fusion-bench 0.2.6__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/compat/method/__init__.py +1 -0
- fusion_bench/compat/method/base_algorithm.py +7 -1
- fusion_bench/compat/modelpool/__init__.py +1 -1
- fusion_bench/compat/taskpool/__init__.py +1 -1
- fusion_bench/dataset/arc_agi/arc.py +5 -0
- fusion_bench/dataset/arc_agi/preprocess.py +1 -1
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +93 -3
- fusion_bench/dataset/llama/collate.py +62 -2
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/method/__init__.py +1 -1
- fusion_bench/method/adamerging/layer_wise_adamerging.py +11 -4
- fusion_bench/method/adamerging/min_norm_solvers.py +4 -4
- fusion_bench/method/linear/expo.py +39 -0
- fusion_bench/method/lm_finetune/__init__.py +1 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +90 -160
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +49 -139
- fusion_bench/method/pruning/llama_magnitude_prune.py +2 -2
- fusion_bench/method/pruning/llama_random_prune.py +2 -2
- fusion_bench/method/surgery/__init__.py +3 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/mixins/__init__.py +2 -0
- fusion_bench/mixins/clip_classification.py +58 -5
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +9 -0
- fusion_bench/modelpool/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/__init__.py +1 -1
- fusion_bench/modelpool/causal_lm/causal_lm.py +21 -22
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +50 -9
- fusion_bench/models/surgery/surgerymodelwrapper.py +157 -0
- fusion_bench/models/utils.py +8 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +14 -5
- fusion_bench/models/wrappers/task_wise_fusion.py +5 -5
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +0 -2
- fusion_bench/programs/fabric_fusion_program.py +5 -1
- fusion_bench/taskpool/clip_vision/taskpool.py +43 -6
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +2 -0
- fusion_bench/utils/hydra_utils.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/type.py +5 -3
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/METADATA +1 -1
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/RECORD +87 -47
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +1 -1
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +11 -4
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +4 -2
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/nyuv2_config.yaml +5 -1
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
- fusion_bench_config/llama_weighted_average.yaml +0 -26
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/LICENSE +0 -0
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.6.dist-info → fusion_bench-0.2.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import numpy as np
|
|
3
|
+
import seaborn as sns
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def visualize_model_inputs(input_ids, attention_mask, labels, tokenizer=None):
|
|
7
|
+
"""
|
|
8
|
+
Visualize model inputs: attention mask, labels and input_ids
|
|
9
|
+
|
|
10
|
+
Parameters:
|
|
11
|
+
-----------
|
|
12
|
+
attention_mask: numpy array or tensor
|
|
13
|
+
The attention mask array
|
|
14
|
+
labels: numpy array or tensor
|
|
15
|
+
The labels array
|
|
16
|
+
input_ids: numpy array or tensor
|
|
17
|
+
The input ids array
|
|
18
|
+
tokenizer: optional
|
|
19
|
+
The tokenizer object to decode input_ids
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
# Convert inputs to numpy if they're tensors
|
|
23
|
+
attention_mask = np.array(attention_mask)
|
|
24
|
+
labels = np.array(labels)
|
|
25
|
+
input_ids = np.array(input_ids)
|
|
26
|
+
|
|
27
|
+
# Create figure with 3 subplots
|
|
28
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(15, 10))
|
|
29
|
+
|
|
30
|
+
# Plot attention mask
|
|
31
|
+
sns.heatmap(attention_mask.reshape(1, -1), ax=ax1, cmap="Blues", cbar=True)
|
|
32
|
+
ax1.set_title("**Attention Mask**")
|
|
33
|
+
ax1.set_ylabel("Sequence")
|
|
34
|
+
|
|
35
|
+
# Plot labels
|
|
36
|
+
sns.heatmap(labels.reshape(1, -1), ax=ax2, cmap="Reds", cbar=True)
|
|
37
|
+
ax2.set_title("**Labels**")
|
|
38
|
+
ax2.set_ylabel("Sequence")
|
|
39
|
+
|
|
40
|
+
# Plot input_ids
|
|
41
|
+
sns.heatmap(input_ids.reshape(1, -1), ax=ax3, cmap="Greens", cbar=True)
|
|
42
|
+
ax3.set_title("**Input IDs**")
|
|
43
|
+
ax3.set_ylabel("Sequence")
|
|
44
|
+
|
|
45
|
+
# If tokenizer is provided, add decoded tokens as x-axis labels
|
|
46
|
+
if tokenizer:
|
|
47
|
+
decoded_tokens = [tokenizer.decode(token_id) for token_id in input_ids]
|
|
48
|
+
ax3.set_xticks(np.arange(len(decoded_tokens)) + 0.5)
|
|
49
|
+
ax3.set_xticklabels(decoded_tokens, rotation=45, ha="right")
|
|
50
|
+
|
|
51
|
+
plt.tight_layout()
|
|
52
|
+
return fig
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from IPython.display import HTML, display
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def create_color_style():
|
|
6
|
+
return """
|
|
7
|
+
<style>
|
|
8
|
+
.token-container { font-family: monospace; white-space: pre; }
|
|
9
|
+
.attention { background-color: #90EE90; } /* Light green */
|
|
10
|
+
.label { background-color: #FFB6C6; } /* Light red */
|
|
11
|
+
.token { color: #0066cc; } /* Blue */
|
|
12
|
+
.stats { font-weight: bold; }
|
|
13
|
+
</style>
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def escape_special_chars(text):
|
|
18
|
+
"""Convert special characters to their string representation"""
|
|
19
|
+
return (
|
|
20
|
+
text.replace("\n", "\\n")
|
|
21
|
+
.replace("\t", "\\t")
|
|
22
|
+
.replace("\r", "\\r")
|
|
23
|
+
.replace(" ", "␣")
|
|
24
|
+
) # Optional: show spaces with visible character
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def visualize_tokens_html(input_ids, attention_mask, labels, tokenizer):
|
|
28
|
+
"""
|
|
29
|
+
Visualize model inputs using HTML colored text representation for Jupyter Notebook
|
|
30
|
+
with special characters shown as strings
|
|
31
|
+
"""
|
|
32
|
+
# Convert to numpy if tensors
|
|
33
|
+
attention_mask = np.array(attention_mask).flatten()
|
|
34
|
+
labels = np.array(labels).flatten()
|
|
35
|
+
input_ids = np.array(input_ids).flatten()
|
|
36
|
+
|
|
37
|
+
# Decode tokens and escape special characters
|
|
38
|
+
tokens = [escape_special_chars(tokenizer.decode(id_)) for id_ in input_ids]
|
|
39
|
+
|
|
40
|
+
# Create HTML output
|
|
41
|
+
html_output = [create_color_style()]
|
|
42
|
+
|
|
43
|
+
# Header
|
|
44
|
+
html_output.append("<h3>**Token Visualization**</h3>")
|
|
45
|
+
|
|
46
|
+
# Legend
|
|
47
|
+
html_output.append(
|
|
48
|
+
"""
|
|
49
|
+
<div style='margin: 10px 0;'>
|
|
50
|
+
<strong>Legend:</strong><br>
|
|
51
|
+
<span class='attention'> </span> Active Attention<br>
|
|
52
|
+
<span class='label'> </span> Label Present<br>
|
|
53
|
+
<span class='token'>Text</span> Token Text<br>
|
|
54
|
+
Special Characters: \\n (newline), \\t (tab), ␣ (space)
|
|
55
|
+
</div>
|
|
56
|
+
"""
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
# Token alignment
|
|
60
|
+
html_output.append("<strong>Token Alignment:</strong>")
|
|
61
|
+
html_output.append("<div class='token-container'>")
|
|
62
|
+
|
|
63
|
+
# Calculate maximum token length for better alignment
|
|
64
|
+
max_token_len = max(len(str(token)) for token in tokens)
|
|
65
|
+
|
|
66
|
+
for i, (input_id, token, mask, label) in enumerate(
|
|
67
|
+
zip(input_ids, tokens, attention_mask, labels)
|
|
68
|
+
):
|
|
69
|
+
# Pad token for alignment
|
|
70
|
+
token_text = f"{token:{max_token_len}s}"
|
|
71
|
+
|
|
72
|
+
# Create classes for styling
|
|
73
|
+
classes = []
|
|
74
|
+
if mask == 1:
|
|
75
|
+
classes.append("attention")
|
|
76
|
+
if label != -100 and label != 0:
|
|
77
|
+
classes.append("label")
|
|
78
|
+
|
|
79
|
+
class_str = f"class='{' '.join(classes)}'" if classes else ""
|
|
80
|
+
|
|
81
|
+
# Create the line
|
|
82
|
+
line = f"Position {i:3d}: <span {class_str}><span class='token'>{token_text}</span></span> "
|
|
83
|
+
line += (
|
|
84
|
+
f"(Mask: {int(mask)}, Label: {int(label)}, Inpu_id: {int(input_id)})<br>"
|
|
85
|
+
)
|
|
86
|
+
html_output.append(line)
|
|
87
|
+
|
|
88
|
+
html_output.append("</div>")
|
|
89
|
+
|
|
90
|
+
# Statistics
|
|
91
|
+
html_output.append(
|
|
92
|
+
"""
|
|
93
|
+
<div class='stats' style='margin-top: 10px;'>
|
|
94
|
+
Statistics:<br>
|
|
95
|
+
Total tokens: {}<br>
|
|
96
|
+
Active attention tokens: {}<br>
|
|
97
|
+
Labeled tokens: {}<br>
|
|
98
|
+
</div>
|
|
99
|
+
""".format(
|
|
100
|
+
len(tokens), attention_mask.sum(), sum(labels != -100)
|
|
101
|
+
)
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
# Display the HTML
|
|
105
|
+
display(HTML("".join(html_output)))
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
# Example usage:
|
|
109
|
+
"""
|
|
110
|
+
from transformers import AutoTokenizer
|
|
111
|
+
import torch
|
|
112
|
+
|
|
113
|
+
# Initialize tokenizer
|
|
114
|
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
115
|
+
|
|
116
|
+
# Sample input with special characters
|
|
117
|
+
text = "Hello,\nhow are\tyou?"
|
|
118
|
+
inputs = tokenizer(text, return_tensors='pt')
|
|
119
|
+
labels = torch.zeros_like(inputs['input_ids']) # dummy labels
|
|
120
|
+
|
|
121
|
+
visualize_tokens_html(
|
|
122
|
+
inputs['attention_mask'][0],
|
|
123
|
+
labels[0],
|
|
124
|
+
inputs['input_ids'][0],
|
|
125
|
+
tokenizer
|
|
126
|
+
)
|
|
127
|
+
"""
|
fusion_bench/utils/type.py
CHANGED
|
@@ -6,18 +6,20 @@ from typing_extensions import TypeAlias
|
|
|
6
6
|
|
|
7
7
|
try:
|
|
8
8
|
import torch
|
|
9
|
-
from torch import Tensor
|
|
9
|
+
from torch import Tensor, nn
|
|
10
10
|
|
|
11
11
|
StateDictType: TypeAlias = Dict[str, Tensor]
|
|
12
|
+
TorchModelType = TypeVar("TorchModelType", bound=nn.Module)
|
|
13
|
+
|
|
12
14
|
except ImportError:
|
|
13
15
|
pass
|
|
14
16
|
|
|
15
17
|
|
|
16
|
-
|
|
18
|
+
PyModuleType = type(sys)
|
|
17
19
|
T = TypeVar("T")
|
|
18
20
|
T1 = TypeVar("T1")
|
|
19
21
|
T2 = TypeVar("T2")
|
|
20
22
|
T3 = TypeVar("T3")
|
|
21
23
|
T4 = TypeVar("T4")
|
|
22
24
|
|
|
23
|
-
__all__ = ["StateDictType", "
|
|
25
|
+
__all__ = ["StateDictType", "PyModuleType", "TorchModelType", "T", "T1", "T2", "T3", "T4"]
|
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
fusion_bench/__init__.py,sha256=68dF-zPvb8E2MgYnmgIJsxIHJBy1MApKeOrRZvQEVlg,421
|
|
2
2
|
fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
fusion_bench/compat/method/__init__.py,sha256=
|
|
4
|
-
fusion_bench/compat/method/base_algorithm.py,sha256=
|
|
3
|
+
fusion_bench/compat/method/__init__.py,sha256=KUKHpX7AfvB7fmOAlruWp0r1z17xpkI9l29PMvLWR9A,4956
|
|
4
|
+
fusion_bench/compat/method/base_algorithm.py,sha256=0BG_QUtFCbfK8OmiYfEw8xaOj_G0unpqXDEJKXTCNYk,1952
|
|
5
5
|
fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py,sha256=m68BRGy4P-P9lLB10oXOBI-p58a-0FOPcrJ4r4MU32k,1100
|
|
6
|
-
fusion_bench/compat/modelpool/__init__.py,sha256=
|
|
6
|
+
fusion_bench/compat/modelpool/__init__.py,sha256=KD8Ddr9D7rJ5YdHEQsTuNmQ0bgQfqF4l3WNMtHmRHD8,4687
|
|
7
7
|
fusion_bench/compat/modelpool/base_pool.py,sha256=1gxQENvdcOSdHmUbw-x7-X-aXtoSa1Gsys_on1ys8FM,10639
|
|
8
8
|
fusion_bench/compat/modelpool/huggingface_clip_vision.py,sha256=LyIPgepNOK0qrk_EnBdlTC0ZnEkEZvPUy45cO60TiPU,6918
|
|
9
|
-
fusion_bench/compat/taskpool/__init__.py,sha256=
|
|
9
|
+
fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZyVwXZxbi1jvQ,3651
|
|
10
10
|
fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
|
|
11
11
|
fusion_bench/compat/taskpool/clip_image_classification.py,sha256=ZYZsbsE-fPzm6yafA0p-6wcDwVGryLmtXXtuEXeQbTY,7425
|
|
12
12
|
fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=O_WWr6Ivpqm-XbkaDsseDPKYcqp2jezxy-8fOrICFzY,5566
|
|
@@ -20,21 +20,26 @@ fusion_bench/dataset/image_dataset.py,sha256=MSZE_UESyRRQDwnkm2KpyIARUg9SWcwqnH4
|
|
|
20
20
|
fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
|
|
21
21
|
fusion_bench/dataset/nyuv2.py,sha256=2OdIEaY1ywFYMLUxCTpFcIctcBMFTq4nnoOkudSo-jI,3750
|
|
22
22
|
fusion_bench/dataset/arc_agi/__init__.py,sha256=xj8BMG296qPMiL4NYs-ZwqcLJ6yT2wwbubyCbWPe91w,149
|
|
23
|
-
fusion_bench/dataset/arc_agi/arc.py,sha256=
|
|
23
|
+
fusion_bench/dataset/arc_agi/arc.py,sha256=EH51Sk9tR7fEMdpeaTUT49_9LtjIO8VMTzSfzk8SQEI,9568
|
|
24
24
|
fusion_bench/dataset/arc_agi/arc_agi.py,sha256=SFOjp0yZrsoln4cQgWU2b-WfI39od6IE1Wof8Ee0888,11768
|
|
25
25
|
fusion_bench/dataset/arc_agi/augmenters.py,sha256=yhTqyRk0_zamXRQ5Ev10xYc8Dc9D71BTSOkt856x33I,30890
|
|
26
26
|
fusion_bench/dataset/arc_agi/messagers.py,sha256=E6BqF1iL68ge1m9wOJMSb2Pz6_5i9CR0HxBb7i73plE,53076
|
|
27
27
|
fusion_bench/dataset/arc_agi/np_cache.py,sha256=Ec1DQFtlBdMy-f4dvGEhSr4jyVnBLQELwvX1ztxJKBs,5439
|
|
28
|
-
fusion_bench/dataset/arc_agi/preprocess.py,sha256=
|
|
28
|
+
fusion_bench/dataset/arc_agi/preprocess.py,sha256=lQrXqV4SkhrxREgbqFAop-IwC5qaoxkKosoMO-ZHITY,8509
|
|
29
29
|
fusion_bench/dataset/arc_agi/representers.py,sha256=-2eTYl-UcFW4zULDjkUrOQYv9P31nttMjc9eTJsaN0g,35852
|
|
30
|
-
fusion_bench/dataset/llama/__init__.py,sha256=
|
|
31
|
-
fusion_bench/dataset/llama/alpaca.py,sha256=
|
|
32
|
-
fusion_bench/dataset/llama/collate.py,sha256=
|
|
30
|
+
fusion_bench/dataset/llama/__init__.py,sha256=p8M7G69L6bga4qLl5lvAO6SKNeUBn99kkJrAQEeOvHw,22
|
|
31
|
+
fusion_bench/dataset/llama/alpaca.py,sha256=0nCQRBZzIPaMzA5VSJAsWw-nE0aVhiAQD5MGJRSrvEQ,7787
|
|
32
|
+
fusion_bench/dataset/llama/collate.py,sha256=fSH-vKKCGCpPT47gchETXLF2yTCMPUE3NTE-inCdczg,3869
|
|
33
|
+
fusion_bench/dataset/llama/metamathqa.py,sha256=z9InmEfWy_wWMbBORumFA2NakEznZWsDWgZzOsXYWhA,1617
|
|
33
34
|
fusion_bench/dataset/llama/openai.py,sha256=_QXz6ciUTN8u4ILDowZPT3SQTes7ngkFZe1MRLFtVQ8,5012
|
|
35
|
+
fusion_bench/dataset/llama/preference_700k.py,sha256=CqD0ZnM2F2Z3u70tD3VaQ2yPAHkOv75m-eiXiQKIRp0,2582
|
|
34
36
|
fusion_bench/dataset/llama/sharegpt.py,sha256=8hdh_5BcxIyK0ByZoVLdhd_I06kpHffxQdaC6ezzHkM,5249
|
|
35
37
|
fusion_bench/dataset/llama/squad.py,sha256=H0L0BHFzVTtkw7jfgTA8gzvZDhzsqfIALq1ip_BVwaM,4810
|
|
38
|
+
fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBkl6RJ6ec3Tf6UU,3763
|
|
39
|
+
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
36
40
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
37
|
-
fusion_bench/
|
|
41
|
+
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
|
+
fusion_bench/method/__init__.py,sha256=bwYq0wOxiTPCuR1GvLtqQ9Sx91mikfTTJKeSHFsSRn4,5781
|
|
38
43
|
fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
|
|
39
44
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
40
45
|
fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
|
|
@@ -48,9 +53,9 @@ fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=Tys9pDJzz5YNU
|
|
|
48
53
|
fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
|
|
49
54
|
fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=osc6ueCgiS4u8KUV_sZkHGFBYC8dThnTSp4NB0wkQIg,12915
|
|
50
55
|
fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=jTGUbhJCV1pcJ5k5jVeAhmtHdbHK5LlEfBhF-86xWjY,13773
|
|
51
|
-
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=
|
|
56
|
+
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=6d1vWuyiAQDh_kLLrZixPyTAxovOjfq-2T2hgLGXCWg,9734
|
|
52
57
|
fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
|
|
53
|
-
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=
|
|
58
|
+
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
54
59
|
fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
|
|
55
60
|
fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
|
|
56
61
|
fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
|
|
@@ -77,21 +82,22 @@ fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWET
|
|
|
77
82
|
fusion_bench/method/fisher_merging/fisher_merging.py,sha256=CPU-tJiDv9FCIBYl7Pn0zA5cdRB1Md5kWchRDlJgly0,20456
|
|
78
83
|
fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
|
|
79
84
|
fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
|
|
80
|
-
fusion_bench/method/linear/expo.py,sha256=
|
|
85
|
+
fusion_bench/method/linear/expo.py,sha256=LCHTWlsPm1Mjhrq0mfpWLVC7skkI9ZksGduy3TxULoU,3939
|
|
81
86
|
fusion_bench/method/linear/linear_interpolation.py,sha256=IONw9BPiRJouY8bE9Abfyz7qVI_1B1n8KGZa0f7Pza8,2157
|
|
82
87
|
fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
|
|
83
88
|
fusion_bench/method/linear/simple_average_for_llama.py,sha256=7JlVrmTMmrePvNGnZNoxSuCSq2Vu7cPQzjGC3WWUXBE,2079
|
|
84
89
|
fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
|
|
85
|
-
fusion_bench/method/lm_finetune/__init__.py,sha256=
|
|
90
|
+
fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
|
|
91
|
+
fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=ys_td1IeL3bzPTE0Cixlj2JooCaB7qseRwSDwroAk5A,18777
|
|
86
92
|
fusion_bench/method/lm_finetune/causal_lm_pretrain.py,sha256=4CL9KGFsUzrt-edMfTooo4G4apzTH_57rso3DGGvKL0,219
|
|
87
|
-
fusion_bench/method/lm_finetune/fullfinetune_sft.py,sha256=
|
|
88
|
-
fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=
|
|
93
|
+
fusion_bench/method/lm_finetune/fullfinetune_sft.py,sha256=eZabmkL7QUHGxl0DX9aaCYerMVUTzH5fXQfJXiSQNEc,16226
|
|
94
|
+
fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9eyKXyxA3WZuSaML2jCH_Gw,16370
|
|
89
95
|
fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
|
|
90
96
|
fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
|
|
91
97
|
fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=tQYAeS8MLFEfH3zDFfNZrML7lRnpGLN-HquQvjPtHNw,11208
|
|
92
98
|
fusion_bench/method/pruning/__init__.py,sha256=3gtmay2bkdIAEGjpAhbY2ztMZOZLKhiJcKV3mCe2H5w,252
|
|
93
|
-
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=
|
|
94
|
-
fusion_bench/method/pruning/llama_random_prune.py,sha256=
|
|
99
|
+
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=40Gmy665S9XqIw027En6E5IlomOIcKECIRje7NDkH00,6300
|
|
100
|
+
fusion_bench/method/pruning/llama_random_prune.py,sha256=EW7zfE-1a5VlPPrQ5xO1k1aqFcpPUfs5eSO_a4M1K90,4566
|
|
95
101
|
fusion_bench/method/pruning/llama_wanda_prune.py,sha256=8pcg3X1yn8vfhV0lEg1fHP3oTzAc_-ixLmsZRdH5uPo,12070
|
|
96
102
|
fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=nXRHW87_Nwiash-udnwR9iOaJMBDo7fPTmAwmSqsAaI,6451
|
|
97
103
|
fusion_bench/method/pruning/prune_utils.py,sha256=ITWO8WtrhcOYXTcjc_fAAw7cyjvqFa6axawPr3uTT68,5882
|
|
@@ -128,6 +134,8 @@ fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6F
|
|
|
128
134
|
fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
|
|
129
135
|
fusion_bench/method/sparselo/__init__.py,sha256=0Uk4Hq5b9iwc5yl2QTDwvBHUItN4V6lwhxDYQrFb724,107
|
|
130
136
|
fusion_bench/method/sparselo/sparselo.py,sha256=qkfFwovdOA7-NUXtLYiV1iM9bglQJydfuL805azQ6Xc,38806
|
|
137
|
+
fusion_bench/method/surgery/__init__.py,sha256=xVvJvVv9wJnVgJjZDgF2YliuSsy221AQ0KSwB7J7bjo,97
|
|
138
|
+
fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=7qoWWYcTWpfXik21mEPBlMW5BM0Kc4nxSW1GL2hzP1o,5599
|
|
131
139
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
132
140
|
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=1D0uuNtqyA1VS35jh6AnEVsX72HnT02THyerck_lmso,5441
|
|
133
141
|
fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
|
|
@@ -153,34 +161,41 @@ fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWy
|
|
|
153
161
|
fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
|
|
154
162
|
fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
|
|
155
163
|
fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
|
|
156
|
-
fusion_bench/mixins/__init__.py,sha256=
|
|
157
|
-
fusion_bench/mixins/clip_classification.py,sha256=
|
|
158
|
-
fusion_bench/mixins/
|
|
164
|
+
fusion_bench/mixins/__init__.py,sha256=AsUNvrHdNd6xht7-dfuVipmJuRfMNFlkgG-fn3ojt1U,892
|
|
165
|
+
fusion_bench/mixins/clip_classification.py,sha256=lsrh-qZln1Am0ry_rJL47EFCvVZFRHD2YYk9u3eecs8,9933
|
|
166
|
+
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
167
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=XE3OwV68YmJX7aR64uk9h1j9Qs6UPU5F7ciBIgBYyv4,6461
|
|
159
168
|
fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
|
|
160
169
|
fusion_bench/mixins/serialization.py,sha256=9W50JUcM6wgFlaE9H29mATLLVobYniSDxg94FfY25w0,4049
|
|
161
170
|
fusion_bench/mixins/simple_profiler.py,sha256=UDPB8QAA3rtsSdnVgL9KMthDLBY1Rh4h8mtiquiCPp4,2106
|
|
162
171
|
fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
163
172
|
fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
|
|
164
173
|
fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
|
|
165
|
-
fusion_bench/modelpool/__init__.py,sha256=
|
|
174
|
+
fusion_bench/modelpool/__init__.py,sha256=LtcCWTcYkVaz7ZxEseWRwKDk3cSTg95-WQiriXBHLSA,1401
|
|
166
175
|
fusion_bench/modelpool/base_pool.py,sha256=WCpDt0MpwIk_djpgpM_CANomAEJ7Uoj78GSHEYzD_oU,9142
|
|
167
176
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
168
177
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
169
178
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
170
|
-
fusion_bench/modelpool/causal_lm/__init__.py,sha256=
|
|
171
|
-
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=
|
|
179
|
+
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
180
|
+
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=k0eOOcFbswVgBYhM9CEXvdCRU9zVC8Gw78QaiMWzeWo,4487
|
|
172
181
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
173
182
|
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=qG-b3ms-q3gqcRf7J6wrTDdmtu2yb1E_A25tNOjSli8,2065
|
|
174
183
|
fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
|
|
175
184
|
fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgVXF_pfTKLPeL9XKP-s,2052
|
|
185
|
+
fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=k-t4RetcDlbkRkPHNuyeV3pQEcJnFRjd9Wp5tFBb-G8,128
|
|
186
|
+
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
187
|
+
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=sIKAmGJwfrNSuWtxzJ_-ME0gQksEYY2y-jVt7P82Qs0,3434
|
|
176
188
|
fusion_bench/models/__init__.py,sha256=TNOEH_2yAQP51m9mdWepNEf9VGUZgDthtgXbs4rhb4M,100
|
|
177
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
189
|
+
fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
|
|
178
190
|
fusion_bench/models/parameter_dict.py,sha256=hRie26WIeXU-wvY6JeGaP8LvpMqbuZA6Ia_1vOFMuu4,2294
|
|
179
191
|
fusion_bench/models/rankone_moe.py,sha256=uwpAqk1cwxxprQ0hxuAwRuPvHDxxBKBDahd9vcaafXs,14248
|
|
180
192
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
181
193
|
fusion_bench/models/sparse_we_moe.py,sha256=b-yIeCsl2rz0i7BP9g_fqCEam7KUNjNX_J8oyZV6MJ8,16509
|
|
182
|
-
fusion_bench/models/utils.py,sha256=
|
|
194
|
+
fusion_bench/models/utils.py,sha256=AQFI2UZSItKfJpG8ex74FPjn_SjsADLhvpv1GYqu43U,2065
|
|
183
195
|
fusion_bench/models/we_moe.py,sha256=0U-m3mhzb4vFLIzn2jd7j_SQOF9lot4ddzq0l_VPp9g,8424
|
|
196
|
+
fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
|
|
197
|
+
fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
|
|
198
|
+
fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
|
|
184
199
|
fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
185
200
|
fusion_bench/models/linearized/linearized_model_utils.py,sha256=5yKXReQHIwDttzT_oXwY_iIpaG1zIU0Nv93BWmmOqrg,3212
|
|
186
201
|
fusion_bench/models/linearized/vision_model.py,sha256=HhbhtyoLD1qVvh1Sgl_beYF2W7AvMevmUy4Jx2XlcsY,4636
|
|
@@ -212,15 +227,21 @@ fusion_bench/models/nyuv2/resnet.py,sha256=PcCfBhEsxm7W8cu3epBbIbCYFARPrPTamIa3T
|
|
|
212
227
|
fusion_bench/models/nyuv2/resnet_dilated.py,sha256=4EXB6vrBJS307YP6k-TRY1dFJ50LURcTuzqN4tZzYRk,3125
|
|
213
228
|
fusion_bench/models/smile_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
214
229
|
fusion_bench/models/smile_moe/linear.py,sha256=voFvx4Nnfgc6YReBcY9FUGG3WrxVRjyD3odX4jIS5Eg,8724
|
|
230
|
+
fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=zkiV_IF4-7CfzUND--fGCzgz-Sa-dCUz5CmVoPjQt1c,5132
|
|
215
231
|
fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
216
232
|
fusion_bench/models/wrappers/ensemble.py,sha256=wIMZMRyXw5boWAm96c4Tiyebs_HDQovKxpGQ8rLnHUQ,6308
|
|
217
|
-
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=
|
|
218
|
-
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=
|
|
219
|
-
fusion_bench/optim/__init__.py,sha256=
|
|
220
|
-
fusion_bench/optim/
|
|
233
|
+
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=tISTe__HvlaHVVKkfa0nX3JRRDYLHetJ4BzIqGq-058,12316
|
|
234
|
+
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=gNOU1t1JUcBr3V0Apa1uvJDl5BDM2is85lkEF1SfPRo,8404
|
|
235
|
+
fusion_bench/optim/__init__.py,sha256=lemrcuiA6OLjQkpYm-RP-Ox2MgjngN1ywvCo0NgShlM,61
|
|
236
|
+
fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
|
|
237
|
+
fusion_bench/optim/mezo.py,sha256=Vm4vMGh10Fhe28_9L1MK8r_U7DrurA8Liprh2_gn4_U,3646
|
|
238
|
+
fusion_bench/optim/lr_scheduler/__init__.py,sha256=W7CsdW4XKqXbNfzjvv2wmrvNWwfH_sQ-wiBViRPlP3U,29
|
|
239
|
+
fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502Ae4JWXGrtZL3gwA_H6ZI,6566
|
|
240
|
+
fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
|
|
241
|
+
fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
|
|
221
242
|
fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
|
|
222
243
|
fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
|
|
223
|
-
fusion_bench/programs/fabric_fusion_program.py,sha256=
|
|
244
|
+
fusion_bench/programs/fabric_fusion_program.py,sha256=Bf4lnntM1J1hxKVm4Av0ohAmSqzDxOzWg75rzqps0qE,12297
|
|
224
245
|
fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
225
246
|
fusion_bench/scripts/cli.py,sha256=497nhqnJAwxkqU2WCMUqcAIvqTmGRdQaByWGNTX_onY,1131
|
|
226
247
|
fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
|
|
@@ -232,12 +253,13 @@ fusion_bench/taskpool/__init__.py,sha256=_qaYgzYnvrJDrZ2DjKXMvOFbelsLrujCKa_gP3U
|
|
|
232
253
|
fusion_bench/taskpool/base_pool.py,sha256=FaP0nndeSsrwbdd9mKa_CedbX9T5AHJmxk7Lc0NEVNY,835
|
|
233
254
|
fusion_bench/taskpool/dummy.py,sha256=Di9JZO3XyDYn6wAGukrJMTnkS_NaxGTeQYo_3j1JD3Y,1675
|
|
234
255
|
fusion_bench/taskpool/gpt2_text_classification.py,sha256=S4YyrcJhD4JOgvHF-AVG-gENgVGl-wpQZr1SbiThM04,4886
|
|
235
|
-
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=
|
|
256
|
+
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
|
|
236
257
|
fusion_bench/taskpool/clip_vision/__init__.py,sha256=4xGO7rRbRpXF-I34A3WEMU4vydgfdtvXQ57ThaFcpmE,214
|
|
237
258
|
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=JKbRrGaRYztgZ-P0U767HISe40UpDVQ7fn6Tf2rrug0,4891
|
|
238
259
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=hVDTtg-oXqRFmAE2wZPFpk_kvtdk_wS-2-ev2ujEJBs,5390
|
|
239
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=
|
|
260
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=xbJHQXUYd2ZDs-oIyE-3knCsPdiUbZCKN7O86kPwpsQ,14907
|
|
240
261
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
262
|
+
fusion_bench/taskpool/llama/reward_model.py,sha256=y5a_dNDzjYSoV9RNRdmDPhALM7i20A5EiFYSjrGTpWo,5028
|
|
241
263
|
fusion_bench/taskpool/llama/test_generation.py,sha256=kJ_5GruG12FsuJHDh_S7pbQgwEojTqhGpA_wVNH5KPc,6675
|
|
242
264
|
fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
|
|
243
265
|
fusion_bench/tasks/base_task.py,sha256=Fg_pdZhld-2KPKX0C1WrxaTz0EYWrvJerAHO-hA03GI,412
|
|
@@ -273,7 +295,7 @@ fusion_bench/utils/data.py,sha256=51nbgOnayyerLBUGHrlm9iilGjhJsBkXKKGXOKgLRW8,61
|
|
|
273
295
|
fusion_bench/utils/devices.py,sha256=72HeUVVlVGTt97JA7KFG3D8BM8VHqR-y1nkr9Bm-PRE,7578
|
|
274
296
|
fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
|
|
275
297
|
fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
|
|
276
|
-
fusion_bench/utils/hydra_utils.py,sha256=
|
|
298
|
+
fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
|
|
277
299
|
fusion_bench/utils/instantiate.py,sha256=v8L9JDfh2YoEOFpIQIHomvBoqdboZdYIaHEATnD2gdQ,16972
|
|
278
300
|
fusion_bench/utils/json.py,sha256=iNeZHFvpzbb4oX-52dX15De_dMcux7vQtAUFZqW12GA,1907
|
|
279
301
|
fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
|
|
@@ -285,17 +307,20 @@ fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4K
|
|
|
285
307
|
fusion_bench/utils/rich_utils.py,sha256=V_BjY3o8bXMp-kWfxle4cK48GGHDnKbVonZX65qbXAA,5464
|
|
286
308
|
fusion_bench/utils/state_dict_arithmetic.py,sha256=dVPBkO8Te9_VANPbetV59ORAQTw7D3css_-d0lYgK4k,9062
|
|
287
309
|
fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
|
|
288
|
-
fusion_bench/utils/type.py,sha256=
|
|
310
|
+
fusion_bench/utils/type.py,sha256=4CmKDVL1bKZfAfEApq79YhQavG6ZGermpQThDwiVl5w,532
|
|
311
|
+
fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
312
|
+
fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
|
|
313
|
+
fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFwyLeG0MIwOwF4,3739
|
|
289
314
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
290
315
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
291
316
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
292
317
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
293
|
-
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=
|
|
294
|
-
fusion_bench_config/fabric_model_fusion.yaml,sha256=
|
|
318
|
+
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=GtK3VuD2FOpFHH_1Hi6tlaYpdLE5Cz0nYKP92Ss9G2Y,1164
|
|
319
|
+
fusion_bench_config/fabric_model_fusion.yaml,sha256=1shmbuC0B9snkFkLErBCiroF-z7UnEHscyEmKBne7Oo,949
|
|
320
|
+
fusion_bench_config/llama_full_finetune.yaml,sha256=J2qCNyX1GaPHg52juSRRIkfHSb6YJdiJOM3Bn3vAo0A,771
|
|
295
321
|
fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
|
|
296
322
|
fusion_bench_config/llama_model_fusion.yaml,sha256=EJRsSbt1zttAXAAy_-5NcMkWwhYrl0osjKGXQopu4bo,588
|
|
297
|
-
fusion_bench_config/
|
|
298
|
-
fusion_bench_config/nyuv2_config.yaml,sha256=1rW-5ZsJOUCCQAvShdISmmYwyvY5vl3tukPTgtcpocY,410
|
|
323
|
+
fusion_bench_config/nyuv2_config.yaml,sha256=SYaafywjOIKK1f-Nl_K5EuBjXH2oN1whlqjN_dXXO-A,492
|
|
299
324
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=RfsrboIpL9Cct2RkRrKxXAqH4jLi1NECHbwH8iOGtDY,591
|
|
300
325
|
fusion_bench_config/dataset/image_classification/test/cifar10.yaml,sha256=wlzzTXAKzBjQXKYWhZPGcwydxwgeAV8sM4Dp3GBHbw0,78
|
|
301
326
|
fusion_bench_config/dataset/image_classification/test/cifar100.yaml,sha256=f_tsvq5bbw2Trp3f6mokXV7hUlfYr_yuebZkEqJqIVI,79
|
|
@@ -330,6 +355,8 @@ fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml,sha256=p
|
|
|
330
355
|
fusion_bench_config/dataset/image_classification/val/sun397.yaml,sha256=cayl6FNzxOj2UBjw0ikJoQNCdN3DX10xQmcx4ouFP-0,245
|
|
331
356
|
fusion_bench_config/dataset/image_classification/val/svhn.yaml,sha256=uMdEYmc406i9HdkOLzfzBiJ8pfbYLIWT1pA_UId8HMg,265
|
|
332
357
|
fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml,sha256=x1-xurkOIQtWX-gpSwXDxA5fVY30KmrarS7EKaje33M,101
|
|
358
|
+
fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml,sha256=QJK8OM-C2cZNaC3_vbRucuWrTggw69YWEtPOzmxm6bo,174
|
|
359
|
+
fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml,sha256=uqOGtDu4MNAOnwCA4Qp6elcnc8X_Y7sTrwYdruAvjGU,106
|
|
333
360
|
fusion_bench_config/dataset/question_answering/search_qa.yaml,sha256=u_8UTKQFnjCwbeXqx2grC2bzLDpdEQy3s3Oxip_JEoc,118
|
|
334
361
|
fusion_bench_config/dataset/question_answering/test/search_qa.yaml,sha256=oB2qP5ScTTbFGp75a5VLBaQtUa9VYHkGNhNAfe-AkvE,132
|
|
335
362
|
fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml,sha256=3-stubxiEKjuBQHhqS_Tc_BqGK3IOwzaAtnO4sd5SX8,90
|
|
@@ -348,9 +375,13 @@ fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha2
|
|
|
348
375
|
fusion_bench_config/fabric/auto.yaml,sha256=GOCIA6s_co-JpwyBj3dM-dgWUMKciD8lFRmFThUeAsA,575
|
|
349
376
|
fusion_bench_config/fabric/llama_ddp.yaml,sha256=iP-3n-hehRSjmJkdQWhDb4AkLcfFa6PFq0BCrL58xso,706
|
|
350
377
|
fusion_bench_config/fabric/llama_fsdp.yaml,sha256=--_G5mcyG6L3aEBNvTjvMH8D-jD0SMXGap6V8E3jH84,575
|
|
378
|
+
fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=V-iBtvSg_m2o42ERYRxlDITqeEUBoRTMrLzfVOtN8VU,580
|
|
351
379
|
fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=Pv8I-xbxrpTb_fwtDiUtCAEoCZ8QYCLu2GeJNzb3Z3c,373
|
|
352
380
|
fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=w9ZP1i8lRYQFslzEM98PmbcFhhn5dXReSJhLOdEi-do,381
|
|
381
|
+
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
|
|
382
|
+
fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=uHujbd2sKrgWb5YhFTWOJCZefStv6O_HHo_GylzqYbU,344
|
|
353
383
|
fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
|
|
384
|
+
fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=xoxeQ0Pp7ecZPcAX57PhQJsqRUKhqEmNc3DXmYXqx4Y,348
|
|
354
385
|
fusion_bench_config/hydra/default.yaml,sha256=TT0RaUwYgfB7pKpbHgEbmuCVTB2fx2eXxvM-Xz3SQMI,241
|
|
355
386
|
fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
|
|
356
387
|
fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
|
|
@@ -392,8 +423,9 @@ fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=QJR5qx9z4
|
|
|
392
423
|
fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
|
|
393
424
|
fusion_bench_config/method/linear/weighted_average.yaml,sha256=SmELszTsJU63e8KwIrPmSqKmOmH-rz42zeumQZHoVDY,187
|
|
394
425
|
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=r8BlNqzRfn--_gDSff6KI8FO-elWFIszZDRV7G_nvHw,499
|
|
395
|
-
fusion_bench_config/method/lm_finetune/
|
|
396
|
-
fusion_bench_config/method/lm_finetune/
|
|
426
|
+
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=em0Lnodl9bg8dos9MODMXjKtxWCXwQArjLT2z4TC3Q0,1352
|
|
427
|
+
fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=edj3juaYos2I9oQ8J6NKQNcNwqwcQGD74ZMosDsB5SY,1341
|
|
428
|
+
fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=9S-qsWUIALRwWd_gzNF1bwIuPPGP1MmqTpdQ53cwZmc,1628
|
|
397
429
|
fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
|
|
398
430
|
fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
|
|
399
431
|
fusion_bench_config/method/pruning/llama_wanda_pruning.yaml,sha256=qKe5yIRsmK2KUyYENENWlw1qlGet9TpDhR-E_uO7vAw,501
|
|
@@ -409,6 +441,7 @@ fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTn
|
|
|
409
441
|
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=A_QFhwAzbzXxDkOPmXRbPTj2TBib66d3_3mkrf-Xu0k,641
|
|
410
442
|
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=w1OWb38nW08K_hvrRMsCwmRxHWLGQfSSXg5nTiYaP8E,635
|
|
411
443
|
fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=J6vYIwqzh95-B3ekDias3FnCrVr4sig4zxpWyvz8hZ0,613
|
|
444
|
+
fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=Ne9JlJFgsRYcygBNCOBSN1ygBcLkE6I-8yusfTxyg-Y,826
|
|
412
445
|
fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=mK09Ohsvj0Q6suj5qJM4DyCzRy192QBt4wjHS6W29IY,197
|
|
413
446
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=jiAco7M1XO0aekHFZKLKlXL_jRoCA8bgGD44Z7iB208,1001
|
|
414
447
|
fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
|
|
@@ -498,7 +531,11 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and
|
|
|
498
531
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml,sha256=-Tt_YggxkuIGT4_q5FR16zPvW2wWhGJ5LL8omxvHjvw,380
|
|
499
532
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml,sha256=PrDQr04UnhAciDrdtUutx-prMxF1Cs4jrEar7uJ-1Es,238
|
|
500
533
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=aSu0QUpcEZXKbL9PAUKCQAVvs5CksG1s7PPCvjTsIzA,234
|
|
534
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=BXsYH04vAUPT4Cpr8lS1px-CYYKaCTMRWuHGWgC6qE0,647
|
|
535
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=m7NDjkzFbGG8E8e_r2UUxtXjNbMFvtAcZOXyBaJOyX4,645
|
|
501
536
|
fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=hbjSkVle5zpcqGDSMGaJ20CLoO0ljIXG-gtdONuaFBY,803
|
|
537
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml,sha256=OOnKzmsz6iiO2jI5ZyGmCem_Pcs3a25Dveb5PLfwpUM,593
|
|
538
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml,sha256=K403avKEQlK4uRhZYHbKGluCG37sMUjLRytBR3LspmI,577
|
|
502
539
|
fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml,sha256=RXdm5BQmYfq9XWVli0NsQ1Xh7jD61XnhRBOSlmd9FcI,825
|
|
503
540
|
fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml,sha256=aX0rWwB-p4N94bPX1QGwqKNIWnTrkNMuF7sMAQHzjQE,549
|
|
504
541
|
fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
|
|
@@ -507,6 +544,8 @@ fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256
|
|
|
507
544
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml,sha256=GfTY343bt5YtxtUkQxSacrtQav9lT9Y-t1VIL1Chs4k,1726
|
|
508
545
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml,sha256=2YBIzqYGluOT2r6dOFpUYE4Cbdd2XoHAUps-kCDxVPQ,185
|
|
509
546
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml,sha256=W1y3fKY9UTTRyv7nqbIO5DESlQVfNsWlhkHJMUYh7B4,1824
|
|
547
|
+
fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml,sha256=JUzGOLANW92Y_rljOOZKmwBQvWrJsko_ziayurzHSTY,880
|
|
548
|
+
fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml,sha256=Cg9W315FzKP3DC_-bkIyYZp1nU6UoSQ6xe-MsMx-P8A,626
|
|
510
549
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
|
|
511
550
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
|
|
512
551
|
fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=gk_RB12EeYrEUNlZJHtZ3XKIm_LDraqE1hC_lpOEvtY,518
|
|
@@ -514,6 +553,7 @@ fusion_bench_config/taskpool/dummy.yaml,sha256=Id4Y_j7oc39qWjjEFG3qLmmMI1fGXXt34
|
|
|
514
553
|
fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml,sha256=3MxfXiiwWJHEVgJ7aViTR7kzOV_YxXLL-fNHtnBaWN4,1002
|
|
515
554
|
fusion_bench_config/taskpool/gpt-2_glue.yaml,sha256=16bw4-g08pL51M4OWAP08kWZPj6JcEefz4Xc4XhCTLQ,950
|
|
516
555
|
fusion_bench_config/taskpool/nyuv2_taskpool.yaml,sha256=UaxDpFqEPkEz3h2CjFleUxsmnFnaY1aLXerkud8Zm9s,133
|
|
556
|
+
fusion_bench_config/taskpool/reward_model_evaluation.yaml,sha256=qaUqKcb6E_XfoS5J-FcteMJzFzthNb4aLpB9aKW4jbU,442
|
|
517
557
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml,sha256=X70J8HMoIcpKaYGjg7KaaXRvz1tPUbuCqKvK9-kGHrM,1310
|
|
518
558
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml,sha256=eoNUaX-cBjpJJt0BYb-ZCNiIlv1SarX9toiGAwHbES0,227
|
|
519
559
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml,sha256=AmfMrb2_wXDfRtUDsSCNgbuSicNsfC2vRlwXW-uNeJA,784
|
|
@@ -522,9 +562,9 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8
|
|
|
522
562
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml,sha256=9hbvC3k5x6NpA9tRDYeORhrjEyd2VH5ztMdLU67Adjk,249
|
|
523
563
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=iQMj2VpDTe_D8OfCo94w5Ud2MON-EGa0DzVr6UmphrA,436
|
|
524
564
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=i5Bn8bLl2cgqvrgtIGmoovUfSMehk_m-6C2wwcx5JMU,435
|
|
525
|
-
fusion_bench-0.2.
|
|
526
|
-
fusion_bench-0.2.
|
|
527
|
-
fusion_bench-0.2.
|
|
528
|
-
fusion_bench-0.2.
|
|
529
|
-
fusion_bench-0.2.
|
|
530
|
-
fusion_bench-0.2.
|
|
565
|
+
fusion_bench-0.2.7.dist-info/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
566
|
+
fusion_bench-0.2.7.dist-info/METADATA,sha256=XMvOFwwYoq1_J4Fta1kJ2J0grFb4k-I3CPA_ApmjPRM,13528
|
|
567
|
+
fusion_bench-0.2.7.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
|
568
|
+
fusion_bench-0.2.7.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
569
|
+
fusion_bench-0.2.7.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
570
|
+
fusion_bench-0.2.7.dist-info/RECORD,,
|
|
@@ -11,7 +11,7 @@ _target_: fusion_bench.programs.FabricModelFusionProgram
|
|
|
11
11
|
_recursive_: false
|
|
12
12
|
fast_dev_run: false # Run a single batch of data to test the model or method
|
|
13
13
|
# Run the script without actually running the experiment, use with `print_config=true`.
|
|
14
|
-
# You can also use `--cfg` or `-c` to
|
|
14
|
+
# You can also use `--cfg` or `-c` to show the configuration instead of running.
|
|
15
15
|
dry_run: false
|
|
16
16
|
print_config: true # Print the configuration to the console
|
|
17
17
|
merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- loggers: tensorboard_logger
|
|
3
|
+
- strategy: llama_peft_fsdp
|
|
4
|
+
- _self_
|
|
5
|
+
|
|
6
|
+
_target_: lightning.Fabric
|
|
7
|
+
_recursive_: true
|
|
8
|
+
# Number of devices to train on (``int``), which GPUs to train on (``list`` or ``str``), or ``"auto"``.
|
|
9
|
+
# The value applies per node.
|
|
10
|
+
devices: auto
|
|
11
|
+
# The hardware to run on. Possible choices are:
|
|
12
|
+
# ``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
|
|
13
|
+
# for example: fabric.accelerator=cpu
|
|
14
|
+
accelerator: auto
|
|
15
|
+
# reference to the precision policy: https://lightning.ai/docs/fabric/stable/api/fabric_args.html#precision
|
|
16
|
+
precision: bf16-true
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
# https://lightning.ai/docs/fabric/2.4.0/api/generated/lightning.fabric.strategies.DeepSpeedStrategy.html#deepspeedstrategy
|
|
2
|
+
_target_: lightning.fabric.strategies.DeepSpeedStrategy
|
|
3
|
+
|
|
4
|
+
accelerator: null
|
|
5
|
+
zero_optimization: true
|
|
6
|
+
stage: 2
|
|
7
|
+
offload_optimizer: false
|
|
8
|
+
offload_parameters: false
|
|
9
|
+
offload_params_device: "cpu"
|
|
10
|
+
offload_optimizer_device: "cpu"
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
_target_: lightning.fabric.strategies.FSDPStrategy
|
|
2
|
+
sharding_strategy: FULL_SHARD
|
|
3
|
+
state_dict_type: full # Save a single, consolidated checkpoint file
|
|
4
|
+
cpu_offload: false
|
|
5
|
+
auto_wrap_policy:
|
|
6
|
+
_target_: fusion_bench.mixins.lightning_fabric.get_size_based_auto_wrap_policy
|
|
7
|
+
activation_checkpointing_policy: ${.auto_wrap_policy}
|
|
8
|
+
# limit_all_gathers: true
|
|
9
|
+
|
|
@@ -11,7 +11,7 @@ _target_: fusion_bench.programs.FabricModelFusionProgram
|
|
|
11
11
|
_recursive_: false
|
|
12
12
|
fast_dev_run: false # Run a single batch of data to test the model or method
|
|
13
13
|
# Run the script without actually running the experiment, use with `print_config=true`.
|
|
14
|
-
# You can also use `--cfg` or `-c` to
|
|
14
|
+
# You can also use `--cfg` or `-c` to show the configuration instead of running.
|
|
15
15
|
dry_run: false
|
|
16
16
|
print_config: true # Print the configuration to the console
|
|
17
17
|
merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
|