gaussian-splatting 1.17.8__cp311-cp311-win_amd64.whl → 1.17.9__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gaussian-splatting might be problematic. Click here for more details.

@@ -22,13 +22,11 @@ class BaseTrainer(AbstractTrainer):
22
22
  opacity_lr=0.025,
23
23
  scaling_lr=0.005,
24
24
  rotation_lr=0.001,
25
- ignore_out_of_image_mask_loss=False, # whether to ignore loss for out-of-mask pixels, if True, these pixels will be ignored in loss computation
26
- random_out_of_image_mask_color=False, # if ignore_out_of_mask_loss is False, whether use random color or use camera.bg_color for out-of-mask pixels
25
+ mask_mode="ignore", # "ignore", "random", "bg_color"
27
26
  ):
28
27
  super().__init__()
29
28
  self.lambda_dssim = lambda_dssim
30
- self.ignore_out_of_image_mask_loss = ignore_out_of_image_mask_loss
31
- self.random_out_of_image_mask_color = random_out_of_image_mask_color
29
+ self.mask_mode = mask_mode
32
30
  params = [
33
31
  {'params': [model._xyz], 'lr': position_lr_init * scene_extent, "name": "xyz"},
34
32
  {'params': [model._features_dc], 'lr': feature_lr, "name": "f_dc"},
@@ -76,13 +74,16 @@ class BaseTrainer(AbstractTrainer):
76
74
  gt = camera.ground_truth_image
77
75
  mask = camera.ground_truth_image_mask
78
76
  if mask is not None:
79
- if self.ignore_out_of_image_mask_loss:
80
- render = render * mask.unsqueeze(0)
81
- gt = gt * mask.unsqueeze(0)
82
- elif self.random_out_of_image_mask_color:
83
- gt = gt * mask.unsqueeze(0) + (1 - mask.unsqueeze(0)) * torch.rand_like(gt)
84
- else:
85
- gt = gt * mask.unsqueeze(0) + (1 - mask.unsqueeze(0)) * camera.bg_color.unsqueeze(-1).unsqueeze(-1)
77
+ match self.mask_mode:
78
+ case "ignore":
79
+ render = render * mask.unsqueeze(0)
80
+ gt = gt * mask.unsqueeze(0)
81
+ case "random":
82
+ gt = gt * mask.unsqueeze(0) + (1 - mask.unsqueeze(0)) * torch.rand_like(gt)
83
+ case "bg_color":
84
+ gt = gt * mask.unsqueeze(0) + (1 - mask.unsqueeze(0)) * camera.bg_color.unsqueeze(-1).unsqueeze(-1)
85
+ case _:
86
+ raise ValueError(f"Unknown mask policy: {self.mask_mode}")
86
87
  Ll1 = l1_loss(render, gt)
87
88
  ssim_value = ssim(render, gt)
88
89
  loss = (1.0 - self.lambda_dssim) * Ll1 + self.lambda_dssim * (1.0 - ssim_value)
@@ -75,10 +75,6 @@ class DepthTrainer(TrainerWrapper):
75
75
  invdepth = out["depth"].squeeze(0)
76
76
  invdepth_gt = camera.ground_truth_depth
77
77
  mask = camera.ground_truth_depth_mask
78
- if mask is None:
79
- mask = camera.ground_truth_image_mask
80
- elif camera.ground_truth_image_mask is not None:
81
- mask = mask * camera.ground_truth_image_mask
82
78
  assert invdepth.shape == invdepth_gt.shape, f"invdepth shape {invdepth.shape} does not match gt depth shape {invdepth_gt.shape}"
83
79
  if self.depth_resize is not None:
84
80
  height, width = invdepth.shape[-2:]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: gaussian_splatting
3
- Version: 1.17.8
3
+ Version: 1.17.9
4
4
  Summary: Refactored python training and inference code for 3D Gaussian Splatting
5
5
  Home-page: https://github.com/yindaheng98/gaussian-splatting
6
6
  Author: yindaheng98
@@ -12,15 +12,15 @@ gaussian_splatting/dataset/colmap/__init__.py,sha256=YEYT2k2WJSqrkkZq4KAJYS9UMgq
12
12
  gaussian_splatting/dataset/colmap/dataset.py,sha256=Lq2b3hMdtOmdqPjvEjR6CLukAR7dZBEKMz8yzDD2Bgo,4519
13
13
  gaussian_splatting/dataset/colmap/params_init.py,sha256=6_6gZ0Wl4aZrps2PJ_U234sxW5D-vOTfwioVa1FWC-E,1802
14
14
  gaussian_splatting/dataset/colmap/read_write_model.py,sha256=TenI7ai5UV7Ksg2vAXvJWnYFwOOo1tlS_633RfCLuQU,23137
15
- gaussian_splatting/diff_gaussian_rasterization/_C.cp311-win_amd64.pyd,sha256=zvtZUC94OYGNWQwhuRuNlexdzGHnPD9_oS2eh7c0UVg,1295360
15
+ gaussian_splatting/diff_gaussian_rasterization/_C.cp311-win_amd64.pyd,sha256=HAKRQZm_kbtdaDJHDsYRMRh-NEMqOA82w_NlzoL9KAs,1295360
16
16
  gaussian_splatting/diff_gaussian_rasterization/__init__.py,sha256=a9D0IZiPx-Mk1795hSq54T-NYT4MtEN_MZrxeMhw0Eo,6705
17
- gaussian_splatting/simple_knn/_C.cp311-win_amd64.pyd,sha256=M41Nx5h9TYuGtbqsUQ7OkCwEZPhHHk_axTnoyzpKFBc,1164288
17
+ gaussian_splatting/simple_knn/_C.cp311-win_amd64.pyd,sha256=iZcwQ6Njb2y2TkBwd6j8PFaJ5nNWuoTnORlX-R7UXLA,1164288
18
18
  gaussian_splatting/trainer/__init__.py,sha256=962fEY8A0spSQn5de_d_LkPOjA1PYKrLbuAkxwZo7mI,940
19
19
  gaussian_splatting/trainer/abc.py,sha256=kpYnJjLOhsyhE-V2J79EC9nih6MYBcXkmK9cHUA-3ao,4022
20
- gaussian_splatting/trainer/base.py,sha256=FLm40Ks9I_e9IPn73iW3TpSbyp-kXcJdrMuCn8Aqyt8,3613
20
+ gaussian_splatting/trainer/base.py,sha256=gO1x4m82xrZNl8NZVw2CWYqIvZJIMUWmBtPZQPeyxJ0,3370
21
21
  gaussian_splatting/trainer/camera_trainable.py,sha256=TBQXn2f578qeizPz6tgqFm-GRvttv9duuB1xx7_J9TQ,4567
22
22
  gaussian_splatting/trainer/combinations.py,sha256=7NX4fXdDOx8ri1_mgAaWNx-YVdo5XsqMlr9qy-Ll2MM,5329
23
- gaussian_splatting/trainer/depth.py,sha256=EkFfOKdTYUkm4yZwsa9mx0NUf3jYqM74xOYefQvESAA,7252
23
+ gaussian_splatting/trainer/depth.py,sha256=PxWBSNxzoQcRfCFI_yJnJMS6s8qFWn81CXK6O6ffXL0,7059
24
24
  gaussian_splatting/trainer/opacity_reset.py,sha256=KfxDyWBNocETGcqCRTdE1n3t63HmjChaAuIP3OTIWtg,2615
25
25
  gaussian_splatting/trainer/sh_lift.py,sha256=Hwcn_cRzXZChESpTL83ZmR608ewCR2OzItt-wZtRpak,1220
26
26
  gaussian_splatting/trainer/densifier/__init__.py,sha256=cg4aGUolq5ayWtoqQP_BEmHE4NOD5ZuzCluRclJS61I,359
@@ -45,8 +45,8 @@ gaussian_splatting/utils/lpipsPyTorch/modules/__init__.py,sha256=47DEQpj8HBSa-_T
45
45
  gaussian_splatting/utils/lpipsPyTorch/modules/lpips.py,sha256=YScu0oXIEstCCjJVRItS_R_csUw70sBMFuP8Syl2UdI,1187
46
46
  gaussian_splatting/utils/lpipsPyTorch/modules/networks.py,sha256=kqIebq7dAhHypTXweFVEf_RDbN7_Zv7O3MlD-CfRvpg,2788
47
47
  gaussian_splatting/utils/lpipsPyTorch/modules/utils.py,sha256=TDcem3E3HqDNN2MT8qlOL_BKVHeO4HRE77JxF-kOWk8,915
48
- gaussian_splatting-1.17.8.dist-info/licenses/LICENSE.md,sha256=bMuRQKn0u485mx8JBBTJ5Simc-aWHaQsxmoB6jsg5oE,4752
49
- gaussian_splatting-1.17.8.dist-info/METADATA,sha256=IPr4HWH0jywGEhZM7CywpdH8sDrBHrpLHrC72TqqPXk,17046
50
- gaussian_splatting-1.17.8.dist-info/WHEEL,sha256=JLOMsP7F5qtkAkINx5UnzbFguf8CqZeraV8o04b0I8I,101
51
- gaussian_splatting-1.17.8.dist-info/top_level.txt,sha256=uaYrPYXRHhpybgCnsoazTcdhpzZGnLT_vd5eoRzBWWI,19
52
- gaussian_splatting-1.17.8.dist-info/RECORD,,
48
+ gaussian_splatting-1.17.9.dist-info/licenses/LICENSE.md,sha256=bMuRQKn0u485mx8JBBTJ5Simc-aWHaQsxmoB6jsg5oE,4752
49
+ gaussian_splatting-1.17.9.dist-info/METADATA,sha256=JtIE2YU2bkhpdJQ-u0TiCWAQXr70eNk7FXSH3d-oS5o,17046
50
+ gaussian_splatting-1.17.9.dist-info/WHEEL,sha256=JLOMsP7F5qtkAkINx5UnzbFguf8CqZeraV8o04b0I8I,101
51
+ gaussian_splatting-1.17.9.dist-info/top_level.txt,sha256=uaYrPYXRHhpybgCnsoazTcdhpzZGnLT_vd5eoRzBWWI,19
52
+ gaussian_splatting-1.17.9.dist-info/RECORD,,