geney 1.1.10__py2.py3-none-any.whl → 1.1.12__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- geney/immune_utils.py +127 -0
- geney/oncosplice.py +1040 -0
- geney/power_utils.py +1 -0
- geney/survival_utils.py +5 -3
- geney/tcga_utils.py +0 -2
- {geney-1.1.10.dist-info → geney-1.1.12.dist-info}/METADATA +1 -1
- {geney-1.1.10.dist-info → geney-1.1.12.dist-info}/RECORD +9 -8
- {geney-1.1.10.dist-info → geney-1.1.12.dist-info}/WHEEL +0 -0
- {geney-1.1.10.dist-info → geney-1.1.12.dist-info}/top_level.txt +0 -0
geney/immune_utils.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
import subprocess
|
|
2
|
+
import logging
|
|
3
|
+
import tempfile
|
|
4
|
+
from geney import config_setup
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class NetChop(object):
|
|
9
|
+
"""
|
|
10
|
+
Wrapper around netChop tool. Assumes netChop is in your PATH.
|
|
11
|
+
"""
|
|
12
|
+
def predict_epitopes(self, sequences, threshold=0.5, min_len=8):
|
|
13
|
+
"""
|
|
14
|
+
Return netChop predictions for each position in each sequence.
|
|
15
|
+
|
|
16
|
+
Parameters
|
|
17
|
+
-----------
|
|
18
|
+
sequences : list of string
|
|
19
|
+
Amino acid sequences to predict cleavage for
|
|
20
|
+
|
|
21
|
+
Returns
|
|
22
|
+
-----------
|
|
23
|
+
list of list of float
|
|
24
|
+
|
|
25
|
+
The i'th list corresponds to the i'th sequence. Each list gives
|
|
26
|
+
the cleavage probability for each position in the sequence.
|
|
27
|
+
"""
|
|
28
|
+
with tempfile.NamedTemporaryFile(dir=config_setup['NETCHOP'], suffix=".fsa", mode="w") as input_fd:
|
|
29
|
+
for (i, sequence) in enumerate(sequences):
|
|
30
|
+
_ = input_fd.write("> %d\n" % i)
|
|
31
|
+
_ = input_fd.write(sequence)
|
|
32
|
+
_ = input_fd.write("\n")
|
|
33
|
+
input_fd.flush()
|
|
34
|
+
try:
|
|
35
|
+
output = subprocess.check_output(["netchop", str(input_fd.name)])
|
|
36
|
+
except subprocess.CalledProcessError as e:
|
|
37
|
+
logging.error("Error calling netChop: %s:\n%s" % (e, e.output))
|
|
38
|
+
raise
|
|
39
|
+
parsed = self.parse_netchop(output)
|
|
40
|
+
return parsed
|
|
41
|
+
#
|
|
42
|
+
# assert len(parsed) == len(sequences), \
|
|
43
|
+
# "Expected %d results but got %d" % (
|
|
44
|
+
# len(sequences), len(parsed))
|
|
45
|
+
# assert [len(x) for x in parsed] == [len(x) for x in sequences]
|
|
46
|
+
# filtered_proteosomes = []
|
|
47
|
+
# for scores, seq in list(zip(parsed, sequences)):
|
|
48
|
+
# proteosome = self.chop_protein(seq, [s > threshold for s in scores])
|
|
49
|
+
# filtered_proteosomes.append([e for e in proteosome if len(e) > min_len])
|
|
50
|
+
# return filtered_proteosomes
|
|
51
|
+
@staticmethod
|
|
52
|
+
def parse_netchop(netchop_output):
|
|
53
|
+
"""
|
|
54
|
+
Parse netChop stdout.
|
|
55
|
+
"""
|
|
56
|
+
line_iterator = iter(netchop_output.decode().split("\n"))
|
|
57
|
+
scores = []
|
|
58
|
+
for line in line_iterator:
|
|
59
|
+
if "pos" in line and 'AA' in line and 'score' in line:
|
|
60
|
+
scores.append([])
|
|
61
|
+
if "----" not in next(line_iterator):
|
|
62
|
+
raise ValueError("Dashes expected")
|
|
63
|
+
line = next(line_iterator)
|
|
64
|
+
while '-------' not in line:
|
|
65
|
+
score = float(line.split()[3])
|
|
66
|
+
scores[-1].append(score)
|
|
67
|
+
line = next(line_iterator)
|
|
68
|
+
return scores
|
|
69
|
+
def chop_protein(self, seq, pos):
|
|
70
|
+
# Generate subsequences using list comprehension and slicing
|
|
71
|
+
start = 0
|
|
72
|
+
subsequences = [seq[start:(start := i+1)] for i, marker in enumerate(pos) if marker == 1]
|
|
73
|
+
# Check if the last part needs to be added
|
|
74
|
+
if start < len(seq):
|
|
75
|
+
subsequences.append(seq[start:])
|
|
76
|
+
return subsequences
|
|
77
|
+
def generate_cut_sequences(self, char_sequence, cut_probabilities):
|
|
78
|
+
"""
|
|
79
|
+
Generate all possible cut sequences and their abundance values,
|
|
80
|
+
considering only those sequences where the probabilities of all cut sites
|
|
81
|
+
between the two ends are zero.
|
|
82
|
+
|
|
83
|
+
:param char_sequence: A string representing the sequence of characters.
|
|
84
|
+
:param cut_probabilities: A list of probabilities for each position in the sequence.
|
|
85
|
+
:return: A list of tuples, where each tuple contains a cut sequence and its abundance value.
|
|
86
|
+
"""
|
|
87
|
+
if len(char_sequence) != len(cut_probabilities):
|
|
88
|
+
raise ValueError("Character sequence and cut probabilities must have the same length.")
|
|
89
|
+
cut_sequences = []
|
|
90
|
+
# Generate all possible cuts
|
|
91
|
+
for i in range(len(char_sequence)):
|
|
92
|
+
for j in range(i + 1, len(char_sequence) + 1):
|
|
93
|
+
# Check if probabilities of all cut sites between i and j are zero
|
|
94
|
+
if sum(cut_probabilities[i + 1:j - 1]) < 1:
|
|
95
|
+
cut_sequence = char_sequence[i:j]
|
|
96
|
+
abundance_value = cut_probabilities[i] * cut_probabilities[j - 1] - sum(
|
|
97
|
+
cut_probabilities[i + 1:j - 1])
|
|
98
|
+
cut_sequences.append({'seq': cut_sequence, 'abundance': abundance_value})
|
|
99
|
+
return pd.DataFrame(cut_sequences)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
import re
|
|
103
|
+
import StringIO
|
|
104
|
+
import pandas as pd
|
|
105
|
+
|
|
106
|
+
def run_mhc(sequences):
|
|
107
|
+
with tempfile.NamedTemporaryFile(dir='/tamir2/nicolaslynn/temp', suffix=".pep", mode="w") as input_fd:
|
|
108
|
+
for (i, sequence) in enumerate(sequences):
|
|
109
|
+
_ = input_fd.write(sequence)
|
|
110
|
+
_ = input_fd.write("\n")
|
|
111
|
+
input_fd.flush()
|
|
112
|
+
try:
|
|
113
|
+
out = subprocess.check_output(
|
|
114
|
+
["netMHCpan", "-p", "-BA", str(input_fd.name)])
|
|
115
|
+
except subprocess.CalledProcessError as e:
|
|
116
|
+
logging.error("Error calling netChop: %s:\n%s" % (e, e.output))
|
|
117
|
+
raise
|
|
118
|
+
out = out.decode('utf-8')
|
|
119
|
+
out = out.split(
|
|
120
|
+
'\n---------------------------------------------------------------------------------------------------------------------------\n')
|
|
121
|
+
out = out[1] + '\n' + out[2]
|
|
122
|
+
out = re.sub(r'[ ]+', ',', out)
|
|
123
|
+
out = out.replace('\n,', '\n')
|
|
124
|
+
return pd.read_csv(StringIO(out)).drop(columns=['Unnamed: 0'])
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
|
geney/oncosplice.py
CHANGED
|
@@ -261,6 +261,1034 @@ class Gene:
|
|
|
261
261
|
yield Transcript(self.transcripts[tid], variations=self.variations)
|
|
262
262
|
|
|
263
263
|
|
|
264
|
+
class Transcript:
|
|
265
|
+
def __init__(self, d=None, variations=None):
|
|
266
|
+
self.transcript_id = None
|
|
267
|
+
self.transcript_start = None # transcription
|
|
268
|
+
self.transcript_end = None # transcription
|
|
269
|
+
self.transcript_upper = None
|
|
270
|
+
self.transcript_lower = None
|
|
271
|
+
self.transcript_biotype = None # metadata
|
|
272
|
+
self.acceptors, self.donors = [], [] # splicing
|
|
273
|
+
self.TIS, self.TTS = None, None # translation
|
|
274
|
+
self.transcript_seq, self.transcript_indices = '', [] # sequence data
|
|
275
|
+
self.rev = None # sequence data
|
|
276
|
+
self.chrm = '' # sequence data
|
|
277
|
+
self.pre_mrna = '' # sequence data
|
|
278
|
+
self.orf = '' # sequence data
|
|
279
|
+
self.protein = '' # sequence data
|
|
280
|
+
self.log = '' # sequence data
|
|
281
|
+
self.primary_transcript = None # sequence data
|
|
282
|
+
self.cons_available = False # metadata
|
|
283
|
+
self.cons_seq = ''
|
|
284
|
+
self.cons_vector = ''
|
|
285
|
+
self.variations = None
|
|
286
|
+
if variations:
|
|
287
|
+
self.variations = Variations(variations)
|
|
288
|
+
|
|
289
|
+
if d:
|
|
290
|
+
self.load_from_dict(d)
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
if self.transcript_biotype == 'protein_coding' and variations is None:
|
|
294
|
+
self.generate_protein()
|
|
295
|
+
|
|
296
|
+
else:
|
|
297
|
+
self.generate_pre_mrna()
|
|
298
|
+
|
|
299
|
+
if '*' in self.cons_seq:
|
|
300
|
+
self.cons_seq = self.cons_seq.replace('*', '')
|
|
301
|
+
self.cons_vector = np.array(self.cons_vector[:-1])
|
|
302
|
+
|
|
303
|
+
if self.cons_seq == self.protein and len(self.cons_vector) == len(self.cons_seq):
|
|
304
|
+
self.cons_available = True
|
|
305
|
+
|
|
306
|
+
if self.cons_available == False:
|
|
307
|
+
self.cons_vector = np.ones(len(self.protein))
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def __repr__(self):
|
|
311
|
+
return 'Transcript(transcript_id={tid})'.format(tid=self.transcript_id)
|
|
312
|
+
|
|
313
|
+
def __len__(self):
|
|
314
|
+
return len(self.transcript_seq)
|
|
315
|
+
|
|
316
|
+
def __str__(self):
|
|
317
|
+
return 'Transcript {tid}, Transcript Type: ' \
|
|
318
|
+
'{protein_coding}, Primary: {primary}'.format(
|
|
319
|
+
tid=self.transcript_id, protein_coding=self.transcript_biotype.replace('_', ' ').title(),
|
|
320
|
+
primary=self.primary_transcript)
|
|
321
|
+
|
|
322
|
+
def __eq__(self, other):
|
|
323
|
+
return self.transcript_seq == other.transcript_seq
|
|
324
|
+
|
|
325
|
+
def __contains__(self, subvalue):
|
|
326
|
+
'''
|
|
327
|
+
:param subvalue: the substring to search for in the mature mrna transcript
|
|
328
|
+
:return: wehether or not the substring is seen in the mature transcript or not
|
|
329
|
+
'''
|
|
330
|
+
if isinstance(subvalue, str):
|
|
331
|
+
return subvalue in self.transcript_seq
|
|
332
|
+
elif isinstance(subvalue, int):
|
|
333
|
+
return subvalue in self.transcript_indices
|
|
334
|
+
elif isinstance(subvalue, Variations):
|
|
335
|
+
return all([self.transcript_lower <= p <= self.transcript_upper for p in subvalue.positions])
|
|
336
|
+
|
|
337
|
+
else:
|
|
338
|
+
print(
|
|
339
|
+
"Pass an integer to check against the span of the gene's coordinates or a string to check against the "
|
|
340
|
+
"pre-mRNA sequence.")
|
|
341
|
+
return False
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
def __deepcopy__(self, memo):
|
|
345
|
+
cls = self.__class__
|
|
346
|
+
result = cls.__new__(cls)
|
|
347
|
+
memo[id(self)] = result
|
|
348
|
+
for k, v in self.__dict__.items():
|
|
349
|
+
setattr(result, k, deepcopy(v, memo))
|
|
350
|
+
return result
|
|
351
|
+
|
|
352
|
+
def load_from_dict(self, data):
|
|
353
|
+
'''
|
|
354
|
+
:param data: data is a dictionary containing the needed data to construct the transcript
|
|
355
|
+
:return: itself
|
|
356
|
+
'''
|
|
357
|
+
for k, v in data.items(): # add a line here that ensure the dictionary key is a valid item
|
|
358
|
+
setattr(self, k, v)
|
|
359
|
+
|
|
360
|
+
self.transcript_upper, self.transcript_lower = max(self.transcript_start, self.transcript_end), min(self.transcript_start, self.transcript_end)
|
|
361
|
+
self.__arrange_boundaries()#.generate_mature_mrna(inplace=True)
|
|
362
|
+
return self
|
|
363
|
+
|
|
364
|
+
@property
|
|
365
|
+
def exons(self):
|
|
366
|
+
'''
|
|
367
|
+
:return: a list of tuples where the first position is the acceptor and the second position is the donor
|
|
368
|
+
'''
|
|
369
|
+
return list(zip([self.transcript_start] + self.acceptors, self.donors + [self.transcript_end]))
|
|
370
|
+
|
|
371
|
+
@property
|
|
372
|
+
def exons_pos(self):
|
|
373
|
+
temp = self.exons
|
|
374
|
+
if self.rev:
|
|
375
|
+
temp = [(b, a) for a, b in temp[::-1]]
|
|
376
|
+
return temp
|
|
377
|
+
|
|
378
|
+
@property
|
|
379
|
+
def introns(self):
|
|
380
|
+
'''
|
|
381
|
+
:return: a list of tuples where each first position is a bondary of the first intron, and the second position is the boundary of the end of the intron
|
|
382
|
+
'''
|
|
383
|
+
return list(zip([v for v in self.donors if v != self.transcript_end],
|
|
384
|
+
[v for v in self.acceptors if v != self.transcript_start]))
|
|
385
|
+
|
|
386
|
+
@property
|
|
387
|
+
def introns_pos(self):
|
|
388
|
+
temp = self.introns
|
|
389
|
+
if self.rev:
|
|
390
|
+
temp = [(b, a) for a, b in temp[::-1]]
|
|
391
|
+
return temp
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
def reset_acceptors(self, acceptors):
|
|
395
|
+
'''
|
|
396
|
+
:param acceptors: resetting and then reordering the list of acceptors or donors
|
|
397
|
+
:return: itself
|
|
398
|
+
'''
|
|
399
|
+
self.acceptors = acceptors
|
|
400
|
+
return self
|
|
401
|
+
|
|
402
|
+
def reset_donors(self, donors):
|
|
403
|
+
'''
|
|
404
|
+
:param donors: resetting and then reordering the list of acceptors or donors
|
|
405
|
+
:return: itself
|
|
406
|
+
'''
|
|
407
|
+
self.donors = donors
|
|
408
|
+
return self
|
|
409
|
+
|
|
410
|
+
def reset_transcription_start(self, pos):
|
|
411
|
+
'''
|
|
412
|
+
:param pos: resetting and then reordering the list of acceptors or donors
|
|
413
|
+
:return: itself
|
|
414
|
+
'''
|
|
415
|
+
self.transcription_start = pos
|
|
416
|
+
return self
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
def reset_transcription_end(self, pos):
|
|
420
|
+
'''
|
|
421
|
+
:param pos: resetting and then reordering the list of acceptors or donors
|
|
422
|
+
:return: itself
|
|
423
|
+
'''
|
|
424
|
+
self.transcription_end = pos
|
|
425
|
+
return self
|
|
426
|
+
|
|
427
|
+
def organize(self):
|
|
428
|
+
'''
|
|
429
|
+
In the case that transcript boundaries or exon boundaires are changed, this needs to be run to ensure the bluepritns are ordered the the mRNA is reobtained.
|
|
430
|
+
:return:
|
|
431
|
+
'''
|
|
432
|
+
self.__arrange_boundaries().generate_mature_mrna(inplace=True)
|
|
433
|
+
self.transcript_upper, self.transcript_lower = max(self.transcript_start, self.transcript_end), min(self.transcript_start, self.transcript_end)
|
|
434
|
+
|
|
435
|
+
# if self.__exon_coverage_flag():
|
|
436
|
+
# raise ValueError(f"Length of exon coverage does not match transcript length.")
|
|
437
|
+
if self.__exon_intron_matchup_flag():
|
|
438
|
+
raise ValueError(f"Unequal number of acceptors and donors.")
|
|
439
|
+
if self.__exon_intron_order_flag():
|
|
440
|
+
raise ValueError(f"Exons / intron order out of position.")
|
|
441
|
+
if self.__transcript_boundary_flag():
|
|
442
|
+
raise ValueError(f"Transcript boundaries must straddle acceptors and donors.")
|
|
443
|
+
return self
|
|
444
|
+
|
|
445
|
+
def __arrange_boundaries(self):
|
|
446
|
+
# self.acceptors.append(self.transcript_start)
|
|
447
|
+
# self.donors.append(self.transcript_end)
|
|
448
|
+
self.acceptors = list(set(self.acceptors))
|
|
449
|
+
self.donors = list(set(self.donors))
|
|
450
|
+
self.acceptors.sort(reverse=self.rev)
|
|
451
|
+
self.donors.sort(reverse=self.rev)
|
|
452
|
+
return self
|
|
453
|
+
|
|
454
|
+
|
|
455
|
+
def __exon_coverage_flag(self):
|
|
456
|
+
if sum([abs(a - b) + 1 for a, b in self.exons]) != len(self):
|
|
457
|
+
return True
|
|
458
|
+
else:
|
|
459
|
+
return False
|
|
460
|
+
|
|
461
|
+
def __exon_intron_matchup_flag(self):
|
|
462
|
+
if len(self.acceptors) != len(self.donors):
|
|
463
|
+
return True
|
|
464
|
+
else:
|
|
465
|
+
return False
|
|
466
|
+
def __exon_intron_order_flag(self):
|
|
467
|
+
for b in self.exons_pos:
|
|
468
|
+
if b[0] > b[1]:
|
|
469
|
+
return True
|
|
470
|
+
else:
|
|
471
|
+
return False
|
|
472
|
+
def __transcript_boundary_flag(self):
|
|
473
|
+
if len(self.acceptors) == 0 and len(self.donors) == 0:
|
|
474
|
+
return False
|
|
475
|
+
|
|
476
|
+
if self.transcript_lower > min(self.acceptors + self.donors) or self.transcript_upper < max(self.acceptors + self.donors):
|
|
477
|
+
return True
|
|
478
|
+
else:
|
|
479
|
+
return False
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
@property
|
|
483
|
+
def exonic_indices(self):
|
|
484
|
+
return [lst for lsts in [list(range(a, b + 1)) for a, b in self.exons_pos] for lst in lsts]
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
# Related to transcript seq generation
|
|
488
|
+
def pull_pre_mrna_pos(self):
|
|
489
|
+
fasta_obj = Fasta_segment()
|
|
490
|
+
return fasta_obj.read_segment_endpoints(config_setup['CHROM_SOURCE'] / f'chr{self.chrm}.fasta',
|
|
491
|
+
self.transcript_lower,
|
|
492
|
+
self.transcript_upper)
|
|
493
|
+
|
|
494
|
+
def generate_pre_mrna_pos(self):
|
|
495
|
+
# *_pos functions do not set values into the object.
|
|
496
|
+
seq, indices = self.pull_pre_mrna_pos()
|
|
497
|
+
if self.variations:
|
|
498
|
+
for mutation in self.variations.variants:
|
|
499
|
+
seq, indices = generate_mut_variant(seq, indices, mut=mutation)
|
|
500
|
+
return seq, indices
|
|
501
|
+
|
|
502
|
+
def generate_pre_mrna(self, inplace=True):
|
|
503
|
+
pre_mrna, pre_indices = self.__pos2sense(*self.generate_pre_mrna_pos())
|
|
504
|
+
self.pre_mrna = pre_mrna
|
|
505
|
+
self.pre_indices = pre_indices
|
|
506
|
+
if inplace:
|
|
507
|
+
return self
|
|
508
|
+
return pre_mrna, pre_indices
|
|
509
|
+
|
|
510
|
+
def __pos2sense(self, mrna, indices):
|
|
511
|
+
if self.rev:
|
|
512
|
+
mrna = reverse_complement(mrna)
|
|
513
|
+
indices = indices[::-1]
|
|
514
|
+
return mrna, indices
|
|
515
|
+
|
|
516
|
+
def __sense2pos(self, mrna, indices):
|
|
517
|
+
if self.rev:
|
|
518
|
+
mrna = reverse_complement(mrna)
|
|
519
|
+
indices = indices[::-1]
|
|
520
|
+
return mrna, indices
|
|
521
|
+
|
|
522
|
+
def generate_mature_mrna_pos(self, reset=True):
|
|
523
|
+
mature_mrna_pos, mature_indices_pos = '', []
|
|
524
|
+
if reset:
|
|
525
|
+
pre_seq_pos, pre_indices_pos = self.generate_pre_mrna_pos()
|
|
526
|
+
self.pre_mrna, _ = self.__pos2sense(pre_seq_pos, pre_indices_pos)
|
|
527
|
+
else:
|
|
528
|
+
pre_seq_pos, pre_indices_pos = self.__sense2pos(self.pre_mrna, self.pre_indices)
|
|
529
|
+
|
|
530
|
+
for i, j in self.exons_pos:
|
|
531
|
+
rel_start, rel_end = pre_indices_pos.index(i), pre_indices_pos.index(j)
|
|
532
|
+
mature_mrna_pos += pre_seq_pos[rel_start:rel_end + 1]
|
|
533
|
+
pre_indices_pos.extend(pre_indices_pos[rel_start:rel_end + 1])
|
|
534
|
+
return mature_mrna_pos, pre_indices_pos
|
|
535
|
+
|
|
536
|
+
def generate_mature_mrna(self, inplace=True):
|
|
537
|
+
if inplace:
|
|
538
|
+
self.transcript_seq, self.transcript_indices = self.__pos2sense(*self.generate_mature_mrna_pos())
|
|
539
|
+
return self
|
|
540
|
+
return self.__pos2sense(*self.generate_mature_mrna_pos())
|
|
541
|
+
|
|
542
|
+
def generate_protein(self, inplace=True, reset=True):
|
|
543
|
+
if reset:
|
|
544
|
+
self.generate_mature_mrna()
|
|
545
|
+
|
|
546
|
+
if not self.TIS or self.TIS not in self.transcript_indices:
|
|
547
|
+
return ''
|
|
548
|
+
|
|
549
|
+
rel_start = self.transcript_indices.index(self.TIS)
|
|
550
|
+
orf = self.transcript_seq[rel_start:]
|
|
551
|
+
first_stop_index = next((i for i in range(0, len(orf) - 2, 3) if orf[i:i + 3] in {"TAG", "TAA", "TGA"}), len(orf)-3)
|
|
552
|
+
while first_stop_index % 3 != 0:
|
|
553
|
+
first_stop_index -= 1
|
|
554
|
+
|
|
555
|
+
orf = orf[:first_stop_index + 3]
|
|
556
|
+
protein = str(Seq(orf).translate()).replace('*', '')
|
|
557
|
+
if inplace:
|
|
558
|
+
self.orf = orf
|
|
559
|
+
self.protein = protein
|
|
560
|
+
if self.protein != self.cons_seq:
|
|
561
|
+
self.cons_available = False
|
|
562
|
+
return self
|
|
563
|
+
return protein
|
|
564
|
+
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
## Missplicing construction
|
|
568
|
+
def develop_aberrant_splicing(transcript, aberrant_splicing):
|
|
569
|
+
exon_starts = {v: 1 for v in transcript.acceptors}
|
|
570
|
+
exon_starts.update({transcript.transcript_start: 1})
|
|
571
|
+
exon_starts.update({s: v['absolute'] for s, v in aberrant_splicing['missed_acceptors'].items()})
|
|
572
|
+
exon_starts.update({s: v['absolute'] for s, v in aberrant_splicing['discovered_acceptors'].items()})
|
|
573
|
+
|
|
574
|
+
exon_ends = {v: 1 for v in transcript.donors}
|
|
575
|
+
exon_ends.update({transcript.transcript_end: 1})
|
|
576
|
+
exon_ends.update({s: v['absolute'] for s, v in aberrant_splicing['missed_donors'].items()})
|
|
577
|
+
exon_ends.update({s: v['absolute'] for s, v in aberrant_splicing['discovered_donors'].items()})
|
|
578
|
+
|
|
579
|
+
nodes = [SpliceSite(pos=pos, ss_type=0, prob=prob) for pos, prob in exon_ends.items()] + \
|
|
580
|
+
[SpliceSite(pos=pos, ss_type=1, prob=prob) for pos, prob in exon_starts.items()]
|
|
581
|
+
|
|
582
|
+
nodes = [s for s in nodes if s.prob > 0]
|
|
583
|
+
nodes.sort(key=lambda x: x.pos, reverse=transcript.rev)
|
|
584
|
+
|
|
585
|
+
G = nx.DiGraph()
|
|
586
|
+
G.add_nodes_from([n.pos for n in nodes])
|
|
587
|
+
|
|
588
|
+
for i in range(len(nodes)):
|
|
589
|
+
trailing_prob, in_between = 0, []
|
|
590
|
+
for j in range(i + 1, len(nodes)):
|
|
591
|
+
curr_node, next_node = nodes[i], nodes[j]
|
|
592
|
+
spread = curr_node.ss_type in in_between
|
|
593
|
+
in_between.append(next_node.ss_type)
|
|
594
|
+
if curr_node.ss_type != next_node.ss_type:
|
|
595
|
+
if spread:
|
|
596
|
+
new_prob = next_node.prob - trailing_prob
|
|
597
|
+
if new_prob <= 0:
|
|
598
|
+
break
|
|
599
|
+
G.add_edge(curr_node.pos, next_node.pos)
|
|
600
|
+
G.edges[curr_node.pos, next_node.pos]['weight'] = new_prob
|
|
601
|
+
trailing_prob += next_node.prob
|
|
602
|
+
else:
|
|
603
|
+
G.add_edge(curr_node.pos, next_node.pos)
|
|
604
|
+
G.edges[curr_node.pos, next_node.pos]['weight'] = next_node.prob
|
|
605
|
+
trailing_prob += next_node.prob
|
|
606
|
+
|
|
607
|
+
new_paths, prob_sum = {}, 0
|
|
608
|
+
for i, path in enumerate(nx.all_simple_paths(G, transcript.transcript_start, transcript.transcript_end)):
|
|
609
|
+
curr_prob = path_weight_mult(G, path, 'weight')
|
|
610
|
+
prob_sum += curr_prob
|
|
611
|
+
new_paths[i] = {
|
|
612
|
+
'acceptors': sorted([p for p in path if p in exon_starts.keys() and p != transcript.transcript_start],
|
|
613
|
+
reverse=transcript.rev),
|
|
614
|
+
'donors': sorted([p for p in path if p in exon_ends.keys() and p != transcript.transcript_end],
|
|
615
|
+
reverse=transcript.rev),
|
|
616
|
+
'path_weight': curr_prob}
|
|
617
|
+
|
|
618
|
+
for i, path in enumerate(nx.all_simple_paths(G, transcript.transcript_end, transcript.transcript_start)):
|
|
619
|
+
curr_prob = path_weight_mult(G, path, 'weight')
|
|
620
|
+
prob_sum += curr_prob
|
|
621
|
+
new_paths[i] = {
|
|
622
|
+
'acceptors': sorted([p for p in path if p in exon_starts.keys() and p != transcript.transcript_start],
|
|
623
|
+
reverse=transcript.rev),
|
|
624
|
+
'donors': sorted([p for p in path if p in exon_ends.keys() and p != transcript.transcript_end],
|
|
625
|
+
reverse=transcript.rev),
|
|
626
|
+
'path_weight': curr_prob}
|
|
627
|
+
|
|
628
|
+
|
|
629
|
+
for i, d in new_paths.items():
|
|
630
|
+
d['path_weight'] = round(d['path_weight'] / prob_sum, 3)
|
|
631
|
+
new_paths = {k: v for k, v in new_paths.items() if v['path_weight'] > 0.01}
|
|
632
|
+
return list(new_paths.values())
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
def path_weight_mult(G, path, weight):
|
|
636
|
+
multigraph = G.is_multigraph()
|
|
637
|
+
cost = 1
|
|
638
|
+
if not nx.is_path(G, path):
|
|
639
|
+
raise nx.NetworkXNoPath("path does not exist")
|
|
640
|
+
for node, nbr in nx.utils.pairwise(path):
|
|
641
|
+
if multigraph:
|
|
642
|
+
cost *= min(v[weight] for v in G[node][nbr].values())
|
|
643
|
+
else:
|
|
644
|
+
cost *= G[node][nbr][weight]
|
|
645
|
+
return cost
|
|
646
|
+
|
|
647
|
+
@dataclass
|
|
648
|
+
class SpliceSite(object):
|
|
649
|
+
pos: int
|
|
650
|
+
ss_type: int
|
|
651
|
+
prob: float
|
|
652
|
+
|
|
653
|
+
def __post_init__(self):
|
|
654
|
+
pass
|
|
655
|
+
|
|
656
|
+
def __lt__(self, other):
|
|
657
|
+
return self.pos < other.pos
|
|
658
|
+
|
|
659
|
+
def __str__(self):
|
|
660
|
+
print(f"({self.ss_type}, {self.pos}, {self.prob})")
|
|
661
|
+
|
|
662
|
+
|
|
663
|
+
# Missplicing Detection
|
|
664
|
+
def find_ss_changes(ref_dct, mut_dct, known_splice_sites, threshold=0.5):
|
|
665
|
+
'''
|
|
666
|
+
:param ref_dct: the spliceai probabilities for each nucleotide (by genomic position) as a dictionary for the reference sequence
|
|
667
|
+
:param mut_dct: the spliceai probabilities for each nucleotide (by genomic position) as a dictionary for the mutated sequence
|
|
668
|
+
:param known_splice_sites: the indices (by genomic position) that serve as known splice sites
|
|
669
|
+
:param threshold: the threshold for detection (difference between reference and mutated probabilities)
|
|
670
|
+
:return: two dictionaries; discovered_pos is a dictionary containing all the positions that meat the threshold for discovery
|
|
671
|
+
and deleted_pos containing all the positions that meet the threshold for missing and the condition for missing
|
|
672
|
+
'''
|
|
673
|
+
|
|
674
|
+
new_dict = {v: mut_dct.get(v, 0) - ref_dct.get(v, 0) for v in
|
|
675
|
+
list(set(list(ref_dct.keys()) + list(mut_dct.keys())))}
|
|
676
|
+
|
|
677
|
+
discovered_pos = {k: {'delta': round(float(v), 3), 'absolute': round(float(mut_dct[k]), 3)} for k, v in
|
|
678
|
+
new_dict.items() if v >= threshold and k not in known_splice_sites} # if (k not in known_splice_sites and v >= threshold) or (v > 0.45)}
|
|
679
|
+
|
|
680
|
+
deleted_pos = {k: {'delta': round(float(v), 3), 'absolute': round(float(mut_dct.get(k, 0)), 3)} for k, v in
|
|
681
|
+
new_dict.items() if -v >= threshold and k in known_splice_sites} #if k in known_splice_sites and v <= -threshold}
|
|
682
|
+
|
|
683
|
+
return discovered_pos, deleted_pos
|
|
684
|
+
|
|
685
|
+
def run_spliceai_seq(seq, indices, threshold=0):
|
|
686
|
+
seq = 'N' * 5000 + seq + 'N' * 5000
|
|
687
|
+
ref_seq_probs_temp = sai_predict_probs(seq, sai_models)
|
|
688
|
+
ref_seq_acceptor_probs, ref_seq_donor_probs = ref_seq_probs_temp[0, :], ref_seq_probs_temp[1, :]
|
|
689
|
+
acceptor_indices = {a: b for a, b in list(zip(indices, ref_seq_acceptor_probs)) if b >= threshold}
|
|
690
|
+
donor_indices = {a: b for a, b in list(zip(indices, ref_seq_donor_probs)) if b >= threshold}
|
|
691
|
+
return acceptor_indices, donor_indices
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
def run_spliceai_transcript(mutations, transcript_data, sai_mrg_context=5000, min_coverage=2500, sai_threshold=0.5):
|
|
695
|
+
positions = mutations.positions
|
|
696
|
+
end_positions = [m.start + len(m.ref) for m in mutations.variants]
|
|
697
|
+
positions.extend(end_positions)
|
|
698
|
+
|
|
699
|
+
seq_start_pos = min(positions) - sai_mrg_context - min_coverage
|
|
700
|
+
seq_end_pos = max(positions) + sai_mrg_context + min_coverage
|
|
701
|
+
|
|
702
|
+
fasta_obj = Fasta_segment()
|
|
703
|
+
ref_seq, ref_indices = fasta_obj.read_segment_endpoints(
|
|
704
|
+
config_setup['CHROM_SOURCE'] / f'chr{mutations.chrom}.fasta',
|
|
705
|
+
seq_start_pos,
|
|
706
|
+
seq_end_pos)
|
|
707
|
+
|
|
708
|
+
transcript_start, transcript_end, rev = transcript_data.transcript_lower, transcript_data.transcript_upper, transcript_data.rev
|
|
709
|
+
|
|
710
|
+
# visible_donors = np.intersect1d(transcript_data.donors, ref_indices)
|
|
711
|
+
# visible_acceptors = np.intersect1d(transcript_data.acceptors, ref_indices)
|
|
712
|
+
|
|
713
|
+
start_pad = ref_indices.index(transcript_start) if transcript_start in ref_indices else 0
|
|
714
|
+
end_cutoff = ref_indices.index(transcript_end) if transcript_end in ref_indices else len(ref_indices)
|
|
715
|
+
end_pad = len(ref_indices) - end_cutoff
|
|
716
|
+
ref_seq = 'N' * start_pad + ref_seq[start_pad:end_cutoff] + 'N' * end_pad
|
|
717
|
+
ref_indices = [-1] * start_pad + ref_indices[start_pad:end_cutoff] + [-1] * end_pad
|
|
718
|
+
mut_seq, mut_indices = ref_seq, ref_indices
|
|
719
|
+
|
|
720
|
+
for mut in mutations:
|
|
721
|
+
mut_seq, mut_indices = generate_mut_variant(seq=mut_seq, indices=mut_indices, mut=mut)
|
|
722
|
+
|
|
723
|
+
if mut_seq == ref_seq:
|
|
724
|
+
print("Even in SpliceAI?!")
|
|
725
|
+
|
|
726
|
+
ref_indices = ref_indices[sai_mrg_context:-sai_mrg_context]
|
|
727
|
+
mut_indices = mut_indices[sai_mrg_context:-sai_mrg_context]
|
|
728
|
+
copy_mut_indices = mut_indices.copy()
|
|
729
|
+
|
|
730
|
+
visible_donors = np.intersect1d(transcript_data.donors, ref_indices)
|
|
731
|
+
visible_acceptors = np.intersect1d(transcript_data.acceptors, ref_indices)
|
|
732
|
+
|
|
733
|
+
if rev:
|
|
734
|
+
ref_seq = reverse_complement(ref_seq)
|
|
735
|
+
mut_seq = reverse_complement(mut_seq)
|
|
736
|
+
ref_indices = ref_indices[::-1]
|
|
737
|
+
mut_indices = mut_indices[::-1]
|
|
738
|
+
|
|
739
|
+
ref_seq_probs_temp = sai_predict_probs(ref_seq, sai_models)
|
|
740
|
+
mut_seq_probs_temp = sai_predict_probs(mut_seq, sai_models)
|
|
741
|
+
|
|
742
|
+
ref_seq_acceptor_probs, ref_seq_donor_probs = ref_seq_probs_temp[0, :], ref_seq_probs_temp[1, :]
|
|
743
|
+
mut_seq_acceptor_probs, mut_seq_donor_probs = mut_seq_probs_temp[0, :], mut_seq_probs_temp[1, :]
|
|
744
|
+
|
|
745
|
+
assert len(ref_indices) == len(ref_seq_acceptor_probs), 'Reference pos not the same'
|
|
746
|
+
assert len(mut_indices) == len(mut_seq_acceptor_probs), 'Mut pos not the same'
|
|
747
|
+
|
|
748
|
+
iap, dap = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_acceptor_probs))},
|
|
749
|
+
{p: v for p, v in list(zip(mut_indices, mut_seq_acceptor_probs))},
|
|
750
|
+
visible_acceptors,
|
|
751
|
+
threshold=sai_threshold)
|
|
752
|
+
|
|
753
|
+
assert len(ref_indices) == len(ref_seq_donor_probs), 'Reference pos not the same'
|
|
754
|
+
assert len(mut_indices) == len(mut_seq_donor_probs), 'Mut pos not the same'
|
|
755
|
+
|
|
756
|
+
idp, ddp = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_donor_probs))},
|
|
757
|
+
{p: v for p, v in list(zip(mut_indices, mut_seq_donor_probs))},
|
|
758
|
+
visible_donors,
|
|
759
|
+
threshold=sai_threshold)
|
|
760
|
+
|
|
761
|
+
ref_acceptors = {a: b for a, b in list(zip(ref_indices, ref_seq_acceptor_probs))}
|
|
762
|
+
ref_donors = {a: b for a, b in list(zip(ref_indices, ref_seq_donor_probs))}
|
|
763
|
+
|
|
764
|
+
lost_acceptors = {int(p): {'absolute': np.float64(0), 'delta': round(float(-ref_acceptors[p]), 3)} for p in visible_acceptors if p not in mut_indices and p not in dap}
|
|
765
|
+
lost_donors = {int(p): {'absolute': np.float64(0), 'delta': round(float(-ref_donors[p]), 3)} for p in visible_donors if p not in mut_indices and p not in ddp}
|
|
766
|
+
dap.update(lost_acceptors)
|
|
767
|
+
ddp.update(lost_donors)
|
|
768
|
+
|
|
769
|
+
missplicing = {'missed_acceptors': dap, 'missed_donors': ddp, 'discovered_acceptors': iap, 'discovered_donors': idp}
|
|
770
|
+
missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
771
|
+
return {outk: {int(k) if k.is_integer() else k: v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
# def run_spliceai(mutations, gene_data, sai_mrg_context=5000, min_coverage=2500, sai_threshold=0.5):
|
|
775
|
+
# positions = mutations.positions
|
|
776
|
+
# seq_start_pos = min(positions) - sai_mrg_context - min_coverage
|
|
777
|
+
# seq_end_pos = max(positions) + sai_mrg_context + min_coverage
|
|
778
|
+
#
|
|
779
|
+
# fasta_obj = Fasta_segment()
|
|
780
|
+
# ref_seq, ref_indices = fasta_obj.read_segment_endpoints(
|
|
781
|
+
# config_setup['CHROM_SOURCE'] / f'chr{mutations.chrom}.fasta',
|
|
782
|
+
# seq_start_pos,
|
|
783
|
+
# seq_end_pos)
|
|
784
|
+
#
|
|
785
|
+
# gene_start, gene_end, rev = gene_data.gene_start, gene_data.gene_end, gene_data.rev
|
|
786
|
+
#
|
|
787
|
+
# mrna_acceptors = sorted(list(set([lst for lsts in
|
|
788
|
+
# [mrna.get('acceptors', []) for mrna in gene_data.transcripts.values() if
|
|
789
|
+
# mrna['transcript_biotype'] == 'protein_coding'] for lst in lsts])))
|
|
790
|
+
#
|
|
791
|
+
# mrna_donors = sorted(list(set([lst for lsts in
|
|
792
|
+
# [mrna.get('donors', []) for mrna in gene_data.transcripts.values() if
|
|
793
|
+
# mrna['transcript_biotype'] == 'protein_coding'] for lst in lsts])))
|
|
794
|
+
#
|
|
795
|
+
# visible_donors = np.intersect1d(mrna_donors, ref_indices)
|
|
796
|
+
# visible_acceptors = np.intersect1d(mrna_acceptors, ref_indices)
|
|
797
|
+
#
|
|
798
|
+
# start_pad = ref_indices.index(gene_start) if gene_start in ref_indices else 0
|
|
799
|
+
# end_cutoff = ref_indices.index(gene_end) if gene_end in ref_indices else len(ref_indices) # - 1
|
|
800
|
+
# end_pad = len(ref_indices) - end_cutoff
|
|
801
|
+
# ref_seq = 'N' * start_pad + ref_seq[start_pad:end_cutoff] + 'N' * end_pad
|
|
802
|
+
# ref_indices = [-1] * start_pad + ref_indices[start_pad:end_cutoff] + [-1] * end_pad
|
|
803
|
+
# mut_seq, mut_indices = ref_seq, ref_indices
|
|
804
|
+
#
|
|
805
|
+
# for mut in mutations:
|
|
806
|
+
# mut_seq, mut_indices = generate_mut_variant(seq=mut_seq, indices=mut_indices, mut=mut)
|
|
807
|
+
#
|
|
808
|
+
# ref_indices = ref_indices[sai_mrg_context:-sai_mrg_context]
|
|
809
|
+
# mut_indices = mut_indices[sai_mrg_context:-sai_mrg_context]
|
|
810
|
+
#
|
|
811
|
+
# copy_mut_indices = mut_indices.copy()
|
|
812
|
+
# if rev:
|
|
813
|
+
# ref_seq = reverse_complement(ref_seq)
|
|
814
|
+
# mut_seq = reverse_complement(mut_seq)
|
|
815
|
+
# ref_indices = ref_indices[::-1]
|
|
816
|
+
# mut_indices = mut_indices[::-1]
|
|
817
|
+
#
|
|
818
|
+
# ref_seq_probs_temp = sai_predict_probs(ref_seq, sai_models)
|
|
819
|
+
# mut_seq_probs_temp = sai_predict_probs(mut_seq, sai_models)
|
|
820
|
+
#
|
|
821
|
+
# ref_seq_acceptor_probs, ref_seq_donor_probs = ref_seq_probs_temp[0, :], ref_seq_probs_temp[1, :]
|
|
822
|
+
# mut_seq_acceptor_probs, mut_seq_donor_probs = mut_seq_probs_temp[0, :], mut_seq_probs_temp[1, :]
|
|
823
|
+
#
|
|
824
|
+
# assert len(ref_indices) == len(ref_seq_acceptor_probs), 'Reference pos not the same'
|
|
825
|
+
# assert len(mut_indices) == len(mut_seq_acceptor_probs), 'Mut pos not the same'
|
|
826
|
+
#
|
|
827
|
+
# iap, dap = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_acceptor_probs))},
|
|
828
|
+
# {p: v for p, v in list(zip(mut_indices, mut_seq_acceptor_probs))},
|
|
829
|
+
# visible_acceptors,
|
|
830
|
+
# threshold=sai_threshold)
|
|
831
|
+
#
|
|
832
|
+
# assert len(ref_indices) == len(ref_seq_donor_probs), 'Reference pos not the same'
|
|
833
|
+
# assert len(mut_indices) == len(mut_seq_donor_probs), 'Mut pos not the same'
|
|
834
|
+
#
|
|
835
|
+
# idp, ddp = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_donor_probs))},
|
|
836
|
+
# {p: v for p, v in list(zip(mut_indices, mut_seq_donor_probs))},
|
|
837
|
+
# visible_donors,
|
|
838
|
+
# threshold=sai_threshold)
|
|
839
|
+
#
|
|
840
|
+
# # lost_acceptors = {p: {'absolute': 0, 'delta': -1} for p in gene_data.acceptors if not contains(copy_mut_indices, p)}
|
|
841
|
+
# # lost_donors = {p: {'absolute': 0, 'delta': -1} for p in gene_data.donors if not contains(copy_mut_indices, p)}
|
|
842
|
+
# # dap.update(lost_acceptors)
|
|
843
|
+
# # ddp.update(lost_donors)
|
|
844
|
+
# missplicing = {'missed_acceptors': dap, 'missed_donors': ddp, 'discovered_acceptors': iap, 'discovered_donors': idp}
|
|
845
|
+
# missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
846
|
+
#
|
|
847
|
+
# return {outk: {int(k) if k.is_integer() else k: v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
848
|
+
#
|
|
849
|
+
|
|
850
|
+
class PredictSpliceAI:
|
|
851
|
+
def __init__(self, mutation, gene_data,
|
|
852
|
+
threshold=0.5, force=False, save_results=False, sai_mrg_context=5000, min_coverage=2500):
|
|
853
|
+
self.modification = mutation
|
|
854
|
+
self.threshold = threshold
|
|
855
|
+
self.transcript_id = gene_data.transcript_id
|
|
856
|
+
self.spliceai_db = config_setup['MISSPLICING_PATH'] / f'spliceai_epistatic'
|
|
857
|
+
self.missplicing = {}
|
|
858
|
+
|
|
859
|
+
if self.prediction_file_exists() and not force: # need to do a check for the filename length
|
|
860
|
+
self.missplicing = self.load_sai_predictions()
|
|
861
|
+
|
|
862
|
+
if not self.missplicing:
|
|
863
|
+
# else:
|
|
864
|
+
# if isinstance(gene_data, Gene):
|
|
865
|
+
# self.missplicing = run_spliceai(self.modification, gene_data=gene_data, sai_mrg_context=sai_mrg_context, min_coverage=min_coverage, sai_threshold=0.1)
|
|
866
|
+
# if save_results:
|
|
867
|
+
# self.save_sai_predictions()
|
|
868
|
+
#
|
|
869
|
+
# elif isinstance(gene_data, Transcript):
|
|
870
|
+
self.missplicing = run_spliceai_transcript(self.modification, transcript_data=gene_data, sai_mrg_context=sai_mrg_context, min_coverage=min_coverage, sai_threshold=0.1)
|
|
871
|
+
if save_results:
|
|
872
|
+
self.save_sai_predictions()
|
|
873
|
+
|
|
874
|
+
|
|
875
|
+
def __repr__(self):
|
|
876
|
+
return f'Missplicing({self.modification.mut_id}) --> {self.missplicing}'
|
|
877
|
+
|
|
878
|
+
def __str__(self):
|
|
879
|
+
return self.aberrant_splicing
|
|
880
|
+
def __bool__(self):
|
|
881
|
+
for event, details in self.aberrant_splicing.items():
|
|
882
|
+
if details:
|
|
883
|
+
return True
|
|
884
|
+
return False
|
|
885
|
+
|
|
886
|
+
def __eq__(self, alt_splicing):
|
|
887
|
+
flag, _ = check_splicing_difference(self.missplicing, alt_splicing, self.threshold)
|
|
888
|
+
return not flag
|
|
889
|
+
|
|
890
|
+
def __iter__(self):
|
|
891
|
+
penetrances = [abs(d_in['delta']) for d in self.missplicing.values() for d_in in d.values()] + [0]
|
|
892
|
+
return iter(penetrances)
|
|
893
|
+
|
|
894
|
+
@property
|
|
895
|
+
def aberrant_splicing(self):
|
|
896
|
+
return self.apply_sai_threshold(self.missplicing, self.threshold)
|
|
897
|
+
|
|
898
|
+
@property
|
|
899
|
+
def prediction_file(self):
|
|
900
|
+
return self.spliceai_db / self.modification.gene / self.modification.file_identifier_json
|
|
901
|
+
|
|
902
|
+
def prediction_file_exists(self):
|
|
903
|
+
return self.prediction_file.exists()
|
|
904
|
+
|
|
905
|
+
def load_sai_predictions(self):
|
|
906
|
+
missplicing = unload_json(self.prediction_file)
|
|
907
|
+
if self.transcript_id in missplicing:
|
|
908
|
+
missplicing = missplicing[self.transcript_id]
|
|
909
|
+
else:
|
|
910
|
+
return {}
|
|
911
|
+
|
|
912
|
+
missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
913
|
+
missplicing = {outk: {int(k) if k.is_integer() or 'missed' in outk else k: v for k, v in outv.items()} for
|
|
914
|
+
outk, outv in
|
|
915
|
+
missplicing.items()}
|
|
916
|
+
return missplicing
|
|
917
|
+
|
|
918
|
+
def save_sai_predictions(self):
|
|
919
|
+
self.prediction_file.parent.mkdir(parents=True, exist_ok=True)
|
|
920
|
+
if self.prediction_file_exists():
|
|
921
|
+
missplicing = unload_json(self.prediction_file)
|
|
922
|
+
missplicing[self.transcript_id] = self.missplicing
|
|
923
|
+
|
|
924
|
+
else:
|
|
925
|
+
missplicing = {self.transcript_id: self.missplicing}
|
|
926
|
+
|
|
927
|
+
# print(missplicing)
|
|
928
|
+
dump_json(self.prediction_file, missplicing)
|
|
929
|
+
|
|
930
|
+
def apply_sai_threshold(self, splicing_dict=None, threshold=None):
|
|
931
|
+
splicing_dict = self.missplicing if not splicing_dict else splicing_dict
|
|
932
|
+
threshold = self.threshold if not threshold else threshold
|
|
933
|
+
new_dict = {}
|
|
934
|
+
for event, details in splicing_dict.items():
|
|
935
|
+
for e, d in details.items():
|
|
936
|
+
if abs(d['delta']) >= threshold:
|
|
937
|
+
return splicing_dict
|
|
938
|
+
# new_dict[event] = {} #{k: v for k, v in details.items() if abs(v['delta']) >= threshold}
|
|
939
|
+
return new_dict
|
|
940
|
+
|
|
941
|
+
|
|
942
|
+
def apply_sai_threshold_primary(self, splicing_dict=None, threshold=None):
|
|
943
|
+
splicing_dict = self.missplicing if not splicing_dict else splicing_dict
|
|
944
|
+
threshold = self.threshold if not threshold else threshold
|
|
945
|
+
new_dict = {}
|
|
946
|
+
for event, details in splicing_dict.items():
|
|
947
|
+
new_dict_in = {}
|
|
948
|
+
for e, d in details.items():
|
|
949
|
+
if abs(d['delta']) >= threshold:
|
|
950
|
+
new_dict_in[e] = d
|
|
951
|
+
new_dict[event] = new_dict_in
|
|
952
|
+
return new_dict
|
|
953
|
+
|
|
954
|
+
def get_max_missplicing_delta(self):
|
|
955
|
+
max_delta = 0
|
|
956
|
+
for event, details in self.missplicing.items():
|
|
957
|
+
for e, d in details.items():
|
|
958
|
+
if abs(d['delta']) > max_delta:
|
|
959
|
+
max_delta = abs(d['delta'])
|
|
960
|
+
return max_delta
|
|
961
|
+
|
|
962
|
+
|
|
963
|
+
def check_splicing_difference(missplicing1, missplicing2, threshold=None):
|
|
964
|
+
flag = False
|
|
965
|
+
true_differences = {}
|
|
966
|
+
for event in ['missed_acceptors', 'missed_donors']:
|
|
967
|
+
td = {}
|
|
968
|
+
dct1 = missplicing1[event]
|
|
969
|
+
dct2 = missplicing2[event]
|
|
970
|
+
for k in list(set(list(dct1.keys()) + list(dct2.keys()))):
|
|
971
|
+
diff = abs(dct1.get(k, {'delta': 0})['delta']) - abs(dct2.get(k, {'delta': 0})['delta'])
|
|
972
|
+
if abs(diff) >= threshold:
|
|
973
|
+
flag = True
|
|
974
|
+
td[k] = diff
|
|
975
|
+
true_differences[event] = td
|
|
976
|
+
|
|
977
|
+
for event in ['discovered_acceptors', 'discovered_donors']:
|
|
978
|
+
td = {}
|
|
979
|
+
dct1 = missplicing1[event]
|
|
980
|
+
dct2 = missplicing2[event]
|
|
981
|
+
for k in list(set(list(dct1.keys()) + list(dct2.keys()))):
|
|
982
|
+
diff = abs(dct1.get(k, {'delta': 0})['delta']) - abs(dct2.get(k, {'delta': 0})['delta'])
|
|
983
|
+
if abs(diff) >= threshold:
|
|
984
|
+
flag = True
|
|
985
|
+
td[k] = diff
|
|
986
|
+
true_differences[event] = td
|
|
987
|
+
|
|
988
|
+
return flag, true_differences
|
|
989
|
+
|
|
990
|
+
|
|
991
|
+
# Annotating
|
|
992
|
+
def OncospliceAnnotator(reference_transcript, variant_transcript, mut):
|
|
993
|
+
affected_exon, affected_intron, distance_from_5, distance_from_3 = find_splice_site_proximity(mut,
|
|
994
|
+
reference_transcript)
|
|
995
|
+
|
|
996
|
+
report = {}
|
|
997
|
+
report['primary_transcript'] = reference_transcript.primary_transcript
|
|
998
|
+
report['transcript_id'] = reference_transcript.transcript_id
|
|
999
|
+
report['mut_id'] = mut.mut_id
|
|
1000
|
+
report['cons_available'] = int(reference_transcript.cons_available)
|
|
1001
|
+
report['protein_coding'] = reference_transcript.transcript_biotype
|
|
1002
|
+
|
|
1003
|
+
report['reference_mrna'] = reference_transcript.transcript_seq
|
|
1004
|
+
report['reference_cds_start'] = reference_transcript.TIS
|
|
1005
|
+
report['reference_pre_mrna'] = reference_transcript.pre_mrna
|
|
1006
|
+
report[
|
|
1007
|
+
'reference_orf'] = reference_transcript.orf # pre_mrna[reference_transcript.transcript_indices.index(reference_transcript.TIS):reference_transcript.transcript_indices.index(reference_transcript.TTS)]
|
|
1008
|
+
report['reference_protein'] = reference_transcript.protein
|
|
1009
|
+
report['reference_protein_length'] = len(reference_transcript.protein)
|
|
1010
|
+
|
|
1011
|
+
report['variant_mrna'] = variant_transcript.transcript_seq
|
|
1012
|
+
report['variant_cds_start'] = variant_transcript.TIS
|
|
1013
|
+
report[
|
|
1014
|
+
'variant_pre_mrna'] = variant_transcript.pre_mrna # pre_mrna[variant_transcript.transcript_indices.index(variant_transcript.TIS):variant_transcript.transcript_indices.index(variant_transcript.TTS)]
|
|
1015
|
+
report['variant_orf'] = variant_transcript.orf
|
|
1016
|
+
report['variant_protein'] = variant_transcript.protein
|
|
1017
|
+
report['variant_protein_length'] = len(variant_transcript.protein)
|
|
1018
|
+
|
|
1019
|
+
descriptions = define_missplicing_events(reference_transcript, variant_transcript)
|
|
1020
|
+
# print(descriptions)
|
|
1021
|
+
report['exon_changes'] = '|'.join([v for v in descriptions if v])
|
|
1022
|
+
report['splicing_codes'] = summarize_missplicing_event(*descriptions)
|
|
1023
|
+
report['affected_exon'] = affected_exon
|
|
1024
|
+
report['affected_intron'] = affected_intron
|
|
1025
|
+
report['mutation_distance_from_5'] = distance_from_5
|
|
1026
|
+
report['mutation_distance_from_3'] = distance_from_3
|
|
1027
|
+
return report
|
|
1028
|
+
|
|
1029
|
+
from Bio.Seq import Seq
|
|
1030
|
+
from Bio import pairwise2
|
|
1031
|
+
from dataclasses import dataclass
|
|
1032
|
+
from copy import deepcopy
|
|
1033
|
+
import re
|
|
1034
|
+
import pandas as pd
|
|
1035
|
+
from pathlib import Path
|
|
1036
|
+
import numpy as np
|
|
1037
|
+
from geney import config_setup
|
|
1038
|
+
import networkx as nx
|
|
1039
|
+
import matplotlib.pyplot as plt
|
|
1040
|
+
from matplotlib.patches import Rectangle
|
|
1041
|
+
import seaborn as sns
|
|
1042
|
+
from collections import namedtuple
|
|
1043
|
+
|
|
1044
|
+
|
|
1045
|
+
from geney.utils import find_files_by_gene_name, reverse_complement, unload_pickle, contains, unload_json, dump_json #, is_monotonic
|
|
1046
|
+
from geney.Fasta_segment import Fasta_segment
|
|
1047
|
+
|
|
1048
|
+
#### SpliceAI Modules
|
|
1049
|
+
import tensorflow as tf
|
|
1050
|
+
from keras.models import load_model
|
|
1051
|
+
from pkg_resources import resource_filename
|
|
1052
|
+
from spliceai.utils import one_hot_encode
|
|
1053
|
+
|
|
1054
|
+
tf.config.threading.set_intra_op_parallelism_threads(1)
|
|
1055
|
+
tf.config.threading.set_inter_op_parallelism_threads(1)
|
|
1056
|
+
|
|
1057
|
+
sai_paths = ('models/spliceai{}.h5'.format(x) for x in range(1, 6))
|
|
1058
|
+
sai_models = [load_model(resource_filename('spliceai', x)) for x in sai_paths]
|
|
1059
|
+
|
|
1060
|
+
def is_monotonic(A):
|
|
1061
|
+
x, y = [], []
|
|
1062
|
+
x.extend(A)
|
|
1063
|
+
y.extend(A)
|
|
1064
|
+
x.sort()
|
|
1065
|
+
y.sort(reverse=True)
|
|
1066
|
+
if (x == A or y == A):
|
|
1067
|
+
return True
|
|
1068
|
+
return False
|
|
1069
|
+
|
|
1070
|
+
def sai_predict_probs(seq: str, models: list) -> list:
|
|
1071
|
+
'''
|
|
1072
|
+
Predicts the donor and acceptor junction probability of each
|
|
1073
|
+
NT in seq using SpliceAI.
|
|
1074
|
+
|
|
1075
|
+
Let m:=2*sai_mrg_context + L be the input seq length. It is assumed
|
|
1076
|
+
that the input seq has the following structure:
|
|
1077
|
+
|
|
1078
|
+
seq = |<sai_mrg_context NTs><L NTs><sai_mrg_context NTs>|
|
|
1079
|
+
|
|
1080
|
+
The returned probability matrix is of size 2XL, where
|
|
1081
|
+
the first row is the acceptor probability and the second row
|
|
1082
|
+
is the donor probability. These probabilities corresponds to the
|
|
1083
|
+
middel <L NTs> NTs of the input seq.
|
|
1084
|
+
'''
|
|
1085
|
+
x = one_hot_encode(seq)[None, :]
|
|
1086
|
+
y = np.mean([models[m].predict(x, verbose=0) for m in range(5)], axis=0)
|
|
1087
|
+
return y[0, :, 1:].T
|
|
1088
|
+
|
|
1089
|
+
|
|
1090
|
+
### Variant Modules
|
|
1091
|
+
class Mutation:
|
|
1092
|
+
def __init__(self, mid):
|
|
1093
|
+
'''
|
|
1094
|
+
|
|
1095
|
+
:param mid: mutation id in the format of gene:chrom:pos:ref:alt
|
|
1096
|
+
Needs only to store the following properties for a given mutation
|
|
1097
|
+
gene: the name of the gene
|
|
1098
|
+
chrom: the chromosome refernece
|
|
1099
|
+
start: the position of the mutation
|
|
1100
|
+
file_identifier: some filename that can be used to store related data
|
|
1101
|
+
vartype: the variant type
|
|
1102
|
+
|
|
1103
|
+
We want to be able to compare mutations based on location.
|
|
1104
|
+
'''
|
|
1105
|
+
|
|
1106
|
+
self.mut_id = mid
|
|
1107
|
+
|
|
1108
|
+
gene, chrom, pos, ref, alt = mid.split(':')
|
|
1109
|
+
self.gene = gene
|
|
1110
|
+
self.chrom = chrom.strip('chr')
|
|
1111
|
+
self.start = int(pos)
|
|
1112
|
+
|
|
1113
|
+
self.file_identifier = self.mut_id.replace(':', '_')
|
|
1114
|
+
self.file_identifier_short = f'{self.start}_{ref[:6]}_{alt[:6]}'
|
|
1115
|
+
|
|
1116
|
+
self.ref = ref if ref != '-' else ''
|
|
1117
|
+
self.alt = alt if alt != '-' else ''
|
|
1118
|
+
|
|
1119
|
+
if len(self.ref) == len(self.alt) == 1:
|
|
1120
|
+
self.vartype = 'SNP'
|
|
1121
|
+
|
|
1122
|
+
elif len(self.ref) == len(self.alt) > 1:
|
|
1123
|
+
self.vartype = 'SUB'
|
|
1124
|
+
elif self.ref and not self.alt:
|
|
1125
|
+
self.vartype = 'DEL'
|
|
1126
|
+
elif self.alt and not self.ref:
|
|
1127
|
+
self.vartype = 'INS'
|
|
1128
|
+
else:
|
|
1129
|
+
self.vartype = 'INDEL'
|
|
1130
|
+
|
|
1131
|
+
def __str__(self):
|
|
1132
|
+
return self.mut_id
|
|
1133
|
+
|
|
1134
|
+
def __repr__(self):
|
|
1135
|
+
return f"Mutation({self.mut_id})"
|
|
1136
|
+
|
|
1137
|
+
def __lt__(self, other):
|
|
1138
|
+
return self.start < other.start
|
|
1139
|
+
|
|
1140
|
+
class Variations:
|
|
1141
|
+
'''
|
|
1142
|
+
Unlike a mutation, here we have an epistatic set, or a series of mtuations that are separated by '|' characters
|
|
1143
|
+
For such events we want to store them
|
|
1144
|
+
'''
|
|
1145
|
+
def __init__(self, epistatic_set):
|
|
1146
|
+
self.variants = sorted([Mutation(m) for m in epistatic_set.split('|')])
|
|
1147
|
+
self.mut_id = epistatic_set
|
|
1148
|
+
self.start = self.variants[0].start
|
|
1149
|
+
self.positions = [v.start for v in self.variants]
|
|
1150
|
+
self.gene = self.variants[0].gene
|
|
1151
|
+
self.chrom = self.variants[0].chrom.strip('chr')
|
|
1152
|
+
self.file_identifier = f'{self.gene}_{self.chrom}' + '_' + '_'.join(
|
|
1153
|
+
[v.file_identifier_short for v in self.variants])
|
|
1154
|
+
self.range = max(self.positions) - min(self.positions)
|
|
1155
|
+
|
|
1156
|
+
def __str__(self):
|
|
1157
|
+
return '|'.join([m.mut_id for m in self.variants])
|
|
1158
|
+
|
|
1159
|
+
def __repr__(self):
|
|
1160
|
+
return f"Variation({', '.join([m.mut_id for m in self.variants])})"
|
|
1161
|
+
|
|
1162
|
+
def __iter__(self):
|
|
1163
|
+
self.current_index = 0
|
|
1164
|
+
return self
|
|
1165
|
+
|
|
1166
|
+
def __next__(self):
|
|
1167
|
+
if self.current_index < len(self.variants):
|
|
1168
|
+
x = self.variants[self.current_index]
|
|
1169
|
+
self.current_index += 1
|
|
1170
|
+
return x
|
|
1171
|
+
raise StopIteration
|
|
1172
|
+
|
|
1173
|
+
@property
|
|
1174
|
+
def file_identifier_json(self):
|
|
1175
|
+
return Path(self.file_identifier + '.json')
|
|
1176
|
+
|
|
1177
|
+
@property
|
|
1178
|
+
def as_dict(self):
|
|
1179
|
+
return {m.start: m.alt for m in self.variants}
|
|
1180
|
+
|
|
1181
|
+
def verify(self):
|
|
1182
|
+
if len(set(self.positions)) != len(self.variants):
|
|
1183
|
+
return False
|
|
1184
|
+
return True
|
|
1185
|
+
|
|
1186
|
+
|
|
1187
|
+
def generate_mut_variant(seq: str, indices: list, mut: Mutation):
|
|
1188
|
+
offset = 1 if not mut.ref else 0
|
|
1189
|
+
check_indices = list(range(mut.start, mut.start + len(mut.ref) + offset))
|
|
1190
|
+
check1 = all([contains(list(filter((-1).__ne__, indices)), m) for m in check_indices])
|
|
1191
|
+
if not check1:
|
|
1192
|
+
print(
|
|
1193
|
+
f"Mutation {mut} not within transcript bounds: {min(list(filter((-1).__ne__, indices)))} - {max(indices)}.")
|
|
1194
|
+
|
|
1195
|
+
return seq, indices
|
|
1196
|
+
|
|
1197
|
+
rel_start, rel_end = indices.index(mut.start) + offset, indices.index(mut.start) + offset + len(mut.ref)
|
|
1198
|
+
acquired_seq = seq[rel_start:rel_end]
|
|
1199
|
+
check2 = acquired_seq == mut.ref
|
|
1200
|
+
if not check2:
|
|
1201
|
+
print(f'Reference allele ({mut.ref}) does not match genome_build allele ({acquired_seq}).')
|
|
1202
|
+
|
|
1203
|
+
if len(mut.ref) == len(mut.alt) > 0:
|
|
1204
|
+
temp_indices = list(range(mut.start, mut.start + len(mut.ref)))
|
|
1205
|
+
# elif len(mut.ref) > 0 and len(mut.alt) > 0:
|
|
1206
|
+
# temp_indices = [indices[indices.index(mut.start)] + v / 1000 for v in list(range(0, len(mut.alt)))]
|
|
1207
|
+
else:
|
|
1208
|
+
temp_indices = [indices[indices.index(mut.start)] + v / 1000 for v in list(range(1, len(mut.alt) + 1))]
|
|
1209
|
+
|
|
1210
|
+
new_indices = indices[:rel_start] + temp_indices + indices[rel_end:]
|
|
1211
|
+
new_seq = seq[:rel_start] + mut.alt + seq[rel_end:]
|
|
1212
|
+
|
|
1213
|
+
assert len(new_seq) == len(new_indices), f'Error in preserving sequence lengths during variant modification: {mut}, {len(new_seq)}, {len(new_indices)}'
|
|
1214
|
+
assert is_monotonic(list(filter((-1).__ne__, new_indices))), f'Modified nucleotide indices are not monotonic.'
|
|
1215
|
+
return new_seq, new_indices
|
|
1216
|
+
|
|
1217
|
+
|
|
1218
|
+
|
|
1219
|
+
class Gene:
|
|
1220
|
+
def __init__(self, gene_name, variation=None):
|
|
1221
|
+
self.gene_name = gene_name
|
|
1222
|
+
self.gene_id = ''
|
|
1223
|
+
self.rev = None
|
|
1224
|
+
self.chrm = ''
|
|
1225
|
+
self.gene_start = 0
|
|
1226
|
+
self.gene_end = 0
|
|
1227
|
+
self.transcripts = {}
|
|
1228
|
+
self.load_from_file(find_files_by_gene_name(gene_name))
|
|
1229
|
+
self.variations = variation
|
|
1230
|
+
self.primary_tid = None
|
|
1231
|
+
tids = [k for k, v in self.transcripts.items() if v['primary_transcript'] and v['transcript_biotype'] == 'protein_coding']
|
|
1232
|
+
if tids:
|
|
1233
|
+
self.primary_tid = tids[0]
|
|
1234
|
+
else:
|
|
1235
|
+
self.primary_tid = list(self.transcripts.keys())[0]
|
|
1236
|
+
|
|
1237
|
+
def __repr__(self):
|
|
1238
|
+
return f'Gene(gene_name={self.gene_name})'
|
|
1239
|
+
|
|
1240
|
+
def __len__(self):
|
|
1241
|
+
return len(self.transcripts)
|
|
1242
|
+
|
|
1243
|
+
def __str__(self):
|
|
1244
|
+
return '{gname}, {ntranscripts} transcripts'.format(gname=self.gene_name, ntranscripts=self.__len__())
|
|
1245
|
+
|
|
1246
|
+
def __copy__(self):
|
|
1247
|
+
cls = self.__class__
|
|
1248
|
+
result = cls.__new__(cls)
|
|
1249
|
+
result.__dict__.update(self.__dict__)
|
|
1250
|
+
return result
|
|
1251
|
+
|
|
1252
|
+
def __deepcopy__(self, memo):
|
|
1253
|
+
cls = self.__class__
|
|
1254
|
+
result = cls.__new__(cls)
|
|
1255
|
+
memo[id(self)] = result
|
|
1256
|
+
for k, v in self.__dict__.items():
|
|
1257
|
+
setattr(result, k, deepcopy(v, memo))
|
|
1258
|
+
return result
|
|
1259
|
+
|
|
1260
|
+
def __getitem__(self, index):
|
|
1261
|
+
return Transcript(list(self.transcripts.values())[index])
|
|
1262
|
+
|
|
1263
|
+
def load_from_file(self, file_name):
|
|
1264
|
+
if not file_name.exists():
|
|
1265
|
+
raise FileNotFoundError(f"File '{file_name}' not found.")
|
|
1266
|
+
self.load_from_dict(dict_data=unload_pickle(file_name))
|
|
1267
|
+
return self
|
|
1268
|
+
|
|
1269
|
+
def load_from_dict(self, dict_data=None):
|
|
1270
|
+
for k, v in dict_data.items():
|
|
1271
|
+
setattr(self, k, v)
|
|
1272
|
+
return self
|
|
1273
|
+
|
|
1274
|
+
def transcript(self, tid=None):
|
|
1275
|
+
if tid is None:
|
|
1276
|
+
tid = self.primary_tid
|
|
1277
|
+
|
|
1278
|
+
if tid not in self.transcripts:
|
|
1279
|
+
raise AttributeError(f"Transcript '{tid}' not found in gene '{self.gene_name}'.")
|
|
1280
|
+
return Transcript(self.transcripts[tid])
|
|
1281
|
+
|
|
1282
|
+
def run_transcripts(self, primary_transcript=False, protein_coding=False):
|
|
1283
|
+
for tid, annotations in self.transcripts.items():
|
|
1284
|
+
if primary_transcript and not annotations['primary_transcript']:
|
|
1285
|
+
continue
|
|
1286
|
+
if protein_coding and annotations['transcript_biotype'] != 'protein_coding':
|
|
1287
|
+
continue
|
|
1288
|
+
|
|
1289
|
+
yield Transcript(self.transcripts[tid], variations=self.variations)
|
|
1290
|
+
|
|
1291
|
+
|
|
264
1292
|
class Transcript:
|
|
265
1293
|
def __init__(self, d=None, variations=None):
|
|
266
1294
|
self.transcript_id = None
|
|
@@ -720,6 +1748,9 @@ def run_spliceai_transcript(mutations, transcript_data, sai_mrg_context=5000, mi
|
|
|
720
1748
|
for mut in mutations:
|
|
721
1749
|
mut_seq, mut_indices = generate_mut_variant(seq=mut_seq, indices=mut_indices, mut=mut)
|
|
722
1750
|
|
|
1751
|
+
if mut_seq == ref_seq:
|
|
1752
|
+
print("Even in SpliceAI?!")
|
|
1753
|
+
|
|
723
1754
|
ref_indices = ref_indices[sai_mrg_context:-sai_mrg_context]
|
|
724
1755
|
mut_indices = mut_indices[sai_mrg_context:-sai_mrg_context]
|
|
725
1756
|
copy_mut_indices = mut_indices.copy()
|
|
@@ -1024,6 +2055,11 @@ def OncospliceAnnotator(reference_transcript, variant_transcript, mut):
|
|
|
1024
2055
|
return report
|
|
1025
2056
|
|
|
1026
2057
|
|
|
2058
|
+
# def find_splice_site_proximity(mut, transcript):
|
|
2059
|
+
# for i, (ex_start, ex_end) in enumerate(transcript.exons):
|
|
2060
|
+
# if min(ex_start, ex_end) <= mut.start <= max(ex_start, ex_end):
|
|
2061
|
+
#
|
|
2062
|
+
|
|
1027
2063
|
def find_splice_site_proximity(mut, transcript):
|
|
1028
2064
|
for i, (ex_start, ex_end) in enumerate(transcript.exons):
|
|
1029
2065
|
if min(ex_start, ex_end) <= mut.start <= max(ex_start, ex_end):
|
|
@@ -1347,8 +2383,12 @@ def oncosplice(mut_id, sai_threshold=0.5, protein_coding=True, primary_transcrip
|
|
|
1347
2383
|
for variant in mutated_gene.run_transcripts(protein_coding=protein_coding, primary_transcript=primary_transcript):
|
|
1348
2384
|
reference = reference_gene.transcript(variant.transcript_id)
|
|
1349
2385
|
if mutation not in reference or reference.protein == '' or len(reference.protein) < window_length:
|
|
2386
|
+
print("exit flag 1")
|
|
1350
2387
|
continue
|
|
1351
2388
|
|
|
2389
|
+
if reference.pre_mrna == variant.pre_mrna:
|
|
2390
|
+
print("WHAT THE FUCK?")
|
|
2391
|
+
|
|
1352
2392
|
cons_vector = transform_conservation_vector(reference.cons_vector, window=window_length)
|
|
1353
2393
|
# if per_transcript_missplicing:
|
|
1354
2394
|
missplicing_obj = PredictSpliceAI(mutation, reference, threshold=sai_threshold, force=force_spliceai, save_results=save_spliceai_results)
|
geney/power_utils.py
CHANGED
geney/survival_utils.py
CHANGED
|
@@ -82,13 +82,15 @@ class SurvivalAnalysis:
|
|
|
82
82
|
|
|
83
83
|
kmf.fit(g['duration'], g['event'], label=label)
|
|
84
84
|
surv_func = kmf.survival_function_
|
|
85
|
-
|
|
85
|
+
filtered_surv_func = surv_func[surv_func.index <= cap_time]
|
|
86
|
+
auc = np.trapz(filtered_surv_func[label], filtered_surv_func.index)
|
|
87
|
+
# auc = trapz(surv_func[label], surv_func.index)
|
|
86
88
|
auc_vals.append(auc)
|
|
87
89
|
if plot:
|
|
88
90
|
if count == 0:
|
|
89
|
-
ax = kmf.
|
|
91
|
+
ax = kmf.plot_survival_function()
|
|
90
92
|
else:
|
|
91
|
-
kmf.
|
|
93
|
+
kmf.plot_survival_function(ax=ax)
|
|
92
94
|
count += 1
|
|
93
95
|
p_value = self.log_rank(df[df[feature] == 1], df[df[feature] == 0])
|
|
94
96
|
|
geney/tcga_utils.py
CHANGED
|
@@ -157,12 +157,10 @@ class TCGAGene:
|
|
|
157
157
|
# returns two lists: all patients affected by a mutation and all patients with none of the mutations (or the mutations but not togehter)
|
|
158
158
|
pass
|
|
159
159
|
|
|
160
|
-
|
|
161
160
|
def arrange_patients_by_project(self, mut_id):
|
|
162
161
|
# returns all the patients affected by a mutation grouped by cancer project
|
|
163
162
|
pass
|
|
164
163
|
|
|
165
|
-
|
|
166
164
|
def total_prevalence(self, mut_id):
|
|
167
165
|
pass
|
|
168
166
|
|
|
@@ -7,15 +7,16 @@ geney/config_setup.py,sha256=SePeooA4RWAtR_KAT1-W1hkD3MT5tH6YMyp80t_RNPQ,385
|
|
|
7
7
|
geney/data_setup.py,sha256=DZeksRPr2ZT7bszMo33W0r3OwmqHokVXtZ4gx5Lu_Mo,10725
|
|
8
8
|
geney/gtex.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
|
|
9
9
|
geney/gtex_utils.py,sha256=asL2lHyU5KsbWpV096vkf1Ka7hSo_RRfZqw7p5nERmE,1919
|
|
10
|
+
geney/immune_utils.py,sha256=elxjQyB52lYXrrt3sX6vtYlr_pTFEeCFzmEMP2qlPwA,5300
|
|
10
11
|
geney/netchop.py,sha256=AMiy9YsdTmX4B3k3Y5Yh7EmoGAojM1O3AzhPKOiB--g,3050
|
|
11
|
-
geney/oncosplice.py,sha256=
|
|
12
|
+
geney/oncosplice.py,sha256=BZMK3TzwKqObih79b1KNKMHvyJhB8W6Tj_kawmPFrqE,112110
|
|
12
13
|
geney/oncosplice_pipeline.py,sha256=hpGqFHOdn8i8tvvs1-t3-G9Ko18zInwoDXBJbbrfbC4,68036
|
|
13
14
|
geney/performance_utils.py,sha256=FQt7rA4r-Wuq3kceCxsSuMfj3wU1tMG8QnbL59aBohs,4700
|
|
14
|
-
geney/power_utils.py,sha256=
|
|
15
|
+
geney/power_utils.py,sha256=6InuDm1jSrsgR-F_LmdMTbuQwty2OdYjwfGGaAPhaRI,7268
|
|
15
16
|
geney/survival.py,sha256=gNKZGcwxDZ00ixVBHf3ZdjbY_AHQOCU9kKpBC_dokbM,5572
|
|
16
|
-
geney/survival_utils.py,sha256=
|
|
17
|
+
geney/survival_utils.py,sha256=2CAkC2LsspicHIdrqsiPnjgvpr5KHDUfLFFqnRbPJqs,5762
|
|
17
18
|
geney/tcga_annotations.py,sha256=DjRl6Pk5VAOL1yhbt8SXD6FZhYbcYNu3FtXYMeveGB0,15016
|
|
18
|
-
geney/tcga_utils.py,sha256=
|
|
19
|
+
geney/tcga_utils.py,sha256=uAjejr7F-XqcXS5uANGlsHLOlzMmGo4CTbWhMO0E318,15589
|
|
19
20
|
geney/utils.py,sha256=YOe22gA0Oew9_QEym7ivM9sb7t3wNeHTeiSDBmvOPso,1984
|
|
20
21
|
geney/analyzers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
21
22
|
geney/analyzers/benchmark_clinvar.py,sha256=ZAxvZ-Ue5T6au5mGbk8clfvbAYl13NIY7U92KzL0lXI,5531
|
|
@@ -43,7 +44,7 @@ geney/translation_initiation/resources/kozak_pssm.json,sha256=pcd0Olziutq-6H3mFW
|
|
|
43
44
|
geney/translation_initiation/resources/tis_regressor_model.joblib,sha256=IXb4DUDhJ5rBDKcqMk9zE3ECTZZcdj7Jixz3KpoZ7OA,2592025
|
|
44
45
|
geney/translation_termination/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
45
46
|
geney/translation_termination/tts_utils.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
46
|
-
geney-1.1.
|
|
47
|
-
geney-1.1.
|
|
48
|
-
geney-1.1.
|
|
49
|
-
geney-1.1.
|
|
47
|
+
geney-1.1.12.dist-info/METADATA,sha256=YuSzsBvZGYcsKL7zcekpodsJUAkFqulI-aJ-_cC8JSU,1131
|
|
48
|
+
geney-1.1.12.dist-info/WHEEL,sha256=iYlv5fX357PQyRT2o6tw1bN-YcKFFHKqB_LwHO5wP-g,110
|
|
49
|
+
geney-1.1.12.dist-info/top_level.txt,sha256=O-FuNUMb5fn9dhZ-dYCgF0aZtfi1EslMstnzhc5IIVo,6
|
|
50
|
+
geney-1.1.12.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|