|
|
677
|
+
chartevents.filter(F.col("ITEMID").isin(dialysis_tables["chartevents"]["itemid"]["cv_ce"]))
|
|
678
|
+
.filter(F.col("VALUE").isNotNull())
|
|
679
|
+
.filter((F.col("ERROR").isNull()) | (F.col("ERROR") == 0))
|
|
680
|
+
.filter(
|
|
681
|
+
(
|
|
682
|
+
(F.col("ITEMID").isin([152, 148, 149, 146, 147, 151, 150]))
|
|
683
|
+
& (F.col("VALUE").isNotNull())
|
|
684
|
+
)
|
|
685
|
+
| (
|
|
686
|
+
(F.col("ITEMID").isin([229, 235, 241, 247, 253, 259, 265, 271]))
|
|
687
|
+
& (F.col("VALUE") == "Dialysis Line")
|
|
688
|
+
)
|
|
689
|
+
| ((F.col("ITEMID") == 466) & (F.col("VALUE") == "Dialysis RN"))
|
|
690
|
+
| ((F.col("ITEMID") == 927) & (F.col("VALUE") == "Dialysis Solutions"))
|
|
691
|
+
| ((F.col("ITEMID") == 6250) & (F.col("VALUE") == "dialys"))
|
|
692
|
+
| (
|
|
693
|
+
(F.col("ITEMID") == 917)
|
|
694
|
+
& (
|
|
695
|
+
F.col("VALUE").isin(
|
|
696
|
+
[
|
|
697
|
+
"+ INITIATE DIALYSIS",
|
|
698
|
+
"BLEEDING FROM DIALYSIS CATHETER",
|
|
699
|
+
"FAILED DIALYSIS CATH.",
|
|
700
|
+
"FEBRILE SYNDROME;DIALYSIS",
|
|
701
|
+
"HYPOTENSION WITH HEMODIALYSIS",
|
|
702
|
+
"HYPOTENSION.GLOGGED DIALYSIS",
|
|
703
|
+
"INFECTED DIALYSIS CATHETER",
|
|
704
|
+
]
|
|
705
|
+
)
|
|
706
|
+
)
|
|
707
|
+
)
|
|
708
|
+
| (
|
|
709
|
+
(F.col("ITEMID") == 582)
|
|
710
|
+
& (
|
|
711
|
+
F.col("VALUE").isin(
|
|
712
|
+
[
|
|
713
|
+
"CAVH Start",
|
|
714
|
+
"CAVH D/C",
|
|
715
|
+
"CVVHD Start",
|
|
716
|
+
"CVVHD D/C",
|
|
717
|
+
"Hemodialysis st",
|
|
718
|
+
"Hemodialysis end",
|
|
719
|
+
]
|
|
720
|
+
)
|
|
721
|
+
)
|
|
722
|
+
)
|
|
723
|
+
)
|
|
724
|
+
)
|
|
725
|
+
icustays = icustays.filter(F.col("DBSOURCE") == "carevue").select(self.icustay_key)
|
|
726
|
+
cv_ce = cv_ce.join(icustays, on=self.icustay_key, how="inner")
|
|
727
|
+
cv_ie = inputevents_cv.filter(
|
|
728
|
+
F.col("ITEMID").isin(dialysis_tables["inputevents_cv"]["itemid"]["cv_ie"])
|
|
729
|
+
).filter(F.col("AMOUNT") > 0)
|
|
730
|
+
cv_oe = outputevents.filter(
|
|
731
|
+
F.col("ITEMID").isin(dialysis_tables["outputevents"]["itemid"]["cv_oe"])
|
|
732
|
+
).filter(F.col("VALUE") > 0)
|
|
733
|
+
mv_ce = (
|
|
734
|
+
chartevents.filter(F.col("ITEMID").isin(dialysis_tables["chartevents"]["itemid"]["mv_ce"]))
|
|
735
|
+
.filter(F.col("VALUENUM") > 0)
|
|
736
|
+
.filter((F.col("ERROR").isNull()) | (F.col("ERROR") == 0))
|
|
737
|
+
)
|
|
738
|
+
mv_ie = inputevents_mv.filter(
|
|
739
|
+
F.col("ITEMID").isin(dialysis_tables["inputevents_mv"]["itemid"]["mv_ie"])
|
|
740
|
+
).filter(F.col("AMOUNT") > 0)
|
|
741
|
+
mv_de = datetimeevents.filter(
|
|
742
|
+
F.col("ITEMID").isin(dialysis_tables["datetimeevents"]["itemid"]["mv_de"])
|
|
743
|
+
)
|
|
744
|
+
mv_pe = procedureevents_mv.filter(
|
|
745
|
+
F.col("ITEMID").isin(dialysis_tables["procedureevents_mv"]["itemid"]["mv_pe"])
|
|
746
|
+
)
|
|
747
|
+
|
|
748
|
+
def dialysis_time(table, timecolumn):
|
|
749
|
+
return table.withColumn("_DIALYSIS_TIME", F.to_timestamp(timecolumn)).select(
|
|
750
|
+
self.patient_key, "_DIALYSIS_TIME"
|
|
751
|
+
)
|
|
752
|
+
|
|
753
|
+
cv_ce, cv_ie, cv_oe, mv_ce, mv_ie, mv_de, mv_pe = (
|
|
754
|
+
dialysis_time(cv_ce, "CHARTTIME"),
|
|
755
|
+
dialysis_time(cv_ie, "CHARTTIME"),
|
|
756
|
+
dialysis_time(cv_oe, "CHARTTIME"),
|
|
757
|
+
dialysis_time(mv_ce, "CHARTTIME"),
|
|
758
|
+
dialysis_time(mv_ie, "STARTTIME"),
|
|
759
|
+
dialysis_time(mv_de, "CHARTTIME"),
|
|
760
|
+
dialysis_time(mv_pe, "STARTTIME"),
|
|
761
|
+
)
|
|
762
|
+
|
|
763
|
+
dialysis = cv_ce.union(cv_ie).union(cv_oe).union(mv_ce).union(mv_ie).union(mv_de).union(mv_pe)
|
|
764
|
+
dialysis = dialysis.groupBy(self.patient_key).agg(F.min("_DIALYSIS_TIME").alias("_DIALYSIS_TIME"))
|
|
765
|
+
merge = merge.join(dialysis, on=self.patient_key, how="left")
|
|
766
|
+
merge = merge.filter(F.isnull("_DIALYSIS_TIME") | (F.col("_DIALYSIS_TIME") > F.col(timestamp)))
|
|
767
|
+
merge = merge.drop("_DIALYSIS_TIME")
|
|
768
|
+
|
|
769
|
+
if timeoffsetunit == "abs":
|
|
770
|
+
merge = merge.withColumn(
|
|
771
|
+
timestamp, F.round((F.col(timestamp).cast("long") - F.col("INTIME").cast("long")) / 60)
|
|
772
|
+
)
|
|
773
|
+
|
|
774
|
+
# Cohort with events within (obs_size + gap_size) - (obs_size + pred_size)
|
|
775
|
+
merge = merge.filter(((self.obs_size + self.gap_size) * 60) <= F.col(timestamp)).filter(
|
|
776
|
+
((self.obs_size + self.pred_size) * 60) >= F.col(timestamp)
|
|
777
|
+
)
|
|
778
|
+
|
|
779
|
+
# Average value of events
|
|
780
|
+
value_agg = merge.groupBy(self.icustay_key).agg(
|
|
781
|
+
F.mean(value).alias("avg_value")
|
|
782
|
+
) # TODO: mean/min/max?
|
|
783
|
+
|
|
784
|
+
# Labeling
|
|
785
|
+
if task == "bilirubin":
|
|
786
|
+
value_agg = value_agg.withColumn(
|
|
787
|
+
task,
|
|
788
|
+
F.when(value_agg.avg_value < 1.2, 0)
|
|
789
|
+
.when((value_agg.avg_value >= 1.2) & (value_agg.avg_value < 2.0), 1)
|
|
790
|
+
.when((value_agg.avg_value >= 2.0) & (value_agg.avg_value < 6.0), 2)
|
|
791
|
+
.when((value_agg.avg_value >= 6.0) & (value_agg.avg_value < 12.0), 3)
|
|
792
|
+
.when(value_agg.avg_value >= 12.0, 4),
|
|
793
|
+
)
|
|
794
|
+
elif task == "platelets":
|
|
795
|
+
value_agg = value_agg.withColumn(
|
|
796
|
+
task,
|
|
797
|
+
F.when(value_agg.avg_value >= 150, 0)
|
|
798
|
+
.when((value_agg.avg_value >= 100) & (value_agg.avg_value < 150), 1)
|
|
799
|
+
.when((value_agg.avg_value >= 50) & (value_agg.avg_value < 100), 2)
|
|
800
|
+
.when((value_agg.avg_value >= 20) & (value_agg.avg_value < 50), 3)
|
|
801
|
+
.when(value_agg.avg_value < 20, 4),
|
|
802
|
+
)
|
|
803
|
+
|
|
804
|
+
elif task == "creatinine":
|
|
805
|
+
value_agg = value_agg.withColumn(
|
|
806
|
+
task,
|
|
807
|
+
F.when(value_agg.avg_value < 1.2, 0)
|
|
808
|
+
.when((value_agg.avg_value >= 1.2) & (value_agg.avg_value < 2.0), 1)
|
|
809
|
+
.when((value_agg.avg_value >= 2.0) & (value_agg.avg_value < 3.5), 2)
|
|
810
|
+
.when((value_agg.avg_value >= 3.5) & (value_agg.avg_value < 5), 3)
|
|
811
|
+
.when(value_agg.avg_value >= 5, 4),
|
|
812
|
+
)
|
|
813
|
+
|
|
814
|
+
elif task == "wbc":
|
|
815
|
+
value_agg = value_agg.withColumn(
|
|
816
|
+
task,
|
|
817
|
+
F.when(value_agg.avg_value < 4, 0)
|
|
818
|
+
.when((value_agg.avg_value >= 4) & (value_agg.avg_value <= 12), 1)
|
|
819
|
+
.when((value_agg.avg_value > 12), 2),
|
|
820
|
+
)
|
|
821
|
+
|
|
822
|
+
cohorts = cohorts.join(value_agg.select(self.icustay_key, task), on=self.icustay_key, how="left")
|
|
823
|
+
|
|
824
|
+
return cohorts
|
|
825
|
+
|
|
826
|
+
def infer_data_extension(self) -> str:
|
|
827
|
+
if len(glob.glob(os.path.join(self.data_dir, "*.csv.gz"))) == 26:
|
|
828
|
+
ext = ".csv.gz"
|
|
829
|
+
elif len(glob.glob(os.path.join(self.data_dir, "*.csv"))) == 26:
|
|
830
|
+
ext = ".csv"
|
|
831
|
+
else:
|
|
832
|
+
raise AssertionError(
|
|
833
|
+
"Provided data directory is not correct. Please check if --data is correct. "
|
|
834
|
+
"--data: {}".format(self.data_dir)
|
|
835
|
+
)
|
|
836
|
+
|
|
837
|
+
logger.info("Data extension is set to '{}'".format(ext))
|
|
838
|
+
|
|
839
|
+
return ext
|