fusion-bench 0.2.31__py3-none-any.whl → 0.2.32__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. fusion_bench/__init__.py +6 -0
  2. fusion_bench/__main__.py +2 -2
  3. fusion_bench/dataset/__init__.py +2 -0
  4. fusion_bench/dataset/clip_dataset.py +4 -72
  5. fusion_bench/dataset/image_dataset.py +44 -18
  6. fusion_bench/method/base_algorithm.py +4 -0
  7. fusion_bench/method/dop/dop.py +0 -22
  8. fusion_bench/method/dop/dop_general.py +489 -0
  9. fusion_bench/method/dop/utils.py +24 -4
  10. fusion_bench/method/emr_merging/__init__.py +1 -0
  11. fusion_bench/method/emr_merging/emr_merging.py +53 -0
  12. fusion_bench/method/emr_merging/utils.py +162 -0
  13. fusion_bench/method/opcm/opcm.py +6 -2
  14. fusion_bench/method/opcm/opcm_general.py +356 -0
  15. fusion_bench/method/opcm/utils.py +1 -4
  16. fusion_bench/method/simple_average.py +52 -18
  17. fusion_bench/method/task_arithmetic/task_arithmetic.py +1 -1
  18. fusion_bench/mixins/lightning_fabric.py +108 -3
  19. fusion_bench/mixins/serialization.py +1 -1
  20. fusion_bench/modelpool/base_pool.py +37 -1
  21. fusion_bench/modelpool/convnext_for_image_classification.py +5 -2
  22. fusion_bench/models/hf_clip.py +20 -0
  23. fusion_bench/models/modulator/__init__.py +1 -0
  24. fusion_bench/models/modulator/base.py +123 -0
  25. fusion_bench/models/parameter_dict.py +119 -29
  26. fusion_bench/models/utils.py +190 -2
  27. fusion_bench/models/wrappers/switch.py +90 -0
  28. fusion_bench/programs/base_program.py +6 -0
  29. fusion_bench/programs/fabric_fusion_program.py +4 -0
  30. fusion_bench/scripts/cli.py +19 -8
  31. fusion_bench/taskpool/image_classification.py +270 -0
  32. fusion_bench/utils/__init__.py +18 -1
  33. fusion_bench/utils/data.py +1 -1
  34. fusion_bench/utils/dict.py +19 -0
  35. fusion_bench/utils/dtype.py +19 -0
  36. fusion_bench/utils/misc.py +1 -0
  37. fusion_bench/utils/packages.py +4 -0
  38. fusion_bench/utils/state_dict_arithmetic.py +183 -1
  39. fusion_bench/utils/tensorboard.py +21 -3
  40. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/METADATA +3 -1
  41. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/RECORD +51 -37
  42. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/WHEEL +1 -1
  43. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/entry_points.txt +1 -1
  44. fusion_bench_config/fabric/loggers/mlflow_logger.yaml +4 -0
  45. fusion_bench_config/method/dop/dop_general.yaml +33 -0
  46. fusion_bench_config/method/emr_merging/emr_merging.yaml +1 -0
  47. fusion_bench_config/method/opcm/opcm_general.yaml +18 -0
  48. fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224_8-tasks.yaml +15 -0
  49. fusion_bench_config/taskpool/ImageClassificationTaskPool/convnext-base-224_8-tasks.yaml +17 -0
  50. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/licenses/LICENSE +0 -0
  51. {fusion_bench-0.2.31.dist-info → fusion_bench-0.2.32.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,5 @@
1
- fusion_bench/__init__.py,sha256=C-0-HgZFdRjscXqpfNsz7iGUijUeSoP4GFRnFxuxQ7M,5992
2
- fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
1
+ fusion_bench/__init__.py,sha256=kVkf2VXMuluyXMxpjEVcHa2MLFpYHxWOOHoCmsezE7c,6190
2
+ fusion_bench/__main__.py,sha256=X-Fn2-wnlG6gRytTOQOff6KAoOUTfpSqNCpIu4Cf4FM,95
3
3
  fusion_bench/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
4
4
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
5
5
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
@@ -19,12 +19,12 @@ fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal
19
19
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
20
20
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
21
21
  fusion_bench/constants/runtime.py,sha256=Er9MDGvzgYeipu3MzvjA-QN0CSFWlr1Chb6RYNdRt6E,4836
22
- fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
23
- fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
22
+ fusion_bench/dataset/__init__.py,sha256=8g6p6hFI7PwfNhYdJMs52QFJocru2jNhkXyvT2dZWzs,1606
23
+ fusion_bench/dataset/clip_dataset.py,sha256=9s2uzRZ4nJcDiAG-lBgbOD905lnmSn1FK154cGHYmCE,437
24
24
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
25
25
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
26
26
  fusion_bench/dataset/gsm8k.py,sha256=26IVIIm8vldN8xYYVfdrdTre6WizilCacVyY2Ti4qog,2274
27
- fusion_bench/dataset/image_dataset.py,sha256=_N5JJC0lH3EbbrZMeuDatJILrKDK2EKHqtJB-m1pdFs,1879
27
+ fusion_bench/dataset/image_dataset.py,sha256=D2hn8nRO1k5iupi_2I5ciCgkZ6w6-YL43lg03c0v7GA,3245
28
28
  fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
29
29
  fusion_bench/dataset/nyuv2.py,sha256=9SAmRMxkWvZ6cYNRoOIBgf9fH8AXQCmdBOIkYxcz-1c,3811
30
30
  fusion_bench/dataset/arc_agi/__init__.py,sha256=xj8BMG296qPMiL4NYs-ZwqcLJ6yT2wwbubyCbWPe91w,149
@@ -50,11 +50,11 @@ fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrE
50
50
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
51
51
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  fusion_bench/method/__init__.py,sha256=Set_2GWpmI3q_WvbV1hBUfa6GFiIuajyiZR2hRbfrN0,9811
53
- fusion_bench/method/base_algorithm.py,sha256=Pa3A7ON0YK3PJqFE77IY9dpQC-tQGJpX6kdf8IMnM_k,9453
53
+ fusion_bench/method/base_algorithm.py,sha256=asIBk5NoJO9AbYIkdymrbbVBqEG1EgrLvTek-avqYjs,9721
54
54
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
55
55
  fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
56
56
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
57
- fusion_bench/method/simple_average.py,sha256=Er9jiLCmweE_AAQ-QkJ1LoytjHY45t707iIRXr8ZPpE,5735
57
+ fusion_bench/method/simple_average.py,sha256=WC2lHEj5k7u_jq6zKf6qa0rHJRz0g12F0dqCeK1R8bg,7276
58
58
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
59
59
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
60
60
  fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
@@ -105,9 +105,13 @@ fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=4WPG2fhFw-u6oSo
105
105
  fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4smG6rEO74c,13790
106
106
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
107
107
  fusion_bench/method/dop/__init__.py,sha256=MD8c44ovLLJX_-v9t2SdLrvKLxVf8PijzFFNjJfvhpE,37
108
- fusion_bench/method/dop/dop.py,sha256=_wNjN1DSK27aKEyWVay61fqc7prwJ1uiv_3618_bQ20,14160
108
+ fusion_bench/method/dop/dop.py,sha256=Mh0l2ptvH8EFP0aV6FqSJ1UxsE3GQsgN2HEMzyYTZPs,13120
109
+ fusion_bench/method/dop/dop_general.py,sha256=ImuRpjLpkGYUMibNoEoFJLWug-XouzmsXhwJdviyq3Y,20274
109
110
  fusion_bench/method/dop/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
110
- fusion_bench/method/dop/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
111
+ fusion_bench/method/dop/utils.py,sha256=Odrl_LXuI48-2dcMigrCz6pV9LFFStEQTN56z-gpD7o,2994
112
+ fusion_bench/method/emr_merging/__init__.py,sha256=YzjcEUfZnHN3WTfSm1l9Je3eZY6v39Y8cYbLgQ2hgMk,36
113
+ fusion_bench/method/emr_merging/emr_merging.py,sha256=KnuRi7Y14BV1ZcBR4wK41yU-thtvTSzxJ2eH6Ul3dmc,1910
114
+ fusion_bench/method/emr_merging/utils.py,sha256=xNSHF-B7LjX76AB7QwBE0azqzQd-EgG74RCKcW0v6qw,5810
111
115
  fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
112
116
  fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
113
117
  fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
@@ -165,10 +169,11 @@ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11Yq
165
169
  fusion_bench/method/moe_pruner/utils/prune.py,sha256=U0cX5RgyAezS7C4jnlfGwjZhMSLKhDvq3hZZGrzJVfM,10609
166
170
  fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
167
171
  fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
168
- fusion_bench/method/opcm/opcm.py,sha256=m12JanlpfL4udUVhRnYt5RRchGdq1e8L91r1mNVNVqw,11733
172
+ fusion_bench/method/opcm/opcm.py,sha256=0a7MxjVoEvQfMjlx5OqGID88CkoxHqKPItikr9wtaJg,11886
173
+ fusion_bench/method/opcm/opcm_general.py,sha256=YH0XT8Dle0fRVpF9mHGKwAvlpKcHkwOBL8Kwxe3Uikg,13668
169
174
  fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
170
175
  fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
171
- fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
176
+ fusion_bench/method/opcm/utils.py,sha256=52Qa4tkUSvib5woK0mTBiClKfOfYLTpDVwcAF6k-SCI,2061
172
177
  fusion_bench/method/opcm/weight_average.py,sha256=JfQoIU5J1jvrNKpO9k_t4Zj0y8PtteIfyoSQWx1yg2k,4379
173
178
  fusion_bench/method/pruning/__init__.py,sha256=g0poIEzp4kch1tJqeMQq4O3jtXm1hu_Wz4-bNV3ZPJY,312
174
179
  fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=GX6KCvqOkcG9e20LwJpqu30y_OSWA1vW8NnjA_wUq9c,6320
@@ -231,7 +236,7 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
231
236
  fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
232
237
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
233
238
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
234
- fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=yGMWk2--VlXTcQjDjnPdiug1q_rpjzu5SFvgCYDfTQ0,6479
239
+ fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=VnkJYjP1HIyWHqp5aqoI0v9MEwGAKrL-Xd_J2vmwuW0,6457
235
240
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
236
241
  fusion_bench/method/task_singular_vector/TSVM.py,sha256=1im81JpyIQjwSojtK_aWv9InmmS-tyH2p3VLG0gqwYA,13706
237
242
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
@@ -277,18 +282,18 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
277
282
  fusion_bench/mixins/clip_classification.py,sha256=Ifc3R_RO1yb-nbT_lipfNudQS3iiB3G_trNMS1dEfRU,11329
278
283
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
279
284
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
280
- fusion_bench/mixins/lightning_fabric.py,sha256=epK8lFJpHHNWUVP8TMDITa0cq7cXdMHnpPIRiK3NEPc,9049
285
+ fusion_bench/mixins/lightning_fabric.py,sha256=zRmT5iQfUwsg4zQHOypOLhPz7ft5fbOuTA2BtmWUbYo,12680
281
286
  fusion_bench/mixins/openclip_classification.py,sha256=FGj5btxZD-qA1wOsRl9kSftylcOXz2bFj26vrcVw_HQ,6196
282
287
  fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
283
288
  fusion_bench/mixins/rich_live.py,sha256=bzUu4F90bq9x8DCY8rZmLz7sfmZiFH0GPIoY1O2ysHg,2970
284
- fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
289
+ fusion_bench/mixins/serialization.py,sha256=GjbIzAB4LXTZWLgumGqAKoRwoPINFnoWwiQdPLd4c1E,13262
285
290
  fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
286
291
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
287
292
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
288
293
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
289
294
  fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
290
- fusion_bench/modelpool/base_pool.py,sha256=PCP4ORj9ZbIuF1DpMMXhe2sMye527bcG3L8rVyXARrM,15541
291
- fusion_bench/modelpool/convnext_for_image_classification.py,sha256=m9MxFgfzNjGnHOU6gufaTPgkk67lifNNwW03nHUxXKo,7377
295
+ fusion_bench/modelpool/base_pool.py,sha256=vg4IyLrunnGLUfM9x52EsT9eqUrT2Lz2EngtmTUQy6o,16781
296
+ fusion_bench/modelpool/convnext_for_image_classification.py,sha256=iqeWc959VHrHyJNDkMdbYgy-kYdcOsIdFBNnr9X0Src,7494
292
297
  fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
293
298
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
294
299
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
@@ -307,13 +312,13 @@ fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNM
307
312
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
308
313
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
309
314
  fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
310
- fusion_bench/models/hf_clip.py,sha256=1xdcAQtkHYJzLhOSlJl24qhMiwC_jdhp2Va-eN5X9vs,7499
315
+ fusion_bench/models/hf_clip.py,sha256=Rc2MJ5ESd8kSckhD668HxCb_GwvqAHNqbwD4jFDkblA,8254
311
316
  fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
312
- fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
317
+ fusion_bench/models/parameter_dict.py,sha256=d-0q-h4t4FxBHXyNMDBM0lMuqJ5woHrlWj-bSGsXK3w,6490
313
318
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
314
319
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
315
320
  fusion_bench/models/sparse_we_moe.py,sha256=mFvwYzuwhAfvJ2HhUNRhSu1pbexEP1FsVWXHDxTVUJs,15261
316
- fusion_bench/models/utils.py,sha256=RSvk_WCk80L9aH70MsDRyDQUMO9pIOC64FsbT9PBtu0,3110
321
+ fusion_bench/models/utils.py,sha256=BnXWSzWGXr17d5LdBzQFjZykyACWuoyWYeY45Y7zmms,10685
317
322
  fusion_bench/models/we_moe.py,sha256=KVRz9z-ddk2lhzpLRm0UMOS6L4pw7L4B9oN99gyW78U,7263
318
323
  fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
319
324
  fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
@@ -364,6 +369,8 @@ fusion_bench/models/modeling_smile_qwen2/__init__.py,sha256=nmoMLVQu8N0EYe85mXGm
364
369
  fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py,sha256=aekcpLcUGo4e7GkOtaxKClpIU5byyY-LQNDb-sMeyNc,621
365
370
  fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=zRkmQP0-dh9A-woFgiT9wOR6nzAtwsiD_QmNSq-NLgE,36889
366
371
  fusion_bench/models/modeling_smile_qwen2/register.py,sha256=wnKrpprP1KCruswOQcrrIJSUWYbaPHKIaduvPjF_SV4,378
372
+ fusion_bench/models/modulator/__init__.py,sha256=QJBXW9JOBbhVcXtR8TIbu_IwLrP_isF-SBqJkNxQ_do,48
373
+ fusion_bench/models/modulator/base.py,sha256=9WUWjKvYXJ9HAs-tYGWsTot4oT90LcefCwsrll7DsvI,4124
367
374
  fusion_bench/models/nyuv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
368
375
  fusion_bench/models/nyuv2/aspp.py,sha256=Nl-Kx9YmGp0BNpDedo9cYbynOwI4SUyILWN2VgiPDIc,2495
369
376
  fusion_bench/models/nyuv2/lightning_module.py,sha256=SLtC0yL6455uKeb-o07MR6v-xE4BTKm7B0E2ayQwEBU,5436
@@ -384,6 +391,7 @@ fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
384
391
  fusion_bench/models/wrappers/ensemble.py,sha256=T-DAKrAm-ciZwV6Hbt8uASbjtoQpHTlvVyan3rhk_8k,11632
385
392
  fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=T1sbujx_84Pj5yHFy5QqfipT6v3p96gUmnMgyy4lG0c,12560
386
393
  fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=q5Hc4BtLpAawMbxsWJRL-8OR-x7994Jhr9IyN7vKZ9o,16930
394
+ fusion_bench/models/wrappers/switch.py,sha256=fDxbZA1m_9-zVgCpm51Tk8-Mmfnglsh4V8YsSBbuOZ4,2953
387
395
  fusion_bench/models/wrappers/task_wise_fusion.py,sha256=iCrevrkG4uTr3U8_hgT_xEY4epnEK0EJO8yg-uEMIUI,17836
388
396
  fusion_bench/optim/__init__.py,sha256=JS7J2VjrM2LdkiFCxuQnIuFwBsWiPyFb7QuEU6V2bPY,845
389
397
  fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
@@ -394,11 +402,11 @@ fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502A
394
402
  fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
395
403
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
396
404
  fusion_bench/programs/__init__.py,sha256=YFlvpDC6y2Vm66VSlHKD1vu5nRDQRYNR_Nkn_61xqiI,605
397
- fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
398
- fusion_bench/programs/fabric_fusion_program.py,sha256=wIHNpLUw6uAXpAasJRAMWut55hF_EGFShxn70zRRvfk,12449
405
+ fusion_bench/programs/base_program.py,sha256=0xjYvul5jR5OAKKpd4QpeBje91hgfHF8Im_fJ7083e4,3595
406
+ fusion_bench/programs/fabric_fusion_program.py,sha256=CpMplceJU-IsOs1IDoWgoMyuja8Jl8GtvzrxzzHKPTE,12608
399
407
  fusion_bench/programs/fusion_program.py,sha256=qLyA3FHJUMM1L3mlYn4jlnZzv9OKguWM5aGGIoLts2I,11309
400
408
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
401
- fusion_bench/scripts/cli.py,sha256=yAac2JhklwYicMV4FpOj_wvymEOCdC47hBND_GK4NE8,3114
409
+ fusion_bench/scripts/cli.py,sha256=S-AMwYUREGzMbcQ3dAHxknJP0pp6Ich2aTSF4SpF0So,3427
402
410
  fusion_bench/scripts/imgui.py,sha256=P8YGem3XnyN0J4esuXTnBhB7Qp7uY6GGdJWhre29Xgo,7611
403
411
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
404
412
  fusion_bench/scripts/webui.py,sha256=xMZXbHGKPI3ns3p1BIomVR31QyNoAb-5sdrvjlgTeq8,21511
@@ -408,6 +416,7 @@ fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnY
408
416
  fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
409
417
  fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
410
418
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
419
+ fusion_bench/taskpool/image_classification.py,sha256=MyP2D0d-pUCvbhHprSDPRq58B_yfj-AyiiM45DT0jJI,9452
411
420
  fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
412
421
  fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
413
422
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
@@ -460,12 +469,12 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
460
469
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
461
470
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
462
471
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
463
- fusion_bench/utils/__init__.py,sha256=BT-IaPT5aTjrKJhZbw4Z00hdNcpp4FORzZI8YOD8eT8,5223
472
+ fusion_bench/utils/__init__.py,sha256=Fngm67MS6XgoeIDkE7dbQ0rUU-Qf1ielnZsl66usPDs,5593
464
473
  fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
465
- fusion_bench/utils/data.py,sha256=QAXpsvzHOgfAf6G_Pe2a5HOKUAP8Mxz77avujQI9Fd8,10027
474
+ fusion_bench/utils/data.py,sha256=nZqH68LmbE9029JULNDRAloZ3FJ2JjTDJsLiDvhIbO0,10020
466
475
  fusion_bench/utils/devices.py,sha256=IyUBaWbnZGDsAxI97LEioUj-JIjYTzxQo_EhyKY3RZM,9566
467
- fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
468
- fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
476
+ fusion_bench/utils/dict.py,sha256=y2on21QIFEWgR32Jalbcb6nmkAJXb6gMrKuVi9NsyQE,1990
477
+ fusion_bench/utils/dtype.py,sha256=sL6kRT40KtKAGYMaLP4_23tfQ-pTohDy7O0DaV7MBD4,4815
469
478
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
470
479
  fusion_bench/utils/fabric.py,sha256=qKcJ6Xj-6rEGy35dsUPHzxZT6az9RkSNcyBQl1uOv0M,6050
471
480
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
@@ -474,16 +483,16 @@ fusion_bench/utils/instantiate_utils.py,sha256=UNfx188feTDrMSgp-ocLHetj6uD6axZcC
474
483
  fusion_bench/utils/json.py,sha256=XZvEqBGpq-e0MaKkkX-1_PD8xMf6IDLAn4BrAF7IeiU,4552
475
484
  fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
476
485
  fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
477
- fusion_bench/utils/misc.py,sha256=xntIUj4cwgx10y7Z1YqXT0zU4nDHfnKRK_M9biWgLH4,5780
486
+ fusion_bench/utils/misc.py,sha256=WjK8PskxhBjV4n_LNVJ1qPfMDGwkMPghyx0UhiKtbhc,5810
478
487
  fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
479
- fusion_bench/utils/packages.py,sha256=m2E0ryIMI0NwWR9vUHkK9FtZEwA1G-A4dYOf87olli4,2217
488
+ fusion_bench/utils/packages.py,sha256=iacHgcrYvirWD8M9qZgX2EtY8ZUfH2xzGtABohxZ7cI,2283
480
489
  fusion_bench/utils/parameters.py,sha256=Up0DcFAomPery9kG5QI9v8BGcTWATacLp8jE_P4Mp28,12966
481
490
  fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,2643
482
491
  fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
483
492
  fusion_bench/utils/rich_utils.py,sha256=y3Kj6CxmGAtDlI0M9fVTMJgXjas2IKP725Ivn81ZV-A,10698
484
493
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
485
- fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW5V5IhuXGtI_nxk,41234
486
- fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
494
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=kkX0larPMkz4W0Wzv49NpEKTzzVNS6ReCOL0hUjidlM,45789
495
+ fusion_bench/utils/tensorboard.py,sha256=Hv900B328n3A9znsH84XqzAWCCxqIZJVyiI6XWqNSV8,2260
487
496
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
488
497
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
489
498
  fusion_bench/utils/validation.py,sha256=-pUbATmeuinfceB7PNljCYgMk9gUQKwNn1dHvkuevtE,6082
@@ -494,7 +503,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
494
503
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
495
504
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
496
505
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
497
- fusion_bench-0.2.31.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
506
+ fusion_bench-0.2.32.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
498
507
  fusion_bench_config/README.md,sha256=oHbaJW_stRvcWHqj-h6t2de20rZwjYxTE1u6AY5Vwj8,1101
499
508
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=pZ5dFgg5n1W9cKdNyGNa7b4yPd4aQSu2iR2-yw9hhbY,442
500
509
  fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
@@ -603,7 +612,7 @@ fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sR
603
612
  fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
604
613
  fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
605
614
  fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
606
- fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
615
+ fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=0GT4RJ0-e2oqlo19u3IaFknqODy1_35ki-EMfcp85B0,229
607
616
  fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
608
617
  fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
609
618
  fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
@@ -648,6 +657,8 @@ fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX
648
657
  fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
649
658
  fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
650
659
  fusion_bench_config/method/dop/dop.yaml,sha256=ZgdjuVfTj83kAvrS4RrPgGX7d_QQ7d1lIMlzhjiVeUc,954
660
+ fusion_bench_config/method/dop/dop_general.yaml,sha256=xTuJlQ52I61AI4nX_tjkdhwl6M7VTdWpLVwsihx6_SE,1045
661
+ fusion_bench_config/method/emr_merging/emr_merging.yaml,sha256=L3ks8gIcrX4izeYtc8bwdWsd0jWknZTHkYuAfbU6bec,53
651
662
  fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=ugO9FbEYqQk3RkX7wUDE9UOg-4D0F4Rezv0O-7hTeRg,476
652
663
  fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=kfPAaPVQIet9dYThKNsEBfe9gHdeCREnsM-snSOPahM,546
653
664
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=LhlxU2P_inxR8MB0Z62phHWj5S4qxD7ITG4Ly-GUcQo,770
@@ -677,6 +688,7 @@ fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQ
677
688
  fusion_bench_config/method/model_stock/model_stock.yaml,sha256=4KHAFCjL4AQ5dxkv7IGkUTxE8g-GCoxDkA3BbnlzQC0,530
678
689
  fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
679
690
  fusion_bench_config/method/opcm/opcm.yaml,sha256=7NBOGo6W1FDbqdkT8gfM5PI2kHfqB8ofMfgcxVI1suM,686
691
+ fusion_bench_config/method/opcm/opcm_general.yaml,sha256=qDfVy7ycPNBHfPV22kiByi2JHsTBClEHj1e9ena7xUo,763
680
692
  fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=WL_nVXhZWV9fe_ttChShkjYZVJnOCzvZ3i7NBppYsxk,743
681
693
  fusion_bench_config/method/opcm/ties_merging.yaml,sha256=1-xR0dVEEFJue9r-oBk1ZfGmGM9vCu4cJBG5aZnJ3C8,917
682
694
  fusion_bench_config/method/opcm/weight_average.yaml,sha256=n-eyxVkpRanlRJdFWFK3kppiO_W1S99WNjyjdBLDnw0,668
@@ -897,6 +909,7 @@ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SOD
897
909
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
898
910
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
899
911
  fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml,sha256=gcXV5WIYe9Ep-54fjgT9HqbCBY7UiqbqkHvoNCQx62Y,259
912
+ fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224_8-tasks.yaml,sha256=hSS1XqY_t9oTO2bkB3MYyHXupImSHJla6uy-iHWqswI,852
900
913
  fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml,sha256=jxe6rvV37FBGsV-Pdnyxe-G-Vw-HzOXuT2NMHKBSBOU,270
901
914
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
902
915
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
@@ -1018,12 +1031,13 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397
1018
1031
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml,sha256=2AqMiNCRRunLIrssHvFzu1lUzOaQn8uOHM9yjrQq-_A,109
1019
1032
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=DNm1LRlQS9KbukEl6oEZzWLizyaOBcYZ2r7L8ZQtnJc,434
1020
1033
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=EjN3Pu1F_7EuZrk-geyL4qohqJ5-F2UFjWjj2V57ju0,433
1034
+ fusion_bench_config/taskpool/ImageClassificationTaskPool/convnext-base-224_8-tasks.yaml,sha256=T3oqzZAAwuZ8XBG7YjDRI8BWN3VJW8EzDAJVYO2trzM,389
1021
1035
  fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaMSdxLOxzomrruDmu2pJo8oQD95S7y3S20_4,415
1022
1036
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
1023
1037
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
1024
1038
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
1025
- fusion_bench-0.2.31.dist-info/METADATA,sha256=q9jcr_GBD0XIZf6aFJOUwqDAUuqN2MUNTf51Jb_WIjg,26298
1026
- fusion_bench-0.2.31.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1027
- fusion_bench-0.2.31.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1028
- fusion_bench-0.2.31.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1029
- fusion_bench-0.2.31.dist-info/RECORD,,
1039
+ fusion_bench-0.2.32.dist-info/METADATA,sha256=2OSKvbBaXvzS3FWlhHM_ACrtgLRPo9qncQXlFPFrdMY,26331
1040
+ fusion_bench-0.2.32.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
1041
+ fusion_bench-0.2.32.dist-info/entry_points.txt,sha256=f7HrhfWplbDOgyf0Yfz53VZ_ajUfMNcNJqGnO7OD8QY,123
1042
+ fusion_bench-0.2.32.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1043
+ fusion_bench-0.2.32.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,3 +1,3 @@
1
1
  [console_scripts]
2
- fusion_bench = fusion_bench.scripts.cli:main
2
+ fusion_bench = fusion_bench.scripts.cli:_hydra_main
3
3
  fusion_bench_webui = fusion_bench.scripts.webui:main
@@ -1,2 +1,6 @@
1
1
  # https://mlflow.org/
2
2
  _target_: lightning.pytorch.loggers.MLFlowLogger
3
+ tracking_uri: "sqlite:///${path.output_dir}/mlflow.db"
4
+ experiment_name: ${hydra:job.config_name}
5
+ run_name: ${now:%Y-%m-%d_%H-%M-%S}
6
+ save_dir: ${path.log_dir}
@@ -0,0 +1,33 @@
1
+ _target_: fusion_bench.method.dop.dop_general.DOPMerging
2
+
3
+ # the random seed to use
4
+ seed: null
5
+ # shuffle the order of the models
6
+ shuffle_order: true
7
+ # save the merged model on every step
8
+ save_on_every_step: false
9
+ # evaluate the merged model on every step
10
+ evaluate_on_every_step: true
11
+
12
+ # optimizer (learning rate)
13
+ lr: 1e-4
14
+ # optimizer (num_steps)
15
+ num_steps: 200
16
+
17
+ # weighted loss
18
+ # if mgda is true, use mgda to optimize the loss weights
19
+ mgda: true
20
+ # if mgda is false, this is the weight for the loss of the first task
21
+ alpha: 0.8
22
+ # if mgda is true and ema is ture, using exponential moving average (ema), alpha is the initial value
23
+ ema: true
24
+ # if mgda is true and ema is ture, using exponential moving average (ema), beta is the decay rate
25
+ ema_beta: 0.999
26
+
27
+ # epsilon for svd (the proportion of energy retained)
28
+ svd_epsilon: 0.99999
29
+ # the space to project the delta w (left singular vectors, right singular vectors, or both)
30
+ svd_proj_space: uv # u or v or uv
31
+
32
+ # the number of ray actors to use for parallel merging (0 means no ray)
33
+ num_ray_actors: 0
@@ -0,0 +1 @@
1
+ _target_: fusion_bench.method.emr_merging.EMRMerging
@@ -0,0 +1,18 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: OPCM
3
+ # =============================================================================
4
+ # Incrementally merges models via SVD projection and evaluation per step.
5
+ # =============================================================================
6
+ _target_: fusion_bench.method.opcm.opcm_general.OPCM
7
+ # shuffle the order of the models
8
+ shuffle_order: true
9
+ # the scaling factor for the SVD projection
10
+ alpha: 0.5
11
+ # the random seed to use
12
+ seed: null
13
+ # save the merged model on every step
14
+ save_on_every_step: true
15
+ # evaluate the merged model on every step
16
+ evaluate_on_every_step: true
17
+ # the number of ray actors to use for distributed merging
18
+ num_ray_actors: 0
@@ -0,0 +1,15 @@
1
+ _target_: fusion_bench.modelpool.ConvNextForImageClassificationPool
2
+ _recursive_: False
3
+ models:
4
+ _pretrained_: facebook/convnext-base-224
5
+ sun397: tanganke/convnext-base-224_sun397_sgd_batch-size-64_lr-0.01_steps-4000
6
+ stanford-cars: tanganke/convnext-base-224_stanford-cars_sgd_batch-size-64_lr-0.01_steps-4000
7
+ resisc45: tanganke/convnext-base-224_resisc45_sgd_batch-size-64_lr-0.01_steps-4000
8
+ eurosat: tanganke/convnext-base-224_eurosat_sgd_batch-size-64_lr-0.01_steps-4000
9
+ svhn: tanganke/convnext-base-224_svhn_sgd_batch-size-64_lr-0.01_steps-4000
10
+ gtsrb: tanganke/convnext-base-224_gtsrb_sgd_batch-size-64_lr-0.01_steps-4000
11
+ mnist: tanganke/convnext-base-224_mnist_sgd_batch-size-64_lr-0.01_steps-4000
12
+ dtd: tanganke/convnext-base-224_dtd_sgd_batch-size-64_lr-0.01_steps-4000
13
+ train_datasets: null
14
+ val_datasets: null
15
+ test_datasets: null
@@ -0,0 +1,17 @@
1
+ defaults:
2
+ - /dataset/image_classification/test@test_datasets:
3
+ - sun397
4
+ - stanford-cars
5
+ - resisc45
6
+ - eurosat
7
+ - svhn
8
+ - gtsrb
9
+ - mnist
10
+ - dtd
11
+ - _self_
12
+ _target_: fusion_bench.taskpool.image_classification.ImageClassificationTaskPool
13
+ _recursive_: False
14
+ processor: facebook/convnext-base-224
15
+ dataloader_kwargs:
16
+ batch_size: 32
17
+ num_workers: 0