geney 1.2.18__py2.py3-none-any.whl → 1.2.20__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of geney might be problematic. Click here for more details.

geney/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  from .config_setup import get_config
2
2
  config_setup = get_config()
3
-
3
+ print("Hello Geney.")
4
4
  # import os
5
5
  # import json
6
6
  # from pathlib import Path
geney/oncosplice.py CHANGED
@@ -12,8 +12,7 @@ import matplotlib.pyplot as plt
12
12
  from matplotlib.patches import Rectangle
13
13
  import seaborn as sns
14
14
  from collections import namedtuple
15
-
16
-
15
+ print('hellp')
17
16
  from geney.utils import find_files_by_gene_name, reverse_complement, unload_pickle, contains, unload_json, dump_json #, is_monotonic
18
17
  from geney.Fasta_segment import Fasta_segment
19
18
 
@@ -29,7 +28,6 @@ tf.config.threading.set_inter_op_parallelism_threads(1)
29
28
  sai_paths = ('models/spliceai{}.h5'.format(x) for x in range(1, 6))
30
29
  sai_models = [load_model(resource_filename('spliceai', x)) for x in sai_paths]
31
30
 
32
-
33
31
  # Load models
34
32
  import torch
35
33
  from pkg_resources import resource_filename
@@ -50,15 +48,21 @@ for i in pang_model_nums:
50
48
  model.eval()
51
49
  pang_models.append(model)
52
50
 
51
+
52
+ # def is_monotonic(A):
53
+ # x, y = [], []
54
+ # x.extend(A)
55
+ # y.extend(A)
56
+ # x.sort()
57
+ # y.sort(reverse=True)
58
+ # if (x == A or y == A):
59
+ # return True
60
+ # return False
61
+
62
+
53
63
  def is_monotonic(A):
54
- x, y = [], []
55
- x.extend(A)
56
- y.extend(A)
57
- x.sort()
58
- y.sort(reverse=True)
59
- if (x == A or y == A):
60
- return True
61
- return False
64
+ return all(x <= y for x, y in zip(A, A[1:])) or all(x >= y for x, y in zip(A, A[1:]))
65
+
62
66
 
63
67
  def sai_predict_probs(seq: str, models: list) -> list:
64
68
  '''
@@ -1022,7 +1026,7 @@ def find_transcript_missplicing(mutations, ref_transcript, var_transcript, conte
1022
1026
 
1023
1027
  class PredictSpliceAI:
1024
1028
  def __init__(self, mutation, gene_data,
1025
- threshold=0.5, force=False, save_results=False, sai_mrg_context=5000, min_coverage=2500, engine='spliceai'):
1029
+ threshold=0.5, force=False, save_results=False, sai_mrg_context=5000, min_coverage=2500, engine='spliceai', organism='hg38'):
1026
1030
  self.modification = mutation
1027
1031
  self.threshold = threshold
1028
1032
  self.transcript_id = gene_data.transcript_id
@@ -1043,7 +1047,7 @@ class PredictSpliceAI:
1043
1047
 
1044
1048
  # self.missplicing = run_spliceai_transcript(self.modification, transcript_data=gene_data, sai_mrg_context=sai_mrg_context, min_coverage=min_coverage, sai_threshold=0.1)
1045
1049
  # print(f"RUNNING: {mutation.mut_id}")
1046
- ref_transcript, var_transcript = Gene(mutation.mut_id.split(':')[0], organism='mm39').transcript(gene_data.transcript_id), Gene(mutation.mut_id.split(':')[0], mutation.mut_id, organism='mm39').transcript(gene_data.transcript_id)
1050
+ ref_transcript, var_transcript = Gene(mutation.mut_id.split(':')[0], organism=organism).transcript(gene_data.transcript_id), Gene(mutation.mut_id.split(':')[0], mutation.mut_id, organism='mm39').transcript(gene_data.transcript_id)
1047
1051
  # print(f"Second check : {ref_transcript.pre_mrna == var_transcript.pre_mrna}")
1048
1052
  self.missplicing = find_transcript_missplicing(self.modification, ref_transcript, var_transcript, context=sai_mrg_context+min_coverage, threshold=threshold,
1049
1053
  engine=engine)
@@ -1531,7 +1535,7 @@ def oncosplice(mut_id, sai_threshold=0.5, protein_coding=True, primary_transcrip
1531
1535
  continue
1532
1536
 
1533
1537
  cons_vector = transform_conservation_vector(reference.cons_vector, window=window_length)
1534
- missplicing_obj = PredictSpliceAI(mutation, reference, threshold=sai_threshold, force=force_spliceai, save_results=save_spliceai_results, engine=engine)
1538
+ missplicing_obj = PredictSpliceAI(mutation, reference, threshold=sai_threshold, force=force_spliceai, save_results=save_spliceai_results, engine=engine, organism=organism)
1535
1539
  missplicing = missplicing_obj.apply_sai_threshold_primary(threshold=sai_threshold)
1536
1540
 
1537
1541
  for i, new_boundaries in enumerate(develop_aberrant_splicing(variant, missplicing)):
geney/power_utils.py CHANGED
@@ -12,6 +12,7 @@ import gc
12
12
  import pandas as pd
13
13
  import argparse
14
14
 
15
+ print("remote this")
15
16
  tqdm.pandas()
16
17
  warnings.filterwarnings('ignore')
17
18
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: geney
3
- Version: 1.2.18
3
+ Version: 1.2.20
4
4
  Summary: A Python package for gene expression modeling.
5
5
  Home-page: https://github.com/nicolaslynn/geney
6
6
  Author: Nicolas Lynn
@@ -1,6 +1,6 @@
1
1
  geney/Fasta_segment.py,sha256=0zCdzPUbDeM9Rz642woH5Q94pwI46O0fE3H8w0XWebc,11255
2
2
  geney/Gene.py,sha256=abHnvZ4ytbjQmoBtrbsX5G0QAspm06NqZBINkjHgPog,10140
3
- geney/__init__.py,sha256=r-Yvpo_Tc236DcsqsFyexT21iVoYCVl9zoJj5pFuWEE,407
3
+ geney/__init__.py,sha256=knezxgbV2c2gcO2ek2-xxEC15HL4aO1WuoMiYOOvKf8,428
4
4
  geney/benchmark_clinvar.py,sha256=LLl77e95Qbg9Kd-m2yL8ilmzubSz9SKogeARwssT4Ks,5532
5
5
  geney/compare_sets.py,sha256=TcgL57V7BUPxBoW9lv3xr8qK2Acmykn85Ev3avicQr8,2977
6
6
  geney/config_setup.py,sha256=VA6mhVGMRadwlpEx4m1wrssmDM8qpfKT21MAijIwjyQ,428
@@ -9,11 +9,11 @@ geney/gtex.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
9
9
  geney/gtex_utils.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
10
10
  geney/immune_utils.py,sha256=ZRni5ttrhpYBnmNr0d0ZatIbNPYs4nmQuoUO00SpsS4,5271
11
11
  geney/netchop.py,sha256=AMiy9YsdTmX4B3k3Y5Yh7EmoGAojM1O3AzhPKOiB--g,3050
12
- geney/oncosplice.py,sha256=MA8z8D2kZCrIeXJwu0D6rM_VvryldvkNkzETkE29cts,78057
12
+ geney/oncosplice.py,sha256=sp6kfKbFqwpZIuLZadvCq0aj-JUnM_GE99eaGRm19eY,78240
13
13
  geney/oncosplice_mouse.py,sha256=LYLOukI9qI1IBkyl1qVRFR5d1NAw7Orlj8Zth-4xCW8,12962
14
14
  geney/oncosplice_pipeline.py,sha256=hpGqFHOdn8i8tvvs1-t3-G9Ko18zInwoDXBJbbrfbC4,68036
15
15
  geney/performance_utils.py,sha256=FQt7rA4r-Wuq3kceCxsSuMfj3wU1tMG8QnbL59aBohs,4700
16
- geney/power_utils.py,sha256=_B5DIKfwQGb1Gy9xbIUrOCiTf5y_Nq10OMtaFjEo3i8,7309
16
+ geney/power_utils.py,sha256=MehZFUdkJ2EFUot709yPEDxSkXmH5XevMebX2HD768A,7330
17
17
  geney/survival.py,sha256=gNKZGcwxDZ00ixVBHf3ZdjbY_AHQOCU9kKpBC_dokbM,5572
18
18
  geney/survival_utils.py,sha256=2CAkC2LsspicHIdrqsiPnjgvpr5KHDUfLFFqnRbPJqs,5762
19
19
  geney/tcga_annotations.py,sha256=DjRl6Pk5VAOL1yhbt8SXD6FZhYbcYNu3FtXYMeveGB0,15016
@@ -46,7 +46,7 @@ geney/translation_initiation/resources/kozak_pssm.json,sha256=pcd0Olziutq-6H3mFW
46
46
  geney/translation_initiation/resources/tis_regressor_model.joblib,sha256=IXb4DUDhJ5rBDKcqMk9zE3ECTZZcdj7Jixz3KpoZ7OA,2592025
47
47
  geney/translation_termination/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
48
  geney/translation_termination/tts_utils.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- geney-1.2.18.dist-info/METADATA,sha256=TR4c2Ytss-agQ850EcaSjgKkHqbC0VsMsRxNnnUxEHU,1163
50
- geney-1.2.18.dist-info/WHEEL,sha256=iYlv5fX357PQyRT2o6tw1bN-YcKFFHKqB_LwHO5wP-g,110
51
- geney-1.2.18.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
52
- geney-1.2.18.dist-info/RECORD,,
49
+ geney-1.2.20.dist-info/METADATA,sha256=YRkn1hq4ARDlqMiAWPpDmbUny5v7NxjbN4YcRpaq2o8,1163
50
+ geney-1.2.20.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
51
+ geney-1.2.20.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
52
+ geney-1.2.20.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py2-none-any
5
5
  Tag: py3-none-any