geney 1.3.70__py2.py3-none-any.whl → 1.3.72__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of geney might be problematic. Click here for more details.

geney/splicing_utils.py CHANGED
@@ -597,8 +597,18 @@ def process_pairwise_epistasis_explicit(mid, engine='spliceai'):
597
597
  ).round(2)
598
598
 
599
599
  # Drop columns that do not vary (only one unique value).
600
- acceptors_df = acceptors_df.loc[:, acceptors_df.nunique() > 1]
601
- donors_df = donors_df.loc[:, donors_df.nunique() > 1]
600
+ # acceptors_df = acceptors_df.loc[:, acceptors_df.nunique() > 1]
601
+ # donors_df = donors_df.loc[:, donors_df.nunique() > 1]
602
+ if (acceptors_df.nunique() > 1).any():
603
+ acceptors_df = acceptors_df.loc[:, acceptors_df.nunique() > 1]
604
+ else:
605
+ acceptors_df = acceptors_df.iloc[:, [0]]
606
+
607
+ # For donors_df:
608
+ if (donors_df.nunique() > 1).any():
609
+ donors_df = donors_df.loc[:, donors_df.nunique() > 1]
610
+ else:
611
+ donors_df = donors_df.iloc[:, [0]]
602
612
 
603
613
  # Further filter acceptors: keep only columns where the value in the second row is < 0.1.
604
614
  # (Assumes that the second row (iloc[1]) represents a specific measure you wish to threshold.)
@@ -607,13 +617,7 @@ def process_pairwise_epistasis_explicit(mid, engine='spliceai'):
607
617
  def add_features_and_filter(df):
608
618
  if df.shape[1] == 0:
609
619
  return df # Nothing to process if no columns remain.
610
- # Compute the residual:
611
- # (row 3 - row 0) minus ( (row 1 - row 0) + (row 2 - row 0) )
612
620
  df.loc['residual'] = (df.iloc[3] - df.iloc[0]) - ((df.iloc[1] - df.iloc[0]) + (df.iloc[2] - df.iloc[0]))
613
- # Keep only columns where the absolute residual exceeds 0.1.
614
- # df = df.loc[:, df.loc['residual'].abs() > 0.1]
615
- # if df.shape[1] == 0:
616
- # return df
617
621
  # Compute deviations relative to the baseline (row 0)
618
622
  df.loc['deviation1'] = df.iloc[1] - df.iloc[0]
619
623
  df.loc['deviation2'] = df.iloc[2] - df.iloc[0]
@@ -631,34 +635,10 @@ def process_pairwise_epistasis_explicit(mid, engine='spliceai'):
631
635
  acceptors_df.loc['site_type', :] = 1
632
636
 
633
637
  df = pd.concat([acceptors_df, donors_df], axis=1)
634
- #
635
- # if df.shape[1] == 0:
636
- # return df
637
- #
638
- # mask = df.apply(
639
- # lambda col: (
640
- # (abs(col['residual']) > 0.1) and
641
- # (abs(col['deviation1'] + col['deviation2']) < 0.1)
642
- # ),
643
- # axis=0
644
- # )
645
- #
646
- # df.loc['synergistic'] = 0
647
- # df.loc['synergistic', mask] = 1
648
- #
649
- # mask = df.apply(
650
- # lambda col: (
651
- # (abs(col['residual']) > 0.1) and
652
- # (abs(col['total_deviation']) <= 0.25)
653
- # ),
654
- # axis=0
655
- # )
656
- #
657
- # df.loc['antagonistic'] = 0
658
- # df.loc['antagonistic', mask] = 1
659
- # df.loc['mut_id'] = mid
660
- # df.loc['engine'] = engine
661
- # df.loc['site'] = df.columns
638
+
639
+ df.loc['mut_id'] = mid
640
+ df.loc['engine'] = engine
641
+ df.loc['site'] = df.columns
662
642
  df = df.rename({mid: 'epistasis', mid.split('|')[0]: 'cv1', mid.split('|')[1]: 'cv2'})
663
643
  df = df.T
664
644
  return df
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: geney
3
- Version: 1.3.70
3
+ Version: 1.3.72
4
4
  Summary: A Python package for gene expression modeling.
5
5
  Home-page: https://github.com/nicolaslynn/geney
6
6
  Author: Nicolas Lynn
@@ -16,7 +16,7 @@ geney/pangolin_utils.py,sha256=9jdBXlOcRaUdfi-UpUxHA0AkTMZkUF-Lt7HVZ1nEm3s,2973
16
16
  geney/power_utils.py,sha256=MehZFUdkJ2EFUot709yPEDxSkXmH5XevMebX2HD768A,7330
17
17
  geney/seqmat_utils.py,sha256=wzb3PX5it5bpIFQvcxyzlxfhoJTbHHbsjg0rzh05iVs,19753
18
18
  geney/spliceai_utils.py,sha256=tVY0T6F6l3fNoaktpn7Kq0oH5ZM0ThFYt9nPi_lfakw,3077
19
- geney/splicing_utils.py,sha256=JKQvm-4uJesSIe6_i6UAwhZfojJFGhXv5ZxvrwWy_54,47792
19
+ geney/splicing_utils.py,sha256=Xeji_AMEyB5Yb21E-qWoAFYHFHgZhVXZ6Xt2t1wuhsg,47240
20
20
  geney/survival_utils.py,sha256=KnAzEviMuXh6SnVXId9PgsFLSbgkduTvYoIthxN7FPA,6886
21
21
  geney/tcga_utils.py,sha256=D_BNHm-D_K408dlcJm3hzH2c6QNFjQsKvUcOPiQRk7g,17612
22
22
  geney/tis_utils.py,sha256=la0CZroaKe5RgAyFd4Bf_DqQncklWgAY2823xVst98o,7813
@@ -25,7 +25,7 @@ geney/translation_initiation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
25
25
  geney/translation_initiation/tis_utils.py,sha256=AF3siFjuQH-Rs44EV-80zHdbxRMvN4woLFSHroWIETc,4448
26
26
  geney/translation_initiation/resources/kozak_pssm.json,sha256=pcd0Olziutq-6H3mFWDCD9cujQ_AlZO-iiOvBl82hqE,1165
27
27
  geney/translation_initiation/resources/tis_regressor_model.joblib,sha256=IXb4DUDhJ5rBDKcqMk9zE3ECTZZcdj7Jixz3KpoZ7OA,2592025
28
- geney-1.3.70.dist-info/METADATA,sha256=4n6FWqVc4DONBOKNmhWZ5RMCik7GMPz8F4l8O5nbcjo,990
29
- geney-1.3.70.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
30
- geney-1.3.70.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
31
- geney-1.3.70.dist-info/RECORD,,
28
+ geney-1.3.72.dist-info/METADATA,sha256=NgbWgh5UPWkP2EgvbJ2nASR2pbmb_lvehLtakhv4-eQ,990
29
+ geney-1.3.72.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
30
+ geney-1.3.72.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
31
+ geney-1.3.72.dist-info/RECORD,,
File without changes