geney 1.2.17__py2.py3-none-any.whl → 1.2.19__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of geney might be problematic. Click here for more details.

File without changes
geney/oncosplice.py CHANGED
@@ -50,15 +50,21 @@ for i in pang_model_nums:
50
50
  model.eval()
51
51
  pang_models.append(model)
52
52
 
53
+
54
+ # def is_monotonic(A):
55
+ # x, y = [], []
56
+ # x.extend(A)
57
+ # y.extend(A)
58
+ # x.sort()
59
+ # y.sort(reverse=True)
60
+ # if (x == A or y == A):
61
+ # return True
62
+ # return False
63
+
64
+
53
65
  def is_monotonic(A):
54
- x, y = [], []
55
- x.extend(A)
56
- y.extend(A)
57
- x.sort()
58
- y.sort(reverse=True)
59
- if (x == A or y == A):
60
- return True
61
- return False
66
+ return all(x <= y for x, y in zip(A, A[1:])) or all(x >= y for x, y in zip(A, A[1:]))
67
+
62
68
 
63
69
  def sai_predict_probs(seq: str, models: list) -> list:
64
70
  '''
@@ -824,7 +830,7 @@ def find_transcript_missplicing(mutations, ref_transcript, var_transcript, conte
824
830
  visible_acceptors = np.intersect1d(ref_transcript.acceptors, ref_indices)
825
831
  # print(ref_indices.index(visible_donors[0]), ref_seq_donor_probs[ref_indices.index(visible_donors[0])], mut_seq_donor_probs[mut_indices.index(visible_donors[0])])
826
832
 
827
- print(len(ref_seq_donor_probs), len(ref_seq_acceptor_probs), len(mut_seq_donor_probs), len(mut_seq_acceptor_probs), len(ref_indices), len(mut_indices))
833
+ # print(len(ref_seq_donor_probs), len(ref_seq_acceptor_probs), len(mut_seq_donor_probs), len(mut_seq_acceptor_probs), len(ref_indices), len(mut_indices))
828
834
  # print(ref_seq_donor_probs)
829
835
 
830
836
  assert len(ref_indices) == len(ref_seq_acceptor_probs), 'Reference pos not the same'
@@ -856,7 +862,7 @@ def find_transcript_missplicing(mutations, ref_transcript, var_transcript, conte
856
862
  missplicing = {'missed_acceptors': dap, 'missed_donors': ddp, 'discovered_acceptors': iap, 'discovered_donors': idp}
857
863
  missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
858
864
  temp = {outk: {int(k) if k.is_integer() else k: v for k, v in outv.items()} for outk, outv in missplicing.items()}
859
- print(temp)
865
+ # print(temp)
860
866
  return temp
861
867
 
862
868
 
@@ -1018,11 +1024,11 @@ def find_transcript_missplicing(mutations, ref_transcript, var_transcript, conte
1018
1024
  # missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
1019
1025
  #
1020
1026
  # return {outk: {int(k) if k.is_integer() else k: v for k, v in outv.items()} for outk, outv in missplicing.items()}
1021
- #
1027
+
1022
1028
 
1023
1029
  class PredictSpliceAI:
1024
1030
  def __init__(self, mutation, gene_data,
1025
- threshold=0.5, force=False, save_results=False, sai_mrg_context=5000, min_coverage=2500, engine='spliceai'):
1031
+ threshold=0.5, force=False, save_results=False, sai_mrg_context=5000, min_coverage=2500, engine='spliceai', organism='hg38'):
1026
1032
  self.modification = mutation
1027
1033
  self.threshold = threshold
1028
1034
  self.transcript_id = gene_data.transcript_id
@@ -1043,8 +1049,8 @@ class PredictSpliceAI:
1043
1049
 
1044
1050
  # self.missplicing = run_spliceai_transcript(self.modification, transcript_data=gene_data, sai_mrg_context=sai_mrg_context, min_coverage=min_coverage, sai_threshold=0.1)
1045
1051
  # print(f"RUNNING: {mutation.mut_id}")
1046
- ref_transcript, var_transcript = Gene(mutation.mut_id.split(':')[0], organism='mm39').transcript(gene_data.transcript_id), Gene(mutation.mut_id.split(':')[0], mutation.mut_id, organism='mm39').transcript(gene_data.transcript_id)
1047
- print(f"Second check : {ref_transcript.pre_mrna == var_transcript.pre_mrna}")
1052
+ ref_transcript, var_transcript = Gene(mutation.mut_id.split(':')[0], organism=organism).transcript(gene_data.transcript_id), Gene(mutation.mut_id.split(':')[0], mutation.mut_id, organism='mm39').transcript(gene_data.transcript_id)
1053
+ # print(f"Second check : {ref_transcript.pre_mrna == var_transcript.pre_mrna}")
1048
1054
  self.missplicing = find_transcript_missplicing(self.modification, ref_transcript, var_transcript, context=sai_mrg_context+min_coverage, threshold=threshold,
1049
1055
  engine=engine)
1050
1056
  if save_results:
@@ -1531,7 +1537,7 @@ def oncosplice(mut_id, sai_threshold=0.5, protein_coding=True, primary_transcrip
1531
1537
  continue
1532
1538
 
1533
1539
  cons_vector = transform_conservation_vector(reference.cons_vector, window=window_length)
1534
- missplicing_obj = PredictSpliceAI(mutation, reference, threshold=sai_threshold, force=force_spliceai, save_results=save_spliceai_results, engine=engine)
1540
+ missplicing_obj = PredictSpliceAI(mutation, reference, threshold=sai_threshold, force=force_spliceai, save_results=save_spliceai_results, engine=engine, organism=organism)
1535
1541
  missplicing = missplicing_obj.apply_sai_threshold_primary(threshold=sai_threshold)
1536
1542
 
1537
1543
  for i, new_boundaries in enumerate(develop_aberrant_splicing(variant, missplicing)):
geney/power_utils.py CHANGED
@@ -12,6 +12,7 @@ import gc
12
12
  import pandas as pd
13
13
  import argparse
14
14
 
15
+ print("remote this")
15
16
  tqdm.pandas()
16
17
  warnings.filterwarnings('ignore')
17
18
 
@@ -63,7 +64,7 @@ def launch_dask_cluster(memory_size="3GB", num_workers=10, queue="tamirQ",
63
64
  walltime='7200',
64
65
  scheduler_options={"dashboard_address": dashboard_address},
65
66
  log_directory=log_directory,
66
- job_script_prologue=[f"cd {config_setup[organism]['BASE']}"]
67
+ # job_script_prologue=[f"cd {config_setup[organism]['BASE']}"]
67
68
  )
68
69
 
69
70
  else:
@@ -75,7 +76,7 @@ def launch_dask_cluster(memory_size="3GB", num_workers=10, queue="tamirQ",
75
76
  walltime=walltime,
76
77
  scheduler_options={"dashboard_address": dashboard_address},
77
78
  log_directory=log_directory,
78
- job_script_prologue=[f"cd {config_setup[organism]['BASE']}"]
79
+ # job_script_prologue=[f"cd {config_setup[organism]['BASE']}"]
79
80
  )
80
81
 
81
82
  dask_cluster.scale(num_workers)
@@ -87,6 +88,8 @@ def launch_dask_cluster(memory_size="3GB", num_workers=10, queue="tamirQ",
87
88
  return None, None
88
89
 
89
90
 
91
+
92
+
90
93
  def process_and_save_tasks(tasks, dask_client, funct, save_loc=None, num_workers=10, save_increment=20, file_index=0):
91
94
  """
92
95
  Process a list of tasks using Dask, saving the results incrementally.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: geney
3
- Version: 1.2.17
3
+ Version: 1.2.19
4
4
  Summary: A Python package for gene expression modeling.
5
5
  Home-page: https://github.com/nicolaslynn/geney
6
6
  Author: Nicolas Lynn
@@ -19,7 +19,6 @@ Requires-Dist: networkx ==3.2.1
19
19
  Requires-Dist: viennarna ==2.6.4
20
20
  Requires-Dist: tqdm >=4.66.1
21
21
  Requires-Dist: spliceai ==1.3.1
22
- Requires-Dist: scikit-learn ==1.0.2
23
22
  Requires-Dist: biopython ==1.81
24
23
  Requires-Dist: tensorflow ==2.15.0
25
24
  Requires-Dist: keras ==2.15.0
@@ -9,11 +9,11 @@ geney/gtex.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
9
9
  geney/gtex_utils.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
10
10
  geney/immune_utils.py,sha256=ZRni5ttrhpYBnmNr0d0ZatIbNPYs4nmQuoUO00SpsS4,5271
11
11
  geney/netchop.py,sha256=AMiy9YsdTmX4B3k3Y5Yh7EmoGAojM1O3AzhPKOiB--g,3050
12
- geney/oncosplice.py,sha256=Ram8jY69AxVspa13jN4eQD0iUX5dUuz9fXQzG3QoJl0,78052
12
+ geney/oncosplice.py,sha256=YW0GEJqyZHJ8Loi1I488NpMHKSqjkyIb0rB3YzGUQTM,78228
13
13
  geney/oncosplice_mouse.py,sha256=LYLOukI9qI1IBkyl1qVRFR5d1NAw7Orlj8Zth-4xCW8,12962
14
14
  geney/oncosplice_pipeline.py,sha256=hpGqFHOdn8i8tvvs1-t3-G9Ko18zInwoDXBJbbrfbC4,68036
15
15
  geney/performance_utils.py,sha256=FQt7rA4r-Wuq3kceCxsSuMfj3wU1tMG8QnbL59aBohs,4700
16
- geney/power_utils.py,sha256=nppfT1-bOC1dnvfRs55LipjoWDlRrOqWiuCMH0v1auU,7303
16
+ geney/power_utils.py,sha256=MehZFUdkJ2EFUot709yPEDxSkXmH5XevMebX2HD768A,7330
17
17
  geney/survival.py,sha256=gNKZGcwxDZ00ixVBHf3ZdjbY_AHQOCU9kKpBC_dokbM,5572
18
18
  geney/survival_utils.py,sha256=2CAkC2LsspicHIdrqsiPnjgvpr5KHDUfLFFqnRbPJqs,5762
19
19
  geney/tcga_annotations.py,sha256=DjRl6Pk5VAOL1yhbt8SXD6FZhYbcYNu3FtXYMeveGB0,15016
@@ -33,6 +33,7 @@ geney/immunotherapy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
33
33
  geney/immunotherapy/netchop.py,sha256=vLy-ahEKxU6IzwmnnqefXDJjZOeGIprLWbKU3t-M7sc,2800
34
34
  geney/mutations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  geney/mutations/variant_utils.py,sha256=4exIP02lviMmsZTq8UYkjlunLpnBruGM4GLz0C7P0wM,4285
36
+ geney/oncosplice/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
37
  geney/pipelines/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
38
  geney/pipelines/dask_utils.py,sha256=J68bpbikdUGGirPERczu1cf_ajZmEvDfWEj8GIMJvII,5641
38
39
  geney/splicing/__init__.py,sha256=0x9Rt0znGnf3Hs92BYRBjdHZHOMsd_27QNTRlfohzLY,60
@@ -45,7 +46,7 @@ geney/translation_initiation/resources/kozak_pssm.json,sha256=pcd0Olziutq-6H3mFW
45
46
  geney/translation_initiation/resources/tis_regressor_model.joblib,sha256=IXb4DUDhJ5rBDKcqMk9zE3ECTZZcdj7Jixz3KpoZ7OA,2592025
46
47
  geney/translation_termination/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
48
  geney/translation_termination/tts_utils.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
- geney-1.2.17.dist-info/METADATA,sha256=-fToNRmK9zXLOqq-LRzgPHk8E0_d4ecgfukN35KHlso,1199
49
- geney-1.2.17.dist-info/WHEEL,sha256=iYlv5fX357PQyRT2o6tw1bN-YcKFFHKqB_LwHO5wP-g,110
50
- geney-1.2.17.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
51
- geney-1.2.17.dist-info/RECORD,,
49
+ geney-1.2.19.dist-info/METADATA,sha256=7nrc6newZc-UnO7hU56B8pg0Xvskze2Ad1f-eFUuHME,1163
50
+ geney-1.2.19.dist-info/WHEEL,sha256=AHX6tWk3qWuce7vKLrj7lnulVHEdWoltgauo8bgCXgU,109
51
+ geney-1.2.19.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
52
+ geney-1.2.19.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py2-none-any
5
5
  Tag: py3-none-any