genai-otel-instrument 0.1.2.dev0__py3-none-any.whl → 0.1.7.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of genai-otel-instrument might be problematic. Click here for more details.

Files changed (24) hide show
  1. genai_otel/__version__.py +2 -2
  2. genai_otel/auto_instrument.py +18 -1
  3. genai_otel/config.py +22 -1
  4. genai_otel/cost_calculator.py +204 -13
  5. genai_otel/cost_enrichment_processor.py +175 -0
  6. genai_otel/gpu_metrics.py +50 -0
  7. genai_otel/instrumentors/base.py +300 -44
  8. genai_otel/instrumentors/cohere_instrumentor.py +140 -76
  9. genai_otel/instrumentors/huggingface_instrumentor.py +142 -13
  10. genai_otel/instrumentors/langchain_instrumentor.py +75 -75
  11. genai_otel/instrumentors/mistralai_instrumentor.py +234 -38
  12. genai_otel/instrumentors/ollama_instrumentor.py +104 -35
  13. genai_otel/instrumentors/replicate_instrumentor.py +59 -14
  14. genai_otel/instrumentors/togetherai_instrumentor.py +120 -16
  15. genai_otel/instrumentors/vertexai_instrumentor.py +79 -15
  16. genai_otel/llm_pricing.json +869 -589
  17. genai_otel/logging_config.py +45 -45
  18. genai_otel/py.typed +2 -2
  19. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/METADATA +294 -33
  20. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/RECORD +24 -23
  21. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/WHEEL +0 -0
  22. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/entry_points.txt +0 -0
  23. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/licenses/LICENSE +0 -0
  24. {genai_otel_instrument-0.1.2.dev0.dist-info → genai_otel_instrument-0.1.7.dev0.dist-info}/top_level.txt +0 -0
@@ -1,42 +1,146 @@
1
1
  """OpenTelemetry instrumentor for the Together AI SDK.
2
2
 
3
3
  This instrumentor automatically traces completion calls to Together AI models,
4
- capturing relevant attributes such as the model name.
4
+ capturing relevant attributes such as the model name and token usage.
5
5
  """
6
6
 
7
- from typing import Dict, Optional
7
+ import logging
8
+ from typing import Any, Dict, Optional
8
9
 
9
10
  from ..config import OTelConfig
10
11
  from .base import BaseInstrumentor
11
12
 
13
+ logger = logging.getLogger(__name__)
14
+
12
15
 
13
16
  class TogetherAIInstrumentor(BaseInstrumentor):
14
17
  """Instrumentor for Together AI"""
15
18
 
16
19
  def instrument(self, config: OTelConfig):
20
+ """Instrument Together AI SDK if available."""
17
21
  self.config = config
18
22
  try:
19
23
  import together
20
24
 
21
- original_complete = together.Complete.create
22
-
23
- def wrapped_complete(*args, **kwargs):
24
- with self.tracer.start_as_current_span("together.complete") as span:
25
- model = kwargs.get("model", "unknown")
25
+ # Instrument chat completions (newer API)
26
+ if hasattr(together, "Together"):
27
+ # This is the newer Together SDK with client-based API
28
+ original_init = together.Together.__init__
26
29
 
27
- span.set_attribute("gen_ai.system", "together")
28
- span.set_attribute("gen_ai.request.model", model)
30
+ def wrapped_init(instance, *args, **kwargs):
31
+ original_init(instance, *args, **kwargs)
32
+ self._instrument_client(instance)
29
33
 
30
- if self.request_counter:
31
- self.request_counter.add(1, {"model": model, "provider": "together"})
34
+ together.Together.__init__ = wrapped_init
35
+ self._instrumented = True
36
+ logger.info("Together AI instrumentation enabled (client-based API)")
37
+ # Fallback to older Complete API if available
38
+ elif hasattr(together, "Complete"):
39
+ original_complete = together.Complete.create
32
40
 
33
- result = original_complete(*args, **kwargs)
34
- return result
41
+ wrapped_complete = self.create_span_wrapper(
42
+ span_name="together.complete",
43
+ extract_attributes=self._extract_complete_attributes,
44
+ )(original_complete)
35
45
 
36
- together.Complete.create = wrapped_complete
46
+ together.Complete.create = wrapped_complete
47
+ self._instrumented = True
48
+ logger.info("Together AI instrumentation enabled (Complete API)")
37
49
 
38
50
  except ImportError:
39
- pass
51
+ logger.debug("Together AI library not installed, instrumentation will be skipped")
52
+ except Exception as e:
53
+ logger.error("Failed to instrument Together AI: %s", e, exc_info=True)
54
+ if config.fail_on_error:
55
+ raise
56
+
57
+ def _instrument_client(self, client):
58
+ """Instrument Together AI client methods."""
59
+ if hasattr(client, "chat") and hasattr(client.chat, "completions"):
60
+ original_create = client.chat.completions.create
61
+
62
+ wrapped_create = self.create_span_wrapper(
63
+ span_name="together.chat.completion",
64
+ extract_attributes=self._extract_chat_attributes,
65
+ )(original_create)
66
+
67
+ client.chat.completions.create = wrapped_create
68
+
69
+ def _extract_chat_attributes(self, instance: Any, args: Any, kwargs: Any) -> Dict[str, Any]:
70
+ """Extract attributes from Together AI chat completion call.
71
+
72
+ Args:
73
+ instance: The client instance.
74
+ args: Positional arguments.
75
+ kwargs: Keyword arguments.
76
+
77
+ Returns:
78
+ Dict[str, Any]: Dictionary of attributes to set on the span.
79
+ """
80
+ attrs = {}
81
+ model = kwargs.get("model", "unknown")
82
+ messages = kwargs.get("messages", [])
83
+
84
+ attrs["gen_ai.system"] = "together"
85
+ attrs["gen_ai.request.model"] = model
86
+ attrs["gen_ai.operation.name"] = "chat"
87
+ attrs["gen_ai.request.message_count"] = len(messages)
88
+
89
+ # Optional parameters
90
+ if "temperature" in kwargs:
91
+ attrs["gen_ai.request.temperature"] = kwargs["temperature"]
92
+ if "top_p" in kwargs:
93
+ attrs["gen_ai.request.top_p"] = kwargs["top_p"]
94
+ if "max_tokens" in kwargs:
95
+ attrs["gen_ai.request.max_tokens"] = kwargs["max_tokens"]
96
+
97
+ return attrs
98
+
99
+ def _extract_complete_attributes(self, instance: Any, args: Any, kwargs: Any) -> Dict[str, Any]:
100
+ """Extract attributes from Together AI complete call.
101
+
102
+ Args:
103
+ instance: The instance (None for class methods).
104
+ args: Positional arguments.
105
+ kwargs: Keyword arguments.
106
+
107
+ Returns:
108
+ Dict[str, Any]: Dictionary of attributes to set on the span.
109
+ """
110
+ attrs = {}
111
+ model = kwargs.get("model", "unknown")
112
+
113
+ attrs["gen_ai.system"] = "together"
114
+ attrs["gen_ai.request.model"] = model
115
+ attrs["gen_ai.operation.name"] = "complete"
116
+
117
+ return attrs
40
118
 
41
119
  def _extract_usage(self, result) -> Optional[Dict[str, int]]:
42
- return None
120
+ """Extract token usage from Together AI response.
121
+
122
+ Together AI uses OpenAI-compatible format with usage field containing:
123
+ - prompt_tokens: Input tokens
124
+ - completion_tokens: Output tokens
125
+ - total_tokens: Total tokens
126
+
127
+ Args:
128
+ result: The API response object.
129
+
130
+ Returns:
131
+ Optional[Dict[str, int]]: Dictionary with token counts or None.
132
+ """
133
+ try:
134
+ # Handle OpenAI-compatible response format
135
+ if hasattr(result, "usage") and result.usage:
136
+ usage = result.usage
137
+ return {
138
+ "prompt_tokens": getattr(usage, "prompt_tokens", 0),
139
+ "completion_tokens": getattr(usage, "completion_tokens", 0),
140
+ "total_tokens": getattr(usage, "total_tokens", 0),
141
+ }
142
+
143
+ return None
144
+ except Exception as e:
145
+ logger.debug("Failed to extract usage from Together AI response: %s", e)
146
+ return None
@@ -1,42 +1,106 @@
1
1
  """OpenTelemetry instrumentor for Google Vertex AI SDK.
2
2
 
3
3
  This instrumentor automatically traces content generation calls to Vertex AI models,
4
- capturing relevant attributes such as the model name.
4
+ capturing relevant attributes such as the model name and token usage.
5
5
  """
6
6
 
7
- from typing import Dict, Optional
7
+ import logging
8
+ from typing import Any, Dict, Optional
8
9
 
9
10
  from ..config import OTelConfig
10
11
  from .base import BaseInstrumentor
11
12
 
13
+ logger = logging.getLogger(__name__)
14
+
12
15
 
13
16
  class VertexAIInstrumentor(BaseInstrumentor):
14
17
  """Instrumentor for Google Vertex AI"""
15
18
 
16
19
  def instrument(self, config: OTelConfig):
20
+ """Instrument Vertex AI SDK if available."""
17
21
  self.config = config
18
22
  try:
19
23
  from vertexai.preview.generative_models import GenerativeModel
20
24
 
21
25
  original_generate = GenerativeModel.generate_content
22
26
 
23
- def wrapped_generate(instance, *args, **kwargs):
24
- with self.tracer.start_as_current_span("vertexai.generate_content") as span:
25
- model_name = getattr(instance, "_model_name", "unknown")
27
+ # Wrap using create_span_wrapper
28
+ wrapped_generate = self.create_span_wrapper(
29
+ span_name="vertexai.generate_content",
30
+ extract_attributes=self._extract_generate_attributes,
31
+ )(original_generate)
26
32
 
27
- span.set_attribute("gen_ai.system", "vertexai")
28
- span.set_attribute("gen_ai.request.model", model_name)
33
+ GenerativeModel.generate_content = wrapped_generate
34
+ self._instrumented = True
35
+ logger.info("Vertex AI instrumentation enabled")
29
36
 
30
- if self.request_counter:
31
- self.request_counter.add(1, {"model": model_name, "provider": "vertexai"})
37
+ except ImportError:
38
+ logger.debug("Vertex AI library not installed, instrumentation will be skipped")
39
+ except Exception as e:
40
+ logger.error("Failed to instrument Vertex AI: %s", e, exc_info=True)
41
+ if config.fail_on_error:
42
+ raise
32
43
 
33
- result = original_generate(instance, *args, **kwargs)
34
- return result
44
+ def _extract_generate_attributes(self, instance: Any, args: Any, kwargs: Any) -> Dict[str, Any]:
45
+ """Extract attributes from Vertex AI generate_content call.
35
46
 
36
- GenerativeModel.generate_content = wrapped_generate
47
+ Args:
48
+ instance: The GenerativeModel instance.
49
+ args: Positional arguments.
50
+ kwargs: Keyword arguments.
37
51
 
38
- except ImportError:
39
- pass
52
+ Returns:
53
+ Dict[str, Any]: Dictionary of attributes to set on the span.
54
+ """
55
+ attrs = {}
56
+ model_name = getattr(instance, "_model_name", "unknown")
57
+
58
+ attrs["gen_ai.system"] = "vertexai"
59
+ attrs["gen_ai.request.model"] = model_name
60
+ attrs["gen_ai.operation.name"] = "generate_content"
61
+
62
+ return attrs
40
63
 
41
64
  def _extract_usage(self, result) -> Optional[Dict[str, int]]:
42
- return None
65
+ """Extract token usage from Vertex AI response.
66
+
67
+ Vertex AI responses include usage_metadata with:
68
+ - prompt_token_count: Input tokens
69
+ - candidates_token_count: Output tokens
70
+ - total_token_count: Total tokens
71
+
72
+ Args:
73
+ result: The API response object.
74
+
75
+ Returns:
76
+ Optional[Dict[str, int]]: Dictionary with token counts or None.
77
+ """
78
+ try:
79
+ # Handle response with usage_metadata
80
+ if hasattr(result, "usage_metadata") and result.usage_metadata:
81
+ usage_metadata = result.usage_metadata
82
+
83
+ # Try snake_case first (Python SDK style)
84
+ prompt_tokens = getattr(usage_metadata, "prompt_token_count", None)
85
+ candidates_tokens = getattr(usage_metadata, "candidates_token_count", None)
86
+ total_tokens = getattr(usage_metadata, "total_token_count", None)
87
+
88
+ # Fallback to camelCase (REST API style)
89
+ if prompt_tokens is None:
90
+ prompt_tokens = getattr(usage_metadata, "promptTokenCount", 0)
91
+ if candidates_tokens is None:
92
+ candidates_tokens = getattr(usage_metadata, "candidatesTokenCount", 0)
93
+ if total_tokens is None:
94
+ total_tokens = getattr(usage_metadata, "totalTokenCount", 0)
95
+
96
+ if prompt_tokens or candidates_tokens:
97
+ return {
98
+ "prompt_tokens": int(prompt_tokens or 0),
99
+ "completion_tokens": int(candidates_tokens or 0),
100
+ "total_tokens": int(total_tokens or 0),
101
+ }
102
+
103
+ return None
104
+ except Exception as e:
105
+ logger.debug("Failed to extract usage from Vertex AI response: %s", e)
106
+ return None