geney 1.3.68__py2.py3-none-any.whl → 1.3.70__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of geney might be problematic. Click here for more details.

geney/Gene.py CHANGED
@@ -1,4 +1,5 @@
1
1
  import copy
2
+ import random
2
3
  from typing import Any, Dict, List, Tuple, Optional, Iterator, Union, TYPE_CHECKING
3
4
  from collections import Counter
4
5
  from . import unload_pickle, config
@@ -143,7 +144,8 @@ class Gene:
143
144
  tid = self.primary_transcript
144
145
 
145
146
  if tid is None:
146
- return Transcript()
147
+ tid = random.choice(list(self.transcripts.keys()))
148
+ return None #Transcript()
147
149
 
148
150
  if tid not in self.transcripts:
149
151
  raise AttributeError(f"Transcript '{tid}' not found in gene '{self.gene_name}'.")
geney/splicing_utils.py CHANGED
@@ -631,34 +631,34 @@ def process_pairwise_epistasis_explicit(mid, engine='spliceai'):
631
631
  acceptors_df.loc['site_type', :] = 1
632
632
 
633
633
  df = pd.concat([acceptors_df, donors_df], axis=1)
634
-
635
- if df.shape[1] == 0:
636
- return df
637
-
638
- mask = df.apply(
639
- lambda col: (
640
- (abs(col['residual']) > 0.1) and
641
- (abs(col['deviation1'] + col['deviation2']) < 0.1)
642
- ),
643
- axis=0
644
- )
645
-
646
- df.loc['synergistic'] = 0
647
- df.loc['synergistic', mask] = 1
648
-
649
- mask = df.apply(
650
- lambda col: (
651
- (abs(col['residual']) > 0.1) and
652
- (abs(col['total_deviation']) <= 0.25)
653
- ),
654
- axis=0
655
- )
656
-
657
- df.loc['antagonistic'] = 0
658
- df.loc['antagonistic', mask] = 1
659
- df.loc['mut_id'] = mid
660
- df.loc['engine'] = engine
661
- df.loc['site'] = df.columns
634
+ #
635
+ # if df.shape[1] == 0:
636
+ # return df
637
+ #
638
+ # mask = df.apply(
639
+ # lambda col: (
640
+ # (abs(col['residual']) > 0.1) and
641
+ # (abs(col['deviation1'] + col['deviation2']) < 0.1)
642
+ # ),
643
+ # axis=0
644
+ # )
645
+ #
646
+ # df.loc['synergistic'] = 0
647
+ # df.loc['synergistic', mask] = 1
648
+ #
649
+ # mask = df.apply(
650
+ # lambda col: (
651
+ # (abs(col['residual']) > 0.1) and
652
+ # (abs(col['total_deviation']) <= 0.25)
653
+ # ),
654
+ # axis=0
655
+ # )
656
+ #
657
+ # df.loc['antagonistic'] = 0
658
+ # df.loc['antagonistic', mask] = 1
659
+ # df.loc['mut_id'] = mid
660
+ # df.loc['engine'] = engine
661
+ # df.loc['site'] = df.columns
662
662
  df = df.rename({mid: 'epistasis', mid.split('|')[0]: 'cv1', mid.split('|')[1]: 'cv2'})
663
663
  df = df.T
664
664
  return df
@@ -800,7 +800,7 @@ class Missplicing:
800
800
  def benchmark_splicing(gene, organism='hg38', engine='spliceai'):
801
801
  gene = Gene(gene, organism=organism)
802
802
  transcript = gene.transcript()
803
- if len(transcript.introns) == 0:
803
+ if transcript is None or len(transcript.introns) == 0:
804
804
  return None, None
805
805
 
806
806
  transcript.generate_pre_mrna()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: geney
3
- Version: 1.3.68
3
+ Version: 1.3.70
4
4
  Summary: A Python package for gene expression modeling.
5
5
  Home-page: https://github.com/nicolaslynn/geney
6
6
  Author: Nicolas Lynn
@@ -1,5 +1,5 @@
1
1
  geney/Fasta_segment.py,sha256=99HxNGNh_MfdVW6hhtlb1vOn7eSmT7oFoEfHDFMxG8w,11275
2
- geney/Gene.py,sha256=nMWJjoQaiVFm2iRjoiq7ghZqnXtW0tJDcq2S0AyOIvY,6883
2
+ geney/Gene.py,sha256=oAdwuguD1qWMTrS158ApW4s3MRcb1ZJlinzVeCZcYwE,6966
3
3
  geney/SeqMats.py,sha256=9-eJnfU2w3LGc0XvVvFEO_QrBneTkC6xkZKDfTcEw5o,19282
4
4
  geney/Transcript.py,sha256=CpfxYkuCwFILozrtLuiWnlr1mRnMKn4o84HVJislgYs,14499
5
5
  geney/__init__.py,sha256=eBdDl42N6UhcYeZDjOnv199Z88fI5_8Y6xW8447OKXM,755
@@ -16,7 +16,7 @@ geney/pangolin_utils.py,sha256=9jdBXlOcRaUdfi-UpUxHA0AkTMZkUF-Lt7HVZ1nEm3s,2973
16
16
  geney/power_utils.py,sha256=MehZFUdkJ2EFUot709yPEDxSkXmH5XevMebX2HD768A,7330
17
17
  geney/seqmat_utils.py,sha256=wzb3PX5it5bpIFQvcxyzlxfhoJTbHHbsjg0rzh05iVs,19753
18
18
  geney/spliceai_utils.py,sha256=tVY0T6F6l3fNoaktpn7Kq0oH5ZM0ThFYt9nPi_lfakw,3077
19
- geney/splicing_utils.py,sha256=50Cmn12BEzvCQfDe-8u4lNVkqhNn2FXI_Q0Nw98MKBo,47699
19
+ geney/splicing_utils.py,sha256=JKQvm-4uJesSIe6_i6UAwhZfojJFGhXv5ZxvrwWy_54,47792
20
20
  geney/survival_utils.py,sha256=KnAzEviMuXh6SnVXId9PgsFLSbgkduTvYoIthxN7FPA,6886
21
21
  geney/tcga_utils.py,sha256=D_BNHm-D_K408dlcJm3hzH2c6QNFjQsKvUcOPiQRk7g,17612
22
22
  geney/tis_utils.py,sha256=la0CZroaKe5RgAyFd4Bf_DqQncklWgAY2823xVst98o,7813
@@ -25,7 +25,7 @@ geney/translation_initiation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
25
25
  geney/translation_initiation/tis_utils.py,sha256=AF3siFjuQH-Rs44EV-80zHdbxRMvN4woLFSHroWIETc,4448
26
26
  geney/translation_initiation/resources/kozak_pssm.json,sha256=pcd0Olziutq-6H3mFWDCD9cujQ_AlZO-iiOvBl82hqE,1165
27
27
  geney/translation_initiation/resources/tis_regressor_model.joblib,sha256=IXb4DUDhJ5rBDKcqMk9zE3ECTZZcdj7Jixz3KpoZ7OA,2592025
28
- geney-1.3.68.dist-info/METADATA,sha256=kREzXHGHU6MjvTQCSgq9o3csVnm28mktBzx8WeUYtX8,990
29
- geney-1.3.68.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
30
- geney-1.3.68.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
31
- geney-1.3.68.dist-info/RECORD,,
28
+ geney-1.3.70.dist-info/METADATA,sha256=4n6FWqVc4DONBOKNmhWZ5RMCik7GMPz8F4l8O5nbcjo,990
29
+ geney-1.3.70.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
30
+ geney-1.3.70.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
31
+ geney-1.3.70.dist-info/RECORD,,
File without changes