fusion-bench 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/compat/method/__init__.py +2 -0
- fusion_bench/compat/method/base_algorithm.py +7 -2
- fusion_bench/compat/modelpool/__init__.py +3 -2
- fusion_bench/compat/taskpool/__init__.py +1 -1
- fusion_bench/dataset/arc_agi/__init__.py +6 -1
- fusion_bench/dataset/arc_agi/arc.py +26 -7
- fusion_bench/dataset/arc_agi/arc_agi.py +156 -25
- fusion_bench/dataset/arc_agi/np_cache.py +0 -1
- fusion_bench/dataset/arc_agi/preprocess.py +51 -9
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +93 -3
- fusion_bench/dataset/llama/collate.py +72 -5
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/method/__init__.py +4 -1
- fusion_bench/method/adamerging/__init__.py +1 -1
- fusion_bench/method/adamerging/layer_wise_adamerging.py +11 -4
- fusion_bench/method/adamerging/min_norm_solvers.py +4 -4
- fusion_bench/method/linear/expo.py +39 -0
- fusion_bench/method/lm_finetune/__init__.py +1 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +122 -150
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +102 -157
- fusion_bench/method/pruning/llama_magnitude_prune.py +2 -2
- fusion_bench/method/pruning/llama_random_prune.py +2 -2
- fusion_bench/method/pruning/magnitude_diff_pruning.py +2 -1
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/simple_average.py +1 -1
- fusion_bench/method/surgery/__init__.py +3 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/mixins/__init__.py +2 -0
- fusion_bench/mixins/clip_classification.py +60 -12
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +11 -2
- fusion_bench/modelpool/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/__init__.py +1 -1
- fusion_bench/modelpool/causal_lm/causal_lm.py +21 -22
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +50 -9
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +157 -0
- fusion_bench/models/utils.py +8 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +14 -5
- fusion_bench/models/wrappers/task_wise_fusion.py +5 -5
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +0 -2
- fusion_bench/programs/fabric_fusion_program.py +5 -1
- fusion_bench/taskpool/__init__.py +10 -2
- fusion_bench/taskpool/clip_vision/__init__.py +1 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +43 -6
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +2 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +2 -1
- fusion_bench/utils/hydra_utils.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/type.py +5 -3
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/METADATA +1 -1
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/RECORD +104 -57
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +1 -1
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +13 -6
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +17 -9
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +1 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/nyuv2_config.yaml +5 -1
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
- fusion_bench_config/llama_weighted_average.yaml +0 -26
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/LICENSE +0 -0
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.5.dist-info → fusion_bench-0.2.7.dist-info}/top_level.txt +0 -0
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
fusion_bench/__init__.py,sha256=68dF-zPvb8E2MgYnmgIJsxIHJBy1MApKeOrRZvQEVlg,421
|
|
2
2
|
fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
fusion_bench/compat/method/__init__.py,sha256=
|
|
4
|
-
fusion_bench/compat/method/base_algorithm.py,sha256=
|
|
3
|
+
fusion_bench/compat/method/__init__.py,sha256=KUKHpX7AfvB7fmOAlruWp0r1z17xpkI9l29PMvLWR9A,4956
|
|
4
|
+
fusion_bench/compat/method/base_algorithm.py,sha256=0BG_QUtFCbfK8OmiYfEw8xaOj_G0unpqXDEJKXTCNYk,1952
|
|
5
5
|
fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py,sha256=m68BRGy4P-P9lLB10oXOBI-p58a-0FOPcrJ4r4MU32k,1100
|
|
6
|
-
fusion_bench/compat/modelpool/__init__.py,sha256=
|
|
6
|
+
fusion_bench/compat/modelpool/__init__.py,sha256=KD8Ddr9D7rJ5YdHEQsTuNmQ0bgQfqF4l3WNMtHmRHD8,4687
|
|
7
7
|
fusion_bench/compat/modelpool/base_pool.py,sha256=1gxQENvdcOSdHmUbw-x7-X-aXtoSa1Gsys_on1ys8FM,10639
|
|
8
8
|
fusion_bench/compat/modelpool/huggingface_clip_vision.py,sha256=LyIPgepNOK0qrk_EnBdlTC0ZnEkEZvPUy45cO60TiPU,6918
|
|
9
|
-
fusion_bench/compat/taskpool/__init__.py,sha256=
|
|
9
|
+
fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZyVwXZxbi1jvQ,3651
|
|
10
10
|
fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
|
|
11
11
|
fusion_bench/compat/taskpool/clip_image_classification.py,sha256=ZYZsbsE-fPzm6yafA0p-6wcDwVGryLmtXXtuEXeQbTY,7425
|
|
12
12
|
fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=O_WWr6Ivpqm-XbkaDsseDPKYcqp2jezxy-8fOrICFzY,5566
|
|
@@ -19,38 +19,43 @@ fusion_bench/dataset/gsm8k.py,sha256=CmANZ0A89PfPwVu_myKhXk1D9IwypOpjH3iqDo1KxcQ
|
|
|
19
19
|
fusion_bench/dataset/image_dataset.py,sha256=MSZE_UESyRRQDwnkm2KpyIARUg9SWcwqnH4fDNstzS4,1870
|
|
20
20
|
fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
|
|
21
21
|
fusion_bench/dataset/nyuv2.py,sha256=2OdIEaY1ywFYMLUxCTpFcIctcBMFTq4nnoOkudSo-jI,3750
|
|
22
|
-
fusion_bench/dataset/arc_agi/__init__.py,sha256=
|
|
23
|
-
fusion_bench/dataset/arc_agi/arc.py,sha256=
|
|
24
|
-
fusion_bench/dataset/arc_agi/arc_agi.py,sha256=
|
|
22
|
+
fusion_bench/dataset/arc_agi/__init__.py,sha256=xj8BMG296qPMiL4NYs-ZwqcLJ6yT2wwbubyCbWPe91w,149
|
|
23
|
+
fusion_bench/dataset/arc_agi/arc.py,sha256=EH51Sk9tR7fEMdpeaTUT49_9LtjIO8VMTzSfzk8SQEI,9568
|
|
24
|
+
fusion_bench/dataset/arc_agi/arc_agi.py,sha256=SFOjp0yZrsoln4cQgWU2b-WfI39od6IE1Wof8Ee0888,11768
|
|
25
25
|
fusion_bench/dataset/arc_agi/augmenters.py,sha256=yhTqyRk0_zamXRQ5Ev10xYc8Dc9D71BTSOkt856x33I,30890
|
|
26
26
|
fusion_bench/dataset/arc_agi/messagers.py,sha256=E6BqF1iL68ge1m9wOJMSb2Pz6_5i9CR0HxBb7i73plE,53076
|
|
27
|
-
fusion_bench/dataset/arc_agi/np_cache.py,sha256=
|
|
28
|
-
fusion_bench/dataset/arc_agi/preprocess.py,sha256=
|
|
27
|
+
fusion_bench/dataset/arc_agi/np_cache.py,sha256=Ec1DQFtlBdMy-f4dvGEhSr4jyVnBLQELwvX1ztxJKBs,5439
|
|
28
|
+
fusion_bench/dataset/arc_agi/preprocess.py,sha256=lQrXqV4SkhrxREgbqFAop-IwC5qaoxkKosoMO-ZHITY,8509
|
|
29
29
|
fusion_bench/dataset/arc_agi/representers.py,sha256=-2eTYl-UcFW4zULDjkUrOQYv9P31nttMjc9eTJsaN0g,35852
|
|
30
|
-
fusion_bench/dataset/llama/__init__.py,sha256=
|
|
31
|
-
fusion_bench/dataset/llama/alpaca.py,sha256=
|
|
32
|
-
fusion_bench/dataset/llama/collate.py,sha256=
|
|
30
|
+
fusion_bench/dataset/llama/__init__.py,sha256=p8M7G69L6bga4qLl5lvAO6SKNeUBn99kkJrAQEeOvHw,22
|
|
31
|
+
fusion_bench/dataset/llama/alpaca.py,sha256=0nCQRBZzIPaMzA5VSJAsWw-nE0aVhiAQD5MGJRSrvEQ,7787
|
|
32
|
+
fusion_bench/dataset/llama/collate.py,sha256=fSH-vKKCGCpPT47gchETXLF2yTCMPUE3NTE-inCdczg,3869
|
|
33
|
+
fusion_bench/dataset/llama/metamathqa.py,sha256=z9InmEfWy_wWMbBORumFA2NakEznZWsDWgZzOsXYWhA,1617
|
|
33
34
|
fusion_bench/dataset/llama/openai.py,sha256=_QXz6ciUTN8u4ILDowZPT3SQTes7ngkFZe1MRLFtVQ8,5012
|
|
35
|
+
fusion_bench/dataset/llama/preference_700k.py,sha256=CqD0ZnM2F2Z3u70tD3VaQ2yPAHkOv75m-eiXiQKIRp0,2582
|
|
34
36
|
fusion_bench/dataset/llama/sharegpt.py,sha256=8hdh_5BcxIyK0ByZoVLdhd_I06kpHffxQdaC6ezzHkM,5249
|
|
35
37
|
fusion_bench/dataset/llama/squad.py,sha256=H0L0BHFzVTtkw7jfgTA8gzvZDhzsqfIALq1ip_BVwaM,4810
|
|
38
|
+
fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBkl6RJ6ec3Tf6UU,3763
|
|
39
|
+
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
36
40
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
37
|
-
fusion_bench/
|
|
41
|
+
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
|
+
fusion_bench/method/__init__.py,sha256=bwYq0wOxiTPCuR1GvLtqQ9Sx91mikfTTJKeSHFsSRn4,5781
|
|
38
43
|
fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
|
|
39
44
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
40
45
|
fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
|
|
41
46
|
fusion_bench/method/model_recombination.py,sha256=2tviqmYSPOL0_Ktv8_gt_YzQ4tyCANHxXquUot_3Cgo,5360
|
|
42
|
-
fusion_bench/method/simple_average.py,sha256=
|
|
47
|
+
fusion_bench/method/simple_average.py,sha256=2ghcL1E-eLbIYDCHYCoR9WtiYSb1GvFAH163OTTTEEI,4481
|
|
43
48
|
fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
|
|
44
49
|
fusion_bench/method/ada_svd/clip_vision.py,sha256=QrT6cSwgVEGxXEpVhkvKQVQaoRW5P9V52Y3_8NX0f-o,12556
|
|
45
|
-
fusion_bench/method/adamerging/__init__.py,sha256=
|
|
50
|
+
fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
|
|
46
51
|
fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=YdQ4trHohW6QzWC2enYvXA44WHxvzmoH_6sMrPn6z60,1305
|
|
47
52
|
fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=Tys9pDJzz5YNUCO43pO44fGAnizfSaeAwgH4-vVxRN4,6948
|
|
48
53
|
fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
|
|
49
54
|
fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=osc6ueCgiS4u8KUV_sZkHGFBYC8dThnTSp4NB0wkQIg,12915
|
|
50
55
|
fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=jTGUbhJCV1pcJ5k5jVeAhmtHdbHK5LlEfBhF-86xWjY,13773
|
|
51
|
-
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=
|
|
56
|
+
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=6d1vWuyiAQDh_kLLrZixPyTAxovOjfq-2T2hgLGXCWg,9734
|
|
52
57
|
fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
|
|
53
|
-
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=
|
|
58
|
+
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
54
59
|
fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
|
|
55
60
|
fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
|
|
56
61
|
fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
|
|
@@ -77,23 +82,24 @@ fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWET
|
|
|
77
82
|
fusion_bench/method/fisher_merging/fisher_merging.py,sha256=CPU-tJiDv9FCIBYl7Pn0zA5cdRB1Md5kWchRDlJgly0,20456
|
|
78
83
|
fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
|
|
79
84
|
fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
|
|
80
|
-
fusion_bench/method/linear/expo.py,sha256=
|
|
85
|
+
fusion_bench/method/linear/expo.py,sha256=LCHTWlsPm1Mjhrq0mfpWLVC7skkI9ZksGduy3TxULoU,3939
|
|
81
86
|
fusion_bench/method/linear/linear_interpolation.py,sha256=IONw9BPiRJouY8bE9Abfyz7qVI_1B1n8KGZa0f7Pza8,2157
|
|
82
87
|
fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
|
|
83
88
|
fusion_bench/method/linear/simple_average_for_llama.py,sha256=7JlVrmTMmrePvNGnZNoxSuCSq2Vu7cPQzjGC3WWUXBE,2079
|
|
84
89
|
fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
|
|
85
|
-
fusion_bench/method/lm_finetune/__init__.py,sha256=
|
|
90
|
+
fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
|
|
91
|
+
fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=ys_td1IeL3bzPTE0Cixlj2JooCaB7qseRwSDwroAk5A,18777
|
|
86
92
|
fusion_bench/method/lm_finetune/causal_lm_pretrain.py,sha256=4CL9KGFsUzrt-edMfTooo4G4apzTH_57rso3DGGvKL0,219
|
|
87
|
-
fusion_bench/method/lm_finetune/fullfinetune_sft.py,sha256=
|
|
88
|
-
fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=
|
|
93
|
+
fusion_bench/method/lm_finetune/fullfinetune_sft.py,sha256=eZabmkL7QUHGxl0DX9aaCYerMVUTzH5fXQfJXiSQNEc,16226
|
|
94
|
+
fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9eyKXyxA3WZuSaML2jCH_Gw,16370
|
|
89
95
|
fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
|
|
90
96
|
fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
|
|
91
97
|
fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=tQYAeS8MLFEfH3zDFfNZrML7lRnpGLN-HquQvjPtHNw,11208
|
|
92
98
|
fusion_bench/method/pruning/__init__.py,sha256=3gtmay2bkdIAEGjpAhbY2ztMZOZLKhiJcKV3mCe2H5w,252
|
|
93
|
-
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=
|
|
94
|
-
fusion_bench/method/pruning/llama_random_prune.py,sha256=
|
|
99
|
+
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=40Gmy665S9XqIw027En6E5IlomOIcKECIRje7NDkH00,6300
|
|
100
|
+
fusion_bench/method/pruning/llama_random_prune.py,sha256=EW7zfE-1a5VlPPrQ5xO1k1aqFcpPUfs5eSO_a4M1K90,4566
|
|
95
101
|
fusion_bench/method/pruning/llama_wanda_prune.py,sha256=8pcg3X1yn8vfhV0lEg1fHP3oTzAc_-ixLmsZRdH5uPo,12070
|
|
96
|
-
fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=
|
|
102
|
+
fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=nXRHW87_Nwiash-udnwR9iOaJMBDo7fPTmAwmSqsAaI,6451
|
|
97
103
|
fusion_bench/method/pruning/prune_utils.py,sha256=ITWO8WtrhcOYXTcjc_fAAw7cyjvqFa6axawPr3uTT68,5882
|
|
98
104
|
fusion_bench/method/pruning/wanda_utils/__init__.py,sha256=ujOZ9GUTwzqfVjXUL0e6y_gAEfTQU85rBq2MZ5om7oQ,320
|
|
99
105
|
fusion_bench/method/pruning/wanda_utils/ablate.py,sha256=TUKsbInQD3UmS8FpuFeco6FeTMaJLZXho9ASWRPcurc,6459
|
|
@@ -109,6 +115,9 @@ fusion_bench/method/pwe_moe/module.py,sha256=D4HDx7iDfKX_vJ3vkzi6_atKKlzJT6nH0sr
|
|
|
109
115
|
fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
|
|
110
116
|
fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
|
|
111
117
|
fusion_bench/method/pwe_moe/phn/solvers.py,sha256=OO-ImNwsWIQ3eXPxzj1V-kNgXrJc4FKcK-RwaOl_np0,6156
|
|
118
|
+
fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcfrFL5EMw34YNHeE,119
|
|
119
|
+
fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
|
|
120
|
+
fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
|
|
112
121
|
fusion_bench/method/regmean/__init__.py,sha256=VVqAkdHkb005Sc2XmeiedQYzb3q5aQNI8xzEJnE4thg,158
|
|
113
122
|
fusion_bench/method/regmean/clip_regmean.py,sha256=xhT7dYSCg9sPLL5ZUCCtcA-Ypw4PBHsOivrnz-3fDso,4931
|
|
114
123
|
fusion_bench/method/regmean/gpt2_regmean.py,sha256=p2D3E8YAZsltsI6GM474UWNqPZfBqihLZ93ZLUpOJ_c,5565
|
|
@@ -125,6 +134,8 @@ fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6F
|
|
|
125
134
|
fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
|
|
126
135
|
fusion_bench/method/sparselo/__init__.py,sha256=0Uk4Hq5b9iwc5yl2QTDwvBHUItN4V6lwhxDYQrFb724,107
|
|
127
136
|
fusion_bench/method/sparselo/sparselo.py,sha256=qkfFwovdOA7-NUXtLYiV1iM9bglQJydfuL805azQ6Xc,38806
|
|
137
|
+
fusion_bench/method/surgery/__init__.py,sha256=xVvJvVv9wJnVgJjZDgF2YliuSsy221AQ0KSwB7J7bjo,97
|
|
138
|
+
fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=7qoWWYcTWpfXik21mEPBlMW5BM0Kc4nxSW1GL2hzP1o,5599
|
|
128
139
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
129
140
|
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=1D0uuNtqyA1VS35jh6AnEVsX72HnT02THyerck_lmso,5441
|
|
130
141
|
fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
|
|
@@ -150,33 +161,41 @@ fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWy
|
|
|
150
161
|
fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
|
|
151
162
|
fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
|
|
152
163
|
fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
|
|
153
|
-
fusion_bench/mixins/__init__.py,sha256=
|
|
154
|
-
fusion_bench/mixins/clip_classification.py,sha256=
|
|
155
|
-
fusion_bench/mixins/
|
|
164
|
+
fusion_bench/mixins/__init__.py,sha256=AsUNvrHdNd6xht7-dfuVipmJuRfMNFlkgG-fn3ojt1U,892
|
|
165
|
+
fusion_bench/mixins/clip_classification.py,sha256=lsrh-qZln1Am0ry_rJL47EFCvVZFRHD2YYk9u3eecs8,9933
|
|
166
|
+
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
167
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=XE3OwV68YmJX7aR64uk9h1j9Qs6UPU5F7ciBIgBYyv4,6461
|
|
156
168
|
fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
|
|
157
169
|
fusion_bench/mixins/serialization.py,sha256=9W50JUcM6wgFlaE9H29mATLLVobYniSDxg94FfY25w0,4049
|
|
158
170
|
fusion_bench/mixins/simple_profiler.py,sha256=UDPB8QAA3rtsSdnVgL9KMthDLBY1Rh4h8mtiquiCPp4,2106
|
|
159
171
|
fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
160
172
|
fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
|
|
161
173
|
fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
|
|
162
|
-
fusion_bench/modelpool/__init__.py,sha256=
|
|
174
|
+
fusion_bench/modelpool/__init__.py,sha256=LtcCWTcYkVaz7ZxEseWRwKDk3cSTg95-WQiriXBHLSA,1401
|
|
163
175
|
fusion_bench/modelpool/base_pool.py,sha256=WCpDt0MpwIk_djpgpM_CANomAEJ7Uoj78GSHEYzD_oU,9142
|
|
164
176
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
165
177
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
166
178
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
167
|
-
fusion_bench/modelpool/causal_lm/__init__.py,sha256=
|
|
168
|
-
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=
|
|
179
|
+
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
180
|
+
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=k0eOOcFbswVgBYhM9CEXvdCRU9zVC8Gw78QaiMWzeWo,4487
|
|
169
181
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
170
182
|
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=qG-b3ms-q3gqcRf7J6wrTDdmtu2yb1E_A25tNOjSli8,2065
|
|
171
183
|
fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
|
|
172
184
|
fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgVXF_pfTKLPeL9XKP-s,2052
|
|
185
|
+
fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=k-t4RetcDlbkRkPHNuyeV3pQEcJnFRjd9Wp5tFBb-G8,128
|
|
186
|
+
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
187
|
+
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=sIKAmGJwfrNSuWtxzJ_-ME0gQksEYY2y-jVt7P82Qs0,3434
|
|
173
188
|
fusion_bench/models/__init__.py,sha256=TNOEH_2yAQP51m9mdWepNEf9VGUZgDthtgXbs4rhb4M,100
|
|
174
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
189
|
+
fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
|
|
175
190
|
fusion_bench/models/parameter_dict.py,sha256=hRie26WIeXU-wvY6JeGaP8LvpMqbuZA6Ia_1vOFMuu4,2294
|
|
191
|
+
fusion_bench/models/rankone_moe.py,sha256=uwpAqk1cwxxprQ0hxuAwRuPvHDxxBKBDahd9vcaafXs,14248
|
|
176
192
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
177
193
|
fusion_bench/models/sparse_we_moe.py,sha256=b-yIeCsl2rz0i7BP9g_fqCEam7KUNjNX_J8oyZV6MJ8,16509
|
|
178
|
-
fusion_bench/models/utils.py,sha256=
|
|
194
|
+
fusion_bench/models/utils.py,sha256=AQFI2UZSItKfJpG8ex74FPjn_SjsADLhvpv1GYqu43U,2065
|
|
179
195
|
fusion_bench/models/we_moe.py,sha256=0U-m3mhzb4vFLIzn2jd7j_SQOF9lot4ddzq0l_VPp9g,8424
|
|
196
|
+
fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
|
|
197
|
+
fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
|
|
198
|
+
fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
|
|
180
199
|
fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
181
200
|
fusion_bench/models/linearized/linearized_model_utils.py,sha256=5yKXReQHIwDttzT_oXwY_iIpaG1zIU0Nv93BWmmOqrg,3212
|
|
182
201
|
fusion_bench/models/linearized/vision_model.py,sha256=HhbhtyoLD1qVvh1Sgl_beYF2W7AvMevmUy4Jx2XlcsY,4636
|
|
@@ -208,15 +227,21 @@ fusion_bench/models/nyuv2/resnet.py,sha256=PcCfBhEsxm7W8cu3epBbIbCYFARPrPTamIa3T
|
|
|
208
227
|
fusion_bench/models/nyuv2/resnet_dilated.py,sha256=4EXB6vrBJS307YP6k-TRY1dFJ50LURcTuzqN4tZzYRk,3125
|
|
209
228
|
fusion_bench/models/smile_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
210
229
|
fusion_bench/models/smile_moe/linear.py,sha256=voFvx4Nnfgc6YReBcY9FUGG3WrxVRjyD3odX4jIS5Eg,8724
|
|
230
|
+
fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=zkiV_IF4-7CfzUND--fGCzgz-Sa-dCUz5CmVoPjQt1c,5132
|
|
211
231
|
fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
212
232
|
fusion_bench/models/wrappers/ensemble.py,sha256=wIMZMRyXw5boWAm96c4Tiyebs_HDQovKxpGQ8rLnHUQ,6308
|
|
213
|
-
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=
|
|
214
|
-
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=
|
|
215
|
-
fusion_bench/optim/__init__.py,sha256=
|
|
216
|
-
fusion_bench/optim/
|
|
233
|
+
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=tISTe__HvlaHVVKkfa0nX3JRRDYLHetJ4BzIqGq-058,12316
|
|
234
|
+
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=gNOU1t1JUcBr3V0Apa1uvJDl5BDM2is85lkEF1SfPRo,8404
|
|
235
|
+
fusion_bench/optim/__init__.py,sha256=lemrcuiA6OLjQkpYm-RP-Ox2MgjngN1ywvCo0NgShlM,61
|
|
236
|
+
fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
|
|
237
|
+
fusion_bench/optim/mezo.py,sha256=Vm4vMGh10Fhe28_9L1MK8r_U7DrurA8Liprh2_gn4_U,3646
|
|
238
|
+
fusion_bench/optim/lr_scheduler/__init__.py,sha256=W7CsdW4XKqXbNfzjvv2wmrvNWwfH_sQ-wiBViRPlP3U,29
|
|
239
|
+
fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502Ae4JWXGrtZL3gwA_H6ZI,6566
|
|
240
|
+
fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
|
|
241
|
+
fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
|
|
217
242
|
fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
|
|
218
243
|
fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
|
|
219
|
-
fusion_bench/programs/fabric_fusion_program.py,sha256=
|
|
244
|
+
fusion_bench/programs/fabric_fusion_program.py,sha256=Bf4lnntM1J1hxKVm4Av0ohAmSqzDxOzWg75rzqps0qE,12297
|
|
220
245
|
fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
221
246
|
fusion_bench/scripts/cli.py,sha256=497nhqnJAwxkqU2WCMUqcAIvqTmGRdQaByWGNTX_onY,1131
|
|
222
247
|
fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
|
|
@@ -224,15 +249,17 @@ fusion_bench/scripts/nyuv2_mtl_train.py,sha256=hB_P_4DIT83CGOXoyyaBnh9fYnxTJtvAP
|
|
|
224
249
|
fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
|
|
225
250
|
fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
226
251
|
fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
|
|
227
|
-
fusion_bench/taskpool/__init__.py,sha256=
|
|
252
|
+
fusion_bench/taskpool/__init__.py,sha256=_qaYgzYnvrJDrZ2DjKXMvOFbelsLrujCKa_gP3UQBBg,1094
|
|
228
253
|
fusion_bench/taskpool/base_pool.py,sha256=FaP0nndeSsrwbdd9mKa_CedbX9T5AHJmxk7Lc0NEVNY,835
|
|
229
254
|
fusion_bench/taskpool/dummy.py,sha256=Di9JZO3XyDYn6wAGukrJMTnkS_NaxGTeQYo_3j1JD3Y,1675
|
|
230
255
|
fusion_bench/taskpool/gpt2_text_classification.py,sha256=S4YyrcJhD4JOgvHF-AVG-gENgVGl-wpQZr1SbiThM04,4886
|
|
231
|
-
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=
|
|
232
|
-
fusion_bench/taskpool/clip_vision/__init__.py,sha256=
|
|
256
|
+
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
|
|
257
|
+
fusion_bench/taskpool/clip_vision/__init__.py,sha256=4xGO7rRbRpXF-I34A3WEMU4vydgfdtvXQ57ThaFcpmE,214
|
|
258
|
+
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=JKbRrGaRYztgZ-P0U767HISe40UpDVQ7fn6Tf2rrug0,4891
|
|
233
259
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=hVDTtg-oXqRFmAE2wZPFpk_kvtdk_wS-2-ev2ujEJBs,5390
|
|
234
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=
|
|
260
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=xbJHQXUYd2ZDs-oIyE-3knCsPdiUbZCKN7O86kPwpsQ,14907
|
|
235
261
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
262
|
+
fusion_bench/taskpool/llama/reward_model.py,sha256=y5a_dNDzjYSoV9RNRdmDPhALM7i20A5EiFYSjrGTpWo,5028
|
|
236
263
|
fusion_bench/taskpool/llama/test_generation.py,sha256=kJ_5GruG12FsuJHDh_S7pbQgwEojTqhGpA_wVNH5KPc,6675
|
|
237
264
|
fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
|
|
238
265
|
fusion_bench/tasks/base_task.py,sha256=Fg_pdZhld-2KPKX0C1WrxaTz0EYWrvJerAHO-hA03GI,412
|
|
@@ -258,7 +285,7 @@ fusion_bench/tasks/clip_classification/tiny_imagenet.py,sha256=Ar9uQOqUcgGl7MQX9
|
|
|
258
285
|
fusion_bench/tasks/flan_t5_text_generation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
259
286
|
fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py,sha256=zo5S73jm7YDTMN_FxcPNM2dxQkqv2K2siw2xELARPwk,2448
|
|
260
287
|
fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZVs0NB4fqoW0u2TvxOpLYzZF1RzppJ5sc,4357
|
|
261
|
-
fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=
|
|
288
|
+
fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
|
|
262
289
|
fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
|
|
263
290
|
fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
|
|
264
291
|
fusion_bench/utils/__init__.py,sha256=yFhiBlrdcsJqZe-C5wdlZZ3wpmSN8Tipfpa2-R7CFbc,337
|
|
@@ -268,7 +295,7 @@ fusion_bench/utils/data.py,sha256=51nbgOnayyerLBUGHrlm9iilGjhJsBkXKKGXOKgLRW8,61
|
|
|
268
295
|
fusion_bench/utils/devices.py,sha256=72HeUVVlVGTt97JA7KFG3D8BM8VHqR-y1nkr9Bm-PRE,7578
|
|
269
296
|
fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
|
|
270
297
|
fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
|
|
271
|
-
fusion_bench/utils/hydra_utils.py,sha256=
|
|
298
|
+
fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
|
|
272
299
|
fusion_bench/utils/instantiate.py,sha256=v8L9JDfh2YoEOFpIQIHomvBoqdboZdYIaHEATnD2gdQ,16972
|
|
273
300
|
fusion_bench/utils/json.py,sha256=iNeZHFvpzbb4oX-52dX15De_dMcux7vQtAUFZqW12GA,1907
|
|
274
301
|
fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
|
|
@@ -280,17 +307,20 @@ fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4K
|
|
|
280
307
|
fusion_bench/utils/rich_utils.py,sha256=V_BjY3o8bXMp-kWfxle4cK48GGHDnKbVonZX65qbXAA,5464
|
|
281
308
|
fusion_bench/utils/state_dict_arithmetic.py,sha256=dVPBkO8Te9_VANPbetV59ORAQTw7D3css_-d0lYgK4k,9062
|
|
282
309
|
fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
|
|
283
|
-
fusion_bench/utils/type.py,sha256=
|
|
310
|
+
fusion_bench/utils/type.py,sha256=4CmKDVL1bKZfAfEApq79YhQavG6ZGermpQThDwiVl5w,532
|
|
311
|
+
fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
312
|
+
fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
|
|
313
|
+
fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFwyLeG0MIwOwF4,3739
|
|
284
314
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
285
315
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
286
316
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
287
317
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
288
|
-
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=
|
|
289
|
-
fusion_bench_config/fabric_model_fusion.yaml,sha256=
|
|
318
|
+
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=GtK3VuD2FOpFHH_1Hi6tlaYpdLE5Cz0nYKP92Ss9G2Y,1164
|
|
319
|
+
fusion_bench_config/fabric_model_fusion.yaml,sha256=1shmbuC0B9snkFkLErBCiroF-z7UnEHscyEmKBne7Oo,949
|
|
320
|
+
fusion_bench_config/llama_full_finetune.yaml,sha256=J2qCNyX1GaPHg52juSRRIkfHSb6YJdiJOM3Bn3vAo0A,771
|
|
290
321
|
fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
|
|
291
322
|
fusion_bench_config/llama_model_fusion.yaml,sha256=EJRsSbt1zttAXAAy_-5NcMkWwhYrl0osjKGXQopu4bo,588
|
|
292
|
-
fusion_bench_config/
|
|
293
|
-
fusion_bench_config/nyuv2_config.yaml,sha256=1rW-5ZsJOUCCQAvShdISmmYwyvY5vl3tukPTgtcpocY,410
|
|
323
|
+
fusion_bench_config/nyuv2_config.yaml,sha256=SYaafywjOIKK1f-Nl_K5EuBjXH2oN1whlqjN_dXXO-A,492
|
|
294
324
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=RfsrboIpL9Cct2RkRrKxXAqH4jLi1NECHbwH8iOGtDY,591
|
|
295
325
|
fusion_bench_config/dataset/image_classification/test/cifar10.yaml,sha256=wlzzTXAKzBjQXKYWhZPGcwydxwgeAV8sM4Dp3GBHbw0,78
|
|
296
326
|
fusion_bench_config/dataset/image_classification/test/cifar100.yaml,sha256=f_tsvq5bbw2Trp3f6mokXV7hUlfYr_yuebZkEqJqIVI,79
|
|
@@ -325,6 +355,8 @@ fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml,sha256=p
|
|
|
325
355
|
fusion_bench_config/dataset/image_classification/val/sun397.yaml,sha256=cayl6FNzxOj2UBjw0ikJoQNCdN3DX10xQmcx4ouFP-0,245
|
|
326
356
|
fusion_bench_config/dataset/image_classification/val/svhn.yaml,sha256=uMdEYmc406i9HdkOLzfzBiJ8pfbYLIWT1pA_UId8HMg,265
|
|
327
357
|
fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml,sha256=x1-xurkOIQtWX-gpSwXDxA5fVY30KmrarS7EKaje33M,101
|
|
358
|
+
fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml,sha256=QJK8OM-C2cZNaC3_vbRucuWrTggw69YWEtPOzmxm6bo,174
|
|
359
|
+
fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml,sha256=uqOGtDu4MNAOnwCA4Qp6elcnc8X_Y7sTrwYdruAvjGU,106
|
|
328
360
|
fusion_bench_config/dataset/question_answering/search_qa.yaml,sha256=u_8UTKQFnjCwbeXqx2grC2bzLDpdEQy3s3Oxip_JEoc,118
|
|
329
361
|
fusion_bench_config/dataset/question_answering/test/search_qa.yaml,sha256=oB2qP5ScTTbFGp75a5VLBaQtUa9VYHkGNhNAfe-AkvE,132
|
|
330
362
|
fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml,sha256=3-stubxiEKjuBQHhqS_Tc_BqGK3IOwzaAtnO4sd5SX8,90
|
|
@@ -343,9 +375,13 @@ fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha2
|
|
|
343
375
|
fusion_bench_config/fabric/auto.yaml,sha256=GOCIA6s_co-JpwyBj3dM-dgWUMKciD8lFRmFThUeAsA,575
|
|
344
376
|
fusion_bench_config/fabric/llama_ddp.yaml,sha256=iP-3n-hehRSjmJkdQWhDb4AkLcfFa6PFq0BCrL58xso,706
|
|
345
377
|
fusion_bench_config/fabric/llama_fsdp.yaml,sha256=--_G5mcyG6L3aEBNvTjvMH8D-jD0SMXGap6V8E3jH84,575
|
|
378
|
+
fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=V-iBtvSg_m2o42ERYRxlDITqeEUBoRTMrLzfVOtN8VU,580
|
|
346
379
|
fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=Pv8I-xbxrpTb_fwtDiUtCAEoCZ8QYCLu2GeJNzb3Z3c,373
|
|
347
380
|
fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=w9ZP1i8lRYQFslzEM98PmbcFhhn5dXReSJhLOdEi-do,381
|
|
381
|
+
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
|
|
382
|
+
fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=uHujbd2sKrgWb5YhFTWOJCZefStv6O_HHo_GylzqYbU,344
|
|
348
383
|
fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
|
|
384
|
+
fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=xoxeQ0Pp7ecZPcAX57PhQJsqRUKhqEmNc3DXmYXqx4Y,348
|
|
349
385
|
fusion_bench_config/hydra/default.yaml,sha256=TT0RaUwYgfB7pKpbHgEbmuCVTB2fx2eXxvM-Xz3SQMI,241
|
|
350
386
|
fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
|
|
351
387
|
fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
|
|
@@ -387,13 +423,15 @@ fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=QJR5qx9z4
|
|
|
387
423
|
fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
|
|
388
424
|
fusion_bench_config/method/linear/weighted_average.yaml,sha256=SmELszTsJU63e8KwIrPmSqKmOmH-rz42zeumQZHoVDY,187
|
|
389
425
|
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=r8BlNqzRfn--_gDSff6KI8FO-elWFIszZDRV7G_nvHw,499
|
|
390
|
-
fusion_bench_config/method/lm_finetune/
|
|
391
|
-
fusion_bench_config/method/lm_finetune/
|
|
426
|
+
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=em0Lnodl9bg8dos9MODMXjKtxWCXwQArjLT2z4TC3Q0,1352
|
|
427
|
+
fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=edj3juaYos2I9oQ8J6NKQNcNwqwcQGD74ZMosDsB5SY,1341
|
|
428
|
+
fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=9S-qsWUIALRwWd_gzNF1bwIuPPGP1MmqTpdQ53cwZmc,1628
|
|
392
429
|
fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
|
|
393
430
|
fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
|
|
394
431
|
fusion_bench_config/method/pruning/llama_wanda_pruning.yaml,sha256=qKe5yIRsmK2KUyYENENWlw1qlGet9TpDhR-E_uO7vAw,501
|
|
395
432
|
fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml,sha256=GsxsQ2L3kfsdD7A8o7UAHfiSbAGh53zVXdlYuEIEWR0,130
|
|
396
|
-
fusion_bench_config/method/
|
|
433
|
+
fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=RWf94HqYBinZxH-jhi3h8UOLXxv1P5doy0YcTQM-plw,866
|
|
434
|
+
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=dxSJMRam6YMks7zYx4ACgvrLP5cndxzraVO93SGhyYo,425
|
|
397
435
|
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=CL6f3GKQTSiLonrak8uEFoFn6MrzQ-ZJp4zXCwCllSk,423
|
|
398
436
|
fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
|
|
399
437
|
fusion_bench_config/method/slerp/slerp.yaml,sha256=DIsS8xS2CnKLyF5OHz_RWG87A48iElevDbVTUHYobDg,118
|
|
@@ -403,6 +441,7 @@ fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTn
|
|
|
403
441
|
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=A_QFhwAzbzXxDkOPmXRbPTj2TBib66d3_3mkrf-Xu0k,641
|
|
404
442
|
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=w1OWb38nW08K_hvrRMsCwmRxHWLGQfSSXg5nTiYaP8E,635
|
|
405
443
|
fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=J6vYIwqzh95-B3ekDias3FnCrVr4sig4zxpWyvz8hZ0,613
|
|
444
|
+
fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=Ne9JlJFgsRYcygBNCOBSN1ygBcLkE6I-8yusfTxyg-Y,826
|
|
406
445
|
fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=mK09Ohsvj0Q6suj5qJM4DyCzRy192QBt4wjHS6W29IY,197
|
|
407
446
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=jiAco7M1XO0aekHFZKLKlXL_jRoCA8bgGD44Z7iB208,1001
|
|
408
447
|
fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
|
|
@@ -492,7 +531,11 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and
|
|
|
492
531
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml,sha256=-Tt_YggxkuIGT4_q5FR16zPvW2wWhGJ5LL8omxvHjvw,380
|
|
493
532
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml,sha256=PrDQr04UnhAciDrdtUutx-prMxF1Cs4jrEar7uJ-1Es,238
|
|
494
533
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=aSu0QUpcEZXKbL9PAUKCQAVvs5CksG1s7PPCvjTsIzA,234
|
|
534
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=BXsYH04vAUPT4Cpr8lS1px-CYYKaCTMRWuHGWgC6qE0,647
|
|
535
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=m7NDjkzFbGG8E8e_r2UUxtXjNbMFvtAcZOXyBaJOyX4,645
|
|
495
536
|
fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=hbjSkVle5zpcqGDSMGaJ20CLoO0ljIXG-gtdONuaFBY,803
|
|
537
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml,sha256=OOnKzmsz6iiO2jI5ZyGmCem_Pcs3a25Dveb5PLfwpUM,593
|
|
538
|
+
fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml,sha256=K403avKEQlK4uRhZYHbKGluCG37sMUjLRytBR3LspmI,577
|
|
496
539
|
fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml,sha256=RXdm5BQmYfq9XWVli0NsQ1Xh7jD61XnhRBOSlmd9FcI,825
|
|
497
540
|
fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml,sha256=aX0rWwB-p4N94bPX1QGwqKNIWnTrkNMuF7sMAQHzjQE,549
|
|
498
541
|
fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
|
|
@@ -501,6 +544,8 @@ fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256
|
|
|
501
544
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml,sha256=GfTY343bt5YtxtUkQxSacrtQav9lT9Y-t1VIL1Chs4k,1726
|
|
502
545
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml,sha256=2YBIzqYGluOT2r6dOFpUYE4Cbdd2XoHAUps-kCDxVPQ,185
|
|
503
546
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml,sha256=W1y3fKY9UTTRyv7nqbIO5DESlQVfNsWlhkHJMUYh7B4,1824
|
|
547
|
+
fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml,sha256=JUzGOLANW92Y_rljOOZKmwBQvWrJsko_ziayurzHSTY,880
|
|
548
|
+
fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml,sha256=Cg9W315FzKP3DC_-bkIyYZp1nU6UoSQ6xe-MsMx-P8A,626
|
|
504
549
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
|
|
505
550
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
|
|
506
551
|
fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=gk_RB12EeYrEUNlZJHtZ3XKIm_LDraqE1hC_lpOEvtY,518
|
|
@@ -508,16 +553,18 @@ fusion_bench_config/taskpool/dummy.yaml,sha256=Id4Y_j7oc39qWjjEFG3qLmmMI1fGXXt34
|
|
|
508
553
|
fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml,sha256=3MxfXiiwWJHEVgJ7aViTR7kzOV_YxXLL-fNHtnBaWN4,1002
|
|
509
554
|
fusion_bench_config/taskpool/gpt-2_glue.yaml,sha256=16bw4-g08pL51M4OWAP08kWZPj6JcEefz4Xc4XhCTLQ,950
|
|
510
555
|
fusion_bench_config/taskpool/nyuv2_taskpool.yaml,sha256=UaxDpFqEPkEz3h2CjFleUxsmnFnaY1aLXerkud8Zm9s,133
|
|
556
|
+
fusion_bench_config/taskpool/reward_model_evaluation.yaml,sha256=qaUqKcb6E_XfoS5J-FcteMJzFzthNb4aLpB9aKW4jbU,442
|
|
511
557
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml,sha256=X70J8HMoIcpKaYGjg7KaaXRvz1tPUbuCqKvK9-kGHrM,1310
|
|
512
558
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml,sha256=eoNUaX-cBjpJJt0BYb-ZCNiIlv1SarX9toiGAwHbES0,227
|
|
513
559
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml,sha256=AmfMrb2_wXDfRtUDsSCNgbuSicNsfC2vRlwXW-uNeJA,784
|
|
514
560
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml,sha256=UYOSR9RJhup6pSC0N7UvvnlpXTkiCdD4tzsx-HyQ_GA,269
|
|
515
561
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml,sha256=_hqQweyZdCztqvjtuYrhCx4Hdqe959FFCdL7_IspR2w,261
|
|
516
562
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml,sha256=9hbvC3k5x6NpA9tRDYeORhrjEyd2VH5ztMdLU67Adjk,249
|
|
563
|
+
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=iQMj2VpDTe_D8OfCo94w5Ud2MON-EGa0DzVr6UmphrA,436
|
|
517
564
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=i5Bn8bLl2cgqvrgtIGmoovUfSMehk_m-6C2wwcx5JMU,435
|
|
518
|
-
fusion_bench-0.2.
|
|
519
|
-
fusion_bench-0.2.
|
|
520
|
-
fusion_bench-0.2.
|
|
521
|
-
fusion_bench-0.2.
|
|
522
|
-
fusion_bench-0.2.
|
|
523
|
-
fusion_bench-0.2.
|
|
565
|
+
fusion_bench-0.2.7.dist-info/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
566
|
+
fusion_bench-0.2.7.dist-info/METADATA,sha256=XMvOFwwYoq1_J4Fta1kJ2J0grFb4k-I3CPA_ApmjPRM,13528
|
|
567
|
+
fusion_bench-0.2.7.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
|
568
|
+
fusion_bench-0.2.7.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
569
|
+
fusion_bench-0.2.7.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
570
|
+
fusion_bench-0.2.7.dist-info/RECORD,,
|
|
@@ -11,7 +11,7 @@ _target_: fusion_bench.programs.FabricModelFusionProgram
|
|
|
11
11
|
_recursive_: false
|
|
12
12
|
fast_dev_run: false # Run a single batch of data to test the model or method
|
|
13
13
|
# Run the script without actually running the experiment, use with `print_config=true`.
|
|
14
|
-
# You can also use `--cfg` or `-c` to
|
|
14
|
+
# You can also use `--cfg` or `-c` to show the configuration instead of running.
|
|
15
15
|
dry_run: false
|
|
16
16
|
print_config: true # Print the configuration to the console
|
|
17
17
|
merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- loggers: tensorboard_logger
|
|
3
|
+
- strategy: llama_peft_fsdp
|
|
4
|
+
- _self_
|
|
5
|
+
|
|
6
|
+
_target_: lightning.Fabric
|
|
7
|
+
_recursive_: true
|
|
8
|
+
# Number of devices to train on (``int``), which GPUs to train on (``list`` or ``str``), or ``"auto"``.
|
|
9
|
+
# The value applies per node.
|
|
10
|
+
devices: auto
|
|
11
|
+
# The hardware to run on. Possible choices are:
|
|
12
|
+
# ``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
|
|
13
|
+
# for example: fabric.accelerator=cpu
|
|
14
|
+
accelerator: auto
|
|
15
|
+
# reference to the precision policy: https://lightning.ai/docs/fabric/stable/api/fabric_args.html#precision
|
|
16
|
+
precision: bf16-true
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
# https://lightning.ai/docs/fabric/2.4.0/api/generated/lightning.fabric.strategies.DeepSpeedStrategy.html#deepspeedstrategy
|
|
2
|
+
_target_: lightning.fabric.strategies.DeepSpeedStrategy
|
|
3
|
+
|
|
4
|
+
accelerator: null
|
|
5
|
+
zero_optimization: true
|
|
6
|
+
stage: 2
|
|
7
|
+
offload_optimizer: false
|
|
8
|
+
offload_parameters: false
|
|
9
|
+
offload_params_device: "cpu"
|
|
10
|
+
offload_optimizer_device: "cpu"
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
_target_: lightning.fabric.strategies.FSDPStrategy
|
|
2
|
+
sharding_strategy: FULL_SHARD
|
|
3
|
+
state_dict_type: full # Save a single, consolidated checkpoint file
|
|
4
|
+
cpu_offload: false
|
|
5
|
+
auto_wrap_policy:
|
|
6
|
+
_target_: fusion_bench.mixins.lightning_fabric.get_size_based_auto_wrap_policy
|
|
7
|
+
activation_checkpointing_policy: ${.auto_wrap_policy}
|
|
8
|
+
# limit_all_gathers: true
|
|
9
|
+
|
|
@@ -11,7 +11,7 @@ _target_: fusion_bench.programs.FabricModelFusionProgram
|
|
|
11
11
|
_recursive_: false
|
|
12
12
|
fast_dev_run: false # Run a single batch of data to test the model or method
|
|
13
13
|
# Run the script without actually running the experiment, use with `print_config=true`.
|
|
14
|
-
# You can also use `--cfg` or `-c` to
|
|
14
|
+
# You can also use `--cfg` or `-c` to show the configuration instead of running.
|
|
15
15
|
dry_run: false
|
|
16
16
|
print_config: true # Print the configuration to the console
|
|
17
17
|
merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- hydra: default
|
|
3
|
+
- fabric: llama_fsdp
|
|
4
|
+
# --- Model, Method, Task ---
|
|
5
|
+
- method: lm_finetune/fullfinetune_sft.yaml
|
|
6
|
+
- modelpool: CausalLMPool/llama_alpaca_cleaned.yaml
|
|
7
|
+
- taskpool: dummy
|
|
8
|
+
- _self_
|
|
9
|
+
|
|
10
|
+
_target_: fusion_bench.programs.FabricModelFusionProgram
|
|
11
|
+
_recursive_: false
|
|
12
|
+
|
|
13
|
+
fast_dev_run: false # Run a single batch of data to test the model or method
|
|
14
|
+
# Run the script without actually running the experiment, use with `print_config=true`.
|
|
15
|
+
# You can also use `--cfg` or `-c` to show the configuration instead of running.
|
|
16
|
+
dry_run: false
|
|
17
|
+
print_config: true # Print the configuration to the console
|
|
18
|
+
report_save_path: null # path to save the result report
|
|
19
|
+
print_function_call: true # set to false if you don't want to print the details of instantiate calls
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
_target_: fusion_bench.method.BradleyTerryRewardModeling
|
|
2
|
+
_recursive_: False
|
|
3
|
+
|
|
4
|
+
optimizer:
|
|
5
|
+
_target_: torch.optim.AdamW
|
|
6
|
+
lr: 1e-5
|
|
7
|
+
weight_decay: 0.01
|
|
8
|
+
fused: null
|
|
9
|
+
|
|
10
|
+
lr_scheduler:
|
|
11
|
+
_target_: fusion_bench.optim.lr_scheduler.CosineDecayWithWarmup
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
init_lr: 0
|
|
14
|
+
warmup_steps: 100
|
|
15
|
+
max_lr: ${..optimizer.lr}
|
|
16
|
+
min_lr: 1e-6
|
|
17
|
+
|
|
18
|
+
dataloader_kwargs:
|
|
19
|
+
# per-gpu batch size
|
|
20
|
+
batch_size: 1
|
|
21
|
+
num_workers: 0
|
|
22
|
+
pin_memory: True
|
|
23
|
+
|
|
24
|
+
# Training hyperparameters
|
|
25
|
+
# if max_epochs=-1, max_steps will be used to determine the number of training steps
|
|
26
|
+
max_epochs: 3
|
|
27
|
+
max_steps: -1
|
|
28
|
+
max_steps_per_epoch: -1
|
|
29
|
+
accumulate_grad_batches: 1
|
|
30
|
+
lr_scheduler_interval: step
|
|
31
|
+
lr_scheduler_frequency: 1
|
|
32
|
+
# Checkpointing may be done by epoch or step, and at the end of training
|
|
33
|
+
# `checkpoint_save_interval` can be 'epoch' or 'step'
|
|
34
|
+
checkpoint_save_interval: epoch
|
|
35
|
+
checkpoint_save_frequency: 1
|
|
36
|
+
# Whether to use gradient clipping, and if so, the value and algorithm
|
|
37
|
+
gradient_clip_val: null
|
|
38
|
+
gradient_clip_algorithm: norm
|
|
39
|
+
save_optimizer_state: false
|
|
40
|
+
# save_full_model must be true when using shared FSDP
|
|
41
|
+
save_full_model: true
|
|
42
|
+
# save_ckpt_type can be 'hf' or 'lightning'
|
|
43
|
+
save_ckpt_type: lightning
|
|
44
|
+
# Path to checkpoint to load from, used for resuming training
|
|
45
|
+
ckpt_path: null
|
|
46
|
+
max_length: 4096
|
|
47
|
+
fix_token_embedding: true
|
|
@@ -1,16 +1,19 @@
|
|
|
1
|
-
_target_:
|
|
1
|
+
_target_: fusion_bench.method.FullFinetuneSFT
|
|
2
2
|
_recursive_: False
|
|
3
3
|
|
|
4
4
|
optimizer:
|
|
5
5
|
_target_: torch.optim.AdamW
|
|
6
|
-
|
|
6
|
+
lr: 1e-5
|
|
7
7
|
weight_decay: 0.01
|
|
8
|
-
|
|
8
|
+
fused: null
|
|
9
9
|
|
|
10
10
|
lr_scheduler:
|
|
11
|
-
_target_:
|
|
12
|
-
|
|
13
|
-
|
|
11
|
+
_target_: fusion_bench.optim.lr_scheduler.CosineDecayWithWarmup
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
init_lr: 0
|
|
14
|
+
warmup_steps: 100
|
|
15
|
+
max_lr: ${..optimizer.lr}
|
|
16
|
+
min_lr: 1e-6
|
|
14
17
|
|
|
15
18
|
dataloader_kwargs:
|
|
16
19
|
# per-gpu batch size
|
|
@@ -36,5 +39,9 @@ gradient_clip_algorithm: norm
|
|
|
36
39
|
save_optimizer_state: false
|
|
37
40
|
# save_full_model must be true when using shared FSDP
|
|
38
41
|
save_full_model: true
|
|
42
|
+
# save_ckpt_type can be 'hf' or 'lightning'
|
|
43
|
+
save_ckpt_type: lightning
|
|
39
44
|
# Path to checkpoint to load from, used for resuming training
|
|
40
45
|
ckpt_path: null
|
|
46
|
+
max_length: 4096
|
|
47
|
+
fix_token_embedding: true
|
|
@@ -1,16 +1,16 @@
|
|
|
1
|
-
_target_:
|
|
1
|
+
_target_: fusion_bench.method.PeftFinetuneSFT
|
|
2
2
|
_recursive_: False
|
|
3
3
|
|
|
4
4
|
optimizer:
|
|
5
5
|
_target_: torch.optim.AdamW
|
|
6
|
-
|
|
6
|
+
lr: 1e-4
|
|
7
7
|
weight_decay: 0.01
|
|
8
|
-
|
|
8
|
+
fused: null
|
|
9
9
|
|
|
10
10
|
lr_scheduler:
|
|
11
|
-
_target_:
|
|
12
|
-
|
|
13
|
-
|
|
11
|
+
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
eta_min: 1e-6
|
|
14
14
|
|
|
15
15
|
dataloader_kwargs:
|
|
16
16
|
# per-gpu batch size
|
|
@@ -22,9 +22,14 @@ peft_config:
|
|
|
22
22
|
_target_: peft.LoraConfig
|
|
23
23
|
task_type: peft.TaskType.CAUSAL_LM
|
|
24
24
|
target_modules:
|
|
25
|
-
|
|
26
|
-
-
|
|
27
|
-
|
|
25
|
+
# lora attention modules
|
|
26
|
+
- q_proj
|
|
27
|
+
- v_proj
|
|
28
|
+
# lora mlp modules
|
|
29
|
+
- gate_proj
|
|
30
|
+
- down_proj
|
|
31
|
+
- up_proj
|
|
32
|
+
r: 64
|
|
28
33
|
lora_alpha: 16
|
|
29
34
|
lora_dropout: 0
|
|
30
35
|
bias: none
|
|
@@ -51,5 +56,8 @@ gradient_clip_algorithm: norm
|
|
|
51
56
|
save_optimizer_state: false
|
|
52
57
|
# save_full_model must be true when using shared FSDP
|
|
53
58
|
save_full_model: false
|
|
59
|
+
# save_ckpt_type can be 'peft' or 'lightning'
|
|
60
|
+
save_ckpt_type: lightning
|
|
54
61
|
# Path to checkpoint to load from, used for resuming training
|
|
55
62
|
ckpt_path: null
|
|
63
|
+
max_length: 4096
|