fusion-bench 0.2.30__py3-none-any.whl → 0.2.32__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +6 -0
- fusion_bench/__main__.py +2 -2
- fusion_bench/constants/runtime.py +4 -1
- fusion_bench/dataset/__init__.py +2 -0
- fusion_bench/dataset/clip_dataset.py +4 -72
- fusion_bench/dataset/image_dataset.py +44 -18
- fusion_bench/method/base_algorithm.py +4 -0
- fusion_bench/method/classification/image_classification_finetune.py +1 -0
- fusion_bench/method/concrete_subspace/clip_concrete_tsvm.py +285 -0
- fusion_bench/method/dop/dop.py +0 -22
- fusion_bench/method/dop/dop_general.py +489 -0
- fusion_bench/method/dop/utils.py +24 -4
- fusion_bench/method/emr_merging/__init__.py +1 -0
- fusion_bench/method/emr_merging/emr_merging.py +53 -0
- fusion_bench/method/emr_merging/utils.py +162 -0
- fusion_bench/method/opcm/opcm.py +6 -2
- fusion_bench/method/opcm/opcm_general.py +356 -0
- fusion_bench/method/opcm/utils.py +1 -4
- fusion_bench/method/simple_average.py +52 -18
- fusion_bench/method/task_arithmetic/task_arithmetic.py +1 -1
- fusion_bench/method/task_singular_vector/TSVM.py +7 -6
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +0 -1
- fusion_bench/mixins/lightning_fabric.py +110 -11
- fusion_bench/mixins/openclip_classification.py +155 -1
- fusion_bench/mixins/serialization.py +1 -1
- fusion_bench/modelpool/base_pool.py +37 -0
- fusion_bench/modelpool/convnext_for_image_classification.py +5 -2
- fusion_bench/modelpool/openclip_vision/modelpool.py +12 -3
- fusion_bench/models/hf_clip.py +20 -0
- fusion_bench/models/modulator/__init__.py +1 -0
- fusion_bench/models/modulator/base.py +123 -0
- fusion_bench/models/open_clip/modeling.py +61 -5
- fusion_bench/models/open_clip/utils.py +13 -2
- fusion_bench/models/parameter_dict.py +119 -29
- fusion_bench/models/utils.py +190 -2
- fusion_bench/models/wrappers/switch.py +90 -0
- fusion_bench/programs/base_program.py +6 -0
- fusion_bench/programs/fabric_fusion_program.py +4 -0
- fusion_bench/py.typed +1 -0
- fusion_bench/scripts/cli.py +25 -23
- fusion_bench/scripts/imgui.py +2 -2
- fusion_bench/scripts/webui.py +2 -2
- fusion_bench/taskpool/image_classification.py +270 -0
- fusion_bench/utils/__init__.py +20 -1
- fusion_bench/utils/data.py +1 -1
- fusion_bench/utils/dict.py +19 -0
- fusion_bench/utils/dtype.py +19 -0
- fusion_bench/utils/hydra_utils.py +75 -0
- fusion_bench/utils/misc.py +1 -0
- fusion_bench/utils/packages.py +4 -0
- fusion_bench/utils/parameters.py +33 -0
- fusion_bench/utils/rich_utils.py +42 -19
- fusion_bench/utils/state_dict_arithmetic.py +183 -1
- fusion_bench/utils/tensorboard.py +21 -3
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/METADATA +3 -1
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/RECORD +70 -53
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/WHEEL +1 -1
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/entry_points.txt +1 -1
- fusion_bench_config/README.md +9 -0
- fusion_bench_config/fabric/auto.yaml +1 -0
- fusion_bench_config/fabric/loggers/mlflow_logger.yaml +4 -0
- fusion_bench_config/hydra/default.yaml +3 -1
- fusion_bench_config/method/concrete_subspace/clip_concrete_tsvm.yaml +38 -0
- fusion_bench_config/method/dop/dop_general.yaml +33 -0
- fusion_bench_config/method/emr_merging/emr_merging.yaml +1 -0
- fusion_bench_config/method/opcm/opcm_general.yaml +18 -0
- fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224_8-tasks.yaml +15 -0
- fusion_bench_config/taskpool/ImageClassificationTaskPool/convnext-base-224_8-tasks.yaml +17 -0
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.30.dist-info → fusion_bench-0.2.32.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,16 @@
|
|
|
1
1
|
from collections import OrderedDict
|
|
2
2
|
from numbers import Number
|
|
3
|
-
from typing import
|
|
3
|
+
from typing import (
|
|
4
|
+
Callable,
|
|
5
|
+
Dict,
|
|
6
|
+
Iterator,
|
|
7
|
+
List,
|
|
8
|
+
Literal,
|
|
9
|
+
Mapping,
|
|
10
|
+
Optional,
|
|
11
|
+
Union,
|
|
12
|
+
cast,
|
|
13
|
+
)
|
|
4
14
|
|
|
5
15
|
import torch
|
|
6
16
|
from torch import Tensor
|
|
@@ -462,6 +472,118 @@ class ArithmeticStateDict(OrderedDict):
|
|
|
462
472
|
return cls(result_dict)
|
|
463
473
|
|
|
464
474
|
|
|
475
|
+
class LazyStateDictExpr(Mapping[str, torch.Tensor]):
|
|
476
|
+
"""
|
|
477
|
+
A lazy, key-wise expression over state_dict-like objects.
|
|
478
|
+
"""
|
|
479
|
+
|
|
480
|
+
# ---- core Mapping API ----
|
|
481
|
+
def __getitem__(self, key: str) -> torch.Tensor:
|
|
482
|
+
raise NotImplementedError
|
|
483
|
+
|
|
484
|
+
def __iter__(self) -> Iterator[str]:
|
|
485
|
+
raise NotImplementedError
|
|
486
|
+
|
|
487
|
+
def __len__(self) -> int:
|
|
488
|
+
raise NotImplementedError
|
|
489
|
+
|
|
490
|
+
# ---- arithmetic (build graph only) ----
|
|
491
|
+
def __add__(self, other):
|
|
492
|
+
return BinaryOp(torch.add, self, ensure_expr(other))
|
|
493
|
+
|
|
494
|
+
def __sub__(self, other):
|
|
495
|
+
return BinaryOp(torch.sub, self, ensure_expr(other))
|
|
496
|
+
|
|
497
|
+
def __mul__(self, scalar):
|
|
498
|
+
return UnaryOp(lambda x: x * scalar, self)
|
|
499
|
+
|
|
500
|
+
def __rmul__(self, scalar):
|
|
501
|
+
return self.__mul__(scalar)
|
|
502
|
+
|
|
503
|
+
def __truediv__(self, scalar):
|
|
504
|
+
return UnaryOp(lambda x: x / scalar, self)
|
|
505
|
+
|
|
506
|
+
# ---- eager escape hatch ----
|
|
507
|
+
def materialize(
|
|
508
|
+
self, device=None, dtype=None, non_blocking=False, copy=False
|
|
509
|
+
) -> Dict[str, torch.Tensor]:
|
|
510
|
+
"""
|
|
511
|
+
Eagerly evaluate into an OrderedDict.
|
|
512
|
+
"""
|
|
513
|
+
out = {}
|
|
514
|
+
for k in self:
|
|
515
|
+
v = self[k]
|
|
516
|
+
out[k] = v.to(
|
|
517
|
+
device=device,
|
|
518
|
+
dtype=dtype,
|
|
519
|
+
non_blocking=non_blocking,
|
|
520
|
+
copy=copy,
|
|
521
|
+
)
|
|
522
|
+
return out
|
|
523
|
+
|
|
524
|
+
def __repr__(self):
|
|
525
|
+
return f"{self.__class__.__name__}(lazy)"
|
|
526
|
+
|
|
527
|
+
|
|
528
|
+
class StateDictLeaf(LazyStateDictExpr):
|
|
529
|
+
def __init__(self, state_dict: Mapping[str, torch.Tensor]):
|
|
530
|
+
self._sd = state_dict
|
|
531
|
+
|
|
532
|
+
def __getitem__(self, key: str) -> torch.Tensor:
|
|
533
|
+
return self._sd[key]
|
|
534
|
+
|
|
535
|
+
def __iter__(self):
|
|
536
|
+
return iter(self._sd)
|
|
537
|
+
|
|
538
|
+
def __len__(self):
|
|
539
|
+
return len(self._sd)
|
|
540
|
+
|
|
541
|
+
|
|
542
|
+
class UnaryOp(LazyStateDictExpr):
|
|
543
|
+
def __init__(self, op: Callable[[torch.Tensor], torch.Tensor], child):
|
|
544
|
+
self.op = op
|
|
545
|
+
self.child = child
|
|
546
|
+
|
|
547
|
+
def __getitem__(self, key: str):
|
|
548
|
+
return self.op(self.child[key])
|
|
549
|
+
|
|
550
|
+
def __iter__(self):
|
|
551
|
+
return iter(self.child)
|
|
552
|
+
|
|
553
|
+
def __len__(self):
|
|
554
|
+
return len(self.child)
|
|
555
|
+
|
|
556
|
+
|
|
557
|
+
class BinaryOp(LazyStateDictExpr):
|
|
558
|
+
def __init__(
|
|
559
|
+
self,
|
|
560
|
+
op: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
|
561
|
+
left,
|
|
562
|
+
right,
|
|
563
|
+
):
|
|
564
|
+
self.op = op
|
|
565
|
+
self.left = left
|
|
566
|
+
self.right = right
|
|
567
|
+
|
|
568
|
+
def __getitem__(self, key: str):
|
|
569
|
+
return self.op(self.left[key], self.right[key])
|
|
570
|
+
|
|
571
|
+
def __iter__(self):
|
|
572
|
+
# assume key sets are aligned
|
|
573
|
+
return iter(self.left)
|
|
574
|
+
|
|
575
|
+
def __len__(self):
|
|
576
|
+
return len(self.left)
|
|
577
|
+
|
|
578
|
+
|
|
579
|
+
def ensure_expr(x):
|
|
580
|
+
if isinstance(x, LazyStateDictExpr):
|
|
581
|
+
return x
|
|
582
|
+
if isinstance(x, Mapping):
|
|
583
|
+
return StateDictLeaf(x)
|
|
584
|
+
raise TypeError(f"Unsupported operand type: {type(x)}")
|
|
585
|
+
|
|
586
|
+
|
|
465
587
|
def _validate_state_dict_list_not_empty(state_dicts: List[StateDictType]) -> None:
|
|
466
588
|
"""
|
|
467
589
|
Validate that the list of state dicts is not empty and contains valid state dicts.
|
|
@@ -1228,3 +1350,63 @@ def state_dict_hadamard_product(a: StateDictType, b: StateDictType) -> StateDict
|
|
|
1228
1350
|
"""
|
|
1229
1351
|
_validate_state_dict_same_keys([a, b])
|
|
1230
1352
|
return OrderedDict((key, a[key] * b[key]) for key in a)
|
|
1353
|
+
|
|
1354
|
+
|
|
1355
|
+
def state_dict_max(
|
|
1356
|
+
state_dicts: List[StateDictType],
|
|
1357
|
+
) -> StateDictType:
|
|
1358
|
+
"""
|
|
1359
|
+
Compute the element-wise maximum across multiple state dicts.
|
|
1360
|
+
|
|
1361
|
+
Args:
|
|
1362
|
+
state_dicts: List of state dicts to compute the maximum from.
|
|
1363
|
+
|
|
1364
|
+
Returns:
|
|
1365
|
+
A state dict containing the element-wise maximums.
|
|
1366
|
+
"""
|
|
1367
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
1368
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
1369
|
+
|
|
1370
|
+
max_state_dict = OrderedDict()
|
|
1371
|
+
|
|
1372
|
+
for key in state_dicts[0]:
|
|
1373
|
+
# Initialize with the first tensor
|
|
1374
|
+
max_tensor = state_dicts[0][key].clone()
|
|
1375
|
+
|
|
1376
|
+
# Compute element-wise maximum
|
|
1377
|
+
for state_dict in state_dicts[1:]:
|
|
1378
|
+
max_tensor = torch.max(max_tensor, state_dict[key])
|
|
1379
|
+
|
|
1380
|
+
max_state_dict[key] = max_tensor
|
|
1381
|
+
|
|
1382
|
+
return max_state_dict
|
|
1383
|
+
|
|
1384
|
+
|
|
1385
|
+
def state_dict_max_abs(
|
|
1386
|
+
state_dicts: List[StateDictType],
|
|
1387
|
+
) -> StateDictType:
|
|
1388
|
+
"""
|
|
1389
|
+
Compute the element-wise maximum absolute value across multiple state dicts.
|
|
1390
|
+
|
|
1391
|
+
Args:
|
|
1392
|
+
state_dicts: List of state dicts to compute the maximum absolute values from.
|
|
1393
|
+
|
|
1394
|
+
Returns:
|
|
1395
|
+
A state dict containing the element-wise maximum absolute values.
|
|
1396
|
+
"""
|
|
1397
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
1398
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
1399
|
+
|
|
1400
|
+
max_abs_state_dict = OrderedDict()
|
|
1401
|
+
|
|
1402
|
+
for key in state_dicts[0]:
|
|
1403
|
+
# Initialize with the absolute values of the first tensor
|
|
1404
|
+
max_abs_tensor = state_dicts[0][key].abs()
|
|
1405
|
+
|
|
1406
|
+
# Compute element-wise maximum absolute value
|
|
1407
|
+
for state_dict in state_dicts[1:]:
|
|
1408
|
+
max_abs_tensor = torch.max(max_abs_tensor, state_dict[key].abs())
|
|
1409
|
+
|
|
1410
|
+
max_abs_state_dict[key] = max_abs_tensor
|
|
1411
|
+
|
|
1412
|
+
return max_abs_state_dict
|
|
@@ -2,14 +2,18 @@
|
|
|
2
2
|
functions deal with tensorboard logs.
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
|
-
from
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import Dict, Iterable, List, Union
|
|
6
7
|
|
|
7
8
|
import numpy as np
|
|
8
9
|
import pandas as pd
|
|
9
10
|
from tensorboard.backend.event_processing import event_accumulator
|
|
10
11
|
|
|
11
12
|
|
|
12
|
-
def parse_tensorboard_as_dict(
|
|
13
|
+
def parse_tensorboard_as_dict(
|
|
14
|
+
path: Union[str, Path],
|
|
15
|
+
scalars: Iterable[str],
|
|
16
|
+
) -> Dict[str, pd.DataFrame]:
|
|
13
17
|
"""
|
|
14
18
|
returns a dictionary of pandas dataframes for each requested scalar.
|
|
15
19
|
|
|
@@ -20,7 +24,19 @@ def parse_tensorboard_as_dict(path: str, scalars: Iterable[str]):
|
|
|
20
24
|
|
|
21
25
|
Returns:
|
|
22
26
|
Dict[str, pandas.DataFrame]: a dictionary of pandas dataframes for each requested scalar
|
|
27
|
+
|
|
28
|
+
Example:
|
|
29
|
+
|
|
30
|
+
>>> from fusion_bench.utils.tensorboard import parse_tensorboard_as_dict
|
|
31
|
+
>>> path = "path/to/tensorboard/logs"
|
|
32
|
+
>>> scalars = ["train/loss", "val/accuracy"]
|
|
33
|
+
>>> data = parse_tensorboard_as_dict(path, scalars)
|
|
34
|
+
>>> train_loss_df = data["train/loss"]
|
|
35
|
+
>>> val_accuracy_df = data["val/accuracy"]
|
|
23
36
|
"""
|
|
37
|
+
if isinstance(path, Path):
|
|
38
|
+
path = str(path)
|
|
39
|
+
assert isinstance(path, str), "path must be a string"
|
|
24
40
|
ea = event_accumulator.EventAccumulator(
|
|
25
41
|
path,
|
|
26
42
|
size_guidance={event_accumulator.SCALARS: 0},
|
|
@@ -33,7 +49,9 @@ def parse_tensorboard_as_dict(path: str, scalars: Iterable[str]):
|
|
|
33
49
|
return {k: pd.DataFrame(ea.Scalars(k)) for k in scalars}
|
|
34
50
|
|
|
35
51
|
|
|
36
|
-
def parse_tensorboard_as_list(
|
|
52
|
+
def parse_tensorboard_as_list(
|
|
53
|
+
path: Union[str, Path], scalars: Iterable[str]
|
|
54
|
+
) -> List[pd.DataFrame]:
|
|
37
55
|
"""
|
|
38
56
|
returns a list of pandas dataframes for each requested scalar.
|
|
39
57
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion-bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.32
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
Project-URL: Repository, https://github.com/tanganke/fusion_bench
|
|
@@ -61,6 +61,8 @@ Dynamic: license-file
|
|
|
61
61
|
|
|
62
62
|
FusionBench is a benchmark suite designed to evaluate the performance of various deep model fusion techniques. It aims to provide a comprehensive comparison of different methods on a variety of datasets and tasks.
|
|
63
63
|
|
|
64
|
+
## :newspaper: News and Related
|
|
65
|
+
|
|
64
66
|
Projects based on FusionBench and news from the community (descending order of date. If you have any work based on FusionBench, please feel free to let us know, we are willing to add it to the list. :partying_face:):
|
|
65
67
|
|
|
66
68
|
<details>
|
|
@@ -1,5 +1,6 @@
|
|
|
1
|
-
fusion_bench/__init__.py,sha256=
|
|
2
|
-
fusion_bench/__main__.py,sha256=
|
|
1
|
+
fusion_bench/__init__.py,sha256=kVkf2VXMuluyXMxpjEVcHa2MLFpYHxWOOHoCmsezE7c,6190
|
|
2
|
+
fusion_bench/__main__.py,sha256=X-Fn2-wnlG6gRytTOQOff6KAoOUTfpSqNCpIu4Cf4FM,95
|
|
3
|
+
fusion_bench/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
3
4
|
fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
|
|
4
5
|
fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
|
|
5
6
|
fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -17,13 +18,13 @@ fusion_bench/constants/__init__.py,sha256=icLBUEZ84oExUXRNm5Nrm4FVcvAZ-SiQ5HWOLO
|
|
|
17
18
|
fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
|
|
18
19
|
fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
|
|
19
20
|
fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
|
|
20
|
-
fusion_bench/constants/runtime.py,sha256=
|
|
21
|
-
fusion_bench/dataset/__init__.py,sha256=
|
|
22
|
-
fusion_bench/dataset/clip_dataset.py,sha256=
|
|
21
|
+
fusion_bench/constants/runtime.py,sha256=Er9MDGvzgYeipu3MzvjA-QN0CSFWlr1Chb6RYNdRt6E,4836
|
|
22
|
+
fusion_bench/dataset/__init__.py,sha256=8g6p6hFI7PwfNhYdJMs52QFJocru2jNhkXyvT2dZWzs,1606
|
|
23
|
+
fusion_bench/dataset/clip_dataset.py,sha256=9s2uzRZ4nJcDiAG-lBgbOD905lnmSn1FK154cGHYmCE,437
|
|
23
24
|
fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
|
|
24
25
|
fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
|
|
25
26
|
fusion_bench/dataset/gsm8k.py,sha256=26IVIIm8vldN8xYYVfdrdTre6WizilCacVyY2Ti4qog,2274
|
|
26
|
-
fusion_bench/dataset/image_dataset.py,sha256=
|
|
27
|
+
fusion_bench/dataset/image_dataset.py,sha256=D2hn8nRO1k5iupi_2I5ciCgkZ6w6-YL43lg03c0v7GA,3245
|
|
27
28
|
fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
|
|
28
29
|
fusion_bench/dataset/nyuv2.py,sha256=9SAmRMxkWvZ6cYNRoOIBgf9fH8AXQCmdBOIkYxcz-1c,3811
|
|
29
30
|
fusion_bench/dataset/arc_agi/__init__.py,sha256=xj8BMG296qPMiL4NYs-ZwqcLJ6yT2wwbubyCbWPe91w,149
|
|
@@ -49,11 +50,11 @@ fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrE
|
|
|
49
50
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
50
51
|
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
52
|
fusion_bench/method/__init__.py,sha256=Set_2GWpmI3q_WvbV1hBUfa6GFiIuajyiZR2hRbfrN0,9811
|
|
52
|
-
fusion_bench/method/base_algorithm.py,sha256=
|
|
53
|
+
fusion_bench/method/base_algorithm.py,sha256=asIBk5NoJO9AbYIkdymrbbVBqEG1EgrLvTek-avqYjs,9721
|
|
53
54
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
54
55
|
fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
|
|
55
56
|
fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
|
|
56
|
-
fusion_bench/method/simple_average.py,sha256=
|
|
57
|
+
fusion_bench/method/simple_average.py,sha256=WC2lHEj5k7u_jq6zKf6qa0rHJRz0g12F0dqCeK1R8bg,7276
|
|
57
58
|
fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
|
|
58
59
|
fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
|
|
59
60
|
fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
|
|
@@ -80,10 +81,11 @@ fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0Y
|
|
|
80
81
|
fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
|
|
81
82
|
fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
|
|
82
83
|
fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
|
|
83
|
-
fusion_bench/method/classification/image_classification_finetune.py,sha256=
|
|
84
|
+
fusion_bench/method/classification/image_classification_finetune.py,sha256=TJLe3aLFp5Mk7pywXdzFcvx9l2hjHSNIDvz6y3N4mcc,15309
|
|
84
85
|
fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
|
|
85
86
|
fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
|
|
86
87
|
fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
|
|
88
|
+
fusion_bench/method/concrete_subspace/clip_concrete_tsvm.py,sha256=SlRNC8PglJk9N8RWn5Lz_PKSxleWVW2HTSBD9iZoNOU,10666
|
|
87
89
|
fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
|
|
88
90
|
fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
|
|
89
91
|
fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
|
|
@@ -103,9 +105,13 @@ fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=4WPG2fhFw-u6oSo
|
|
|
103
105
|
fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4smG6rEO74c,13790
|
|
104
106
|
fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
|
|
105
107
|
fusion_bench/method/dop/__init__.py,sha256=MD8c44ovLLJX_-v9t2SdLrvKLxVf8PijzFFNjJfvhpE,37
|
|
106
|
-
fusion_bench/method/dop/dop.py,sha256=
|
|
108
|
+
fusion_bench/method/dop/dop.py,sha256=Mh0l2ptvH8EFP0aV6FqSJ1UxsE3GQsgN2HEMzyYTZPs,13120
|
|
109
|
+
fusion_bench/method/dop/dop_general.py,sha256=ImuRpjLpkGYUMibNoEoFJLWug-XouzmsXhwJdviyq3Y,20274
|
|
107
110
|
fusion_bench/method/dop/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
108
|
-
fusion_bench/method/dop/utils.py,sha256=
|
|
111
|
+
fusion_bench/method/dop/utils.py,sha256=Odrl_LXuI48-2dcMigrCz6pV9LFFStEQTN56z-gpD7o,2994
|
|
112
|
+
fusion_bench/method/emr_merging/__init__.py,sha256=YzjcEUfZnHN3WTfSm1l9Je3eZY6v39Y8cYbLgQ2hgMk,36
|
|
113
|
+
fusion_bench/method/emr_merging/emr_merging.py,sha256=KnuRi7Y14BV1ZcBR4wK41yU-thtvTSzxJ2eH6Ul3dmc,1910
|
|
114
|
+
fusion_bench/method/emr_merging/utils.py,sha256=xNSHF-B7LjX76AB7QwBE0azqzQd-EgG74RCKcW0v6qw,5810
|
|
109
115
|
fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
|
|
110
116
|
fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
|
|
111
117
|
fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
|
|
@@ -163,10 +169,11 @@ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11Yq
|
|
|
163
169
|
fusion_bench/method/moe_pruner/utils/prune.py,sha256=U0cX5RgyAezS7C4jnlfGwjZhMSLKhDvq3hZZGrzJVfM,10609
|
|
164
170
|
fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
|
|
165
171
|
fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
|
|
166
|
-
fusion_bench/method/opcm/opcm.py,sha256=
|
|
172
|
+
fusion_bench/method/opcm/opcm.py,sha256=0a7MxjVoEvQfMjlx5OqGID88CkoxHqKPItikr9wtaJg,11886
|
|
173
|
+
fusion_bench/method/opcm/opcm_general.py,sha256=YH0XT8Dle0fRVpF9mHGKwAvlpKcHkwOBL8Kwxe3Uikg,13668
|
|
167
174
|
fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
|
|
168
175
|
fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
|
|
169
|
-
fusion_bench/method/opcm/utils.py,sha256=
|
|
176
|
+
fusion_bench/method/opcm/utils.py,sha256=52Qa4tkUSvib5woK0mTBiClKfOfYLTpDVwcAF6k-SCI,2061
|
|
170
177
|
fusion_bench/method/opcm/weight_average.py,sha256=JfQoIU5J1jvrNKpO9k_t4Zj0y8PtteIfyoSQWx1yg2k,4379
|
|
171
178
|
fusion_bench/method/pruning/__init__.py,sha256=g0poIEzp4kch1tJqeMQq4O3jtXm1hu_Wz4-bNV3ZPJY,312
|
|
172
179
|
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=GX6KCvqOkcG9e20LwJpqu30y_OSWA1vW8NnjA_wUq9c,6320
|
|
@@ -229,12 +236,12 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
|
|
|
229
236
|
fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
|
|
230
237
|
fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
|
|
231
238
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
232
|
-
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=
|
|
239
|
+
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=VnkJYjP1HIyWHqp5aqoI0v9MEwGAKrL-Xd_J2vmwuW0,6457
|
|
233
240
|
fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
|
|
234
|
-
fusion_bench/method/task_singular_vector/TSVM.py,sha256=
|
|
241
|
+
fusion_bench/method/task_singular_vector/TSVM.py,sha256=1im81JpyIQjwSojtK_aWv9InmmS-tyH2p3VLG0gqwYA,13706
|
|
235
242
|
fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
|
|
236
243
|
fusion_bench/method/task_singular_vector/utils/TSVC_utils.py,sha256=FytKbal48EW6iGIA-2zV7QSVbYTVflXr4Mr56q0W75k,2286
|
|
237
|
-
fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=
|
|
244
|
+
fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=zwpQjrzjpbOCNc6ZR6XARY3_vUkxlppCriLPFOqucgQ,29129
|
|
238
245
|
fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
|
|
239
246
|
fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
|
|
240
247
|
fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
|
|
@@ -275,18 +282,18 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
|
|
|
275
282
|
fusion_bench/mixins/clip_classification.py,sha256=Ifc3R_RO1yb-nbT_lipfNudQS3iiB3G_trNMS1dEfRU,11329
|
|
276
283
|
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
277
284
|
fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
|
|
278
|
-
fusion_bench/mixins/lightning_fabric.py,sha256=
|
|
279
|
-
fusion_bench/mixins/openclip_classification.py,sha256=
|
|
285
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=zRmT5iQfUwsg4zQHOypOLhPz7ft5fbOuTA2BtmWUbYo,12680
|
|
286
|
+
fusion_bench/mixins/openclip_classification.py,sha256=FGj5btxZD-qA1wOsRl9kSftylcOXz2bFj26vrcVw_HQ,6196
|
|
280
287
|
fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
|
|
281
288
|
fusion_bench/mixins/rich_live.py,sha256=bzUu4F90bq9x8DCY8rZmLz7sfmZiFH0GPIoY1O2ysHg,2970
|
|
282
|
-
fusion_bench/mixins/serialization.py,sha256=
|
|
289
|
+
fusion_bench/mixins/serialization.py,sha256=GjbIzAB4LXTZWLgumGqAKoRwoPINFnoWwiQdPLd4c1E,13262
|
|
283
290
|
fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
|
|
284
291
|
fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
285
292
|
fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
|
|
286
293
|
fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
|
|
287
294
|
fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
|
|
288
|
-
fusion_bench/modelpool/base_pool.py,sha256=
|
|
289
|
-
fusion_bench/modelpool/convnext_for_image_classification.py,sha256=
|
|
295
|
+
fusion_bench/modelpool/base_pool.py,sha256=vg4IyLrunnGLUfM9x52EsT9eqUrT2Lz2EngtmTUQy6o,16781
|
|
296
|
+
fusion_bench/modelpool/convnext_for_image_classification.py,sha256=iqeWc959VHrHyJNDkMdbYgy-kYdcOsIdFBNnr9X0Src,7494
|
|
290
297
|
fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
|
|
291
298
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
292
299
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
@@ -298,20 +305,20 @@ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fx
|
|
|
298
305
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
299
306
|
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
|
|
300
307
|
fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
|
|
301
|
-
fusion_bench/modelpool/openclip_vision/modelpool.py,sha256
|
|
308
|
+
fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=-RXn3iKr-w13-rOITWR7_01t7-d1F2JTrlcLJh12XxI,11652
|
|
302
309
|
fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
|
|
303
310
|
fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=yfa_B5TUIkuC1fTn4xD3HHnFPd6AYE-HWpfB8ZrShB8,8819
|
|
304
311
|
fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
|
|
305
312
|
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
306
313
|
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
|
|
307
314
|
fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
|
|
308
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
315
|
+
fusion_bench/models/hf_clip.py,sha256=Rc2MJ5ESd8kSckhD668HxCb_GwvqAHNqbwD4jFDkblA,8254
|
|
309
316
|
fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
|
|
310
|
-
fusion_bench/models/parameter_dict.py,sha256=
|
|
317
|
+
fusion_bench/models/parameter_dict.py,sha256=d-0q-h4t4FxBHXyNMDBM0lMuqJ5woHrlWj-bSGsXK3w,6490
|
|
311
318
|
fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
|
|
312
319
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
313
320
|
fusion_bench/models/sparse_we_moe.py,sha256=mFvwYzuwhAfvJ2HhUNRhSu1pbexEP1FsVWXHDxTVUJs,15261
|
|
314
|
-
fusion_bench/models/utils.py,sha256=
|
|
321
|
+
fusion_bench/models/utils.py,sha256=BnXWSzWGXr17d5LdBzQFjZykyACWuoyWYeY45Y7zmms,10685
|
|
315
322
|
fusion_bench/models/we_moe.py,sha256=KVRz9z-ddk2lhzpLRm0UMOS6L4pw7L4B9oN99gyW78U,7263
|
|
316
323
|
fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
|
|
317
324
|
fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
|
|
@@ -362,14 +369,16 @@ fusion_bench/models/modeling_smile_qwen2/__init__.py,sha256=nmoMLVQu8N0EYe85mXGm
|
|
|
362
369
|
fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py,sha256=aekcpLcUGo4e7GkOtaxKClpIU5byyY-LQNDb-sMeyNc,621
|
|
363
370
|
fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=zRkmQP0-dh9A-woFgiT9wOR6nzAtwsiD_QmNSq-NLgE,36889
|
|
364
371
|
fusion_bench/models/modeling_smile_qwen2/register.py,sha256=wnKrpprP1KCruswOQcrrIJSUWYbaPHKIaduvPjF_SV4,378
|
|
372
|
+
fusion_bench/models/modulator/__init__.py,sha256=QJBXW9JOBbhVcXtR8TIbu_IwLrP_isF-SBqJkNxQ_do,48
|
|
373
|
+
fusion_bench/models/modulator/base.py,sha256=9WUWjKvYXJ9HAs-tYGWsTot4oT90LcefCwsrll7DsvI,4124
|
|
365
374
|
fusion_bench/models/nyuv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
366
375
|
fusion_bench/models/nyuv2/aspp.py,sha256=Nl-Kx9YmGp0BNpDedo9cYbynOwI4SUyILWN2VgiPDIc,2495
|
|
367
376
|
fusion_bench/models/nyuv2/lightning_module.py,sha256=SLtC0yL6455uKeb-o07MR6v-xE4BTKm7B0E2ayQwEBU,5436
|
|
368
377
|
fusion_bench/models/nyuv2/resnet.py,sha256=PcCfBhEsxm7W8cu3epBbIbCYFARPrPTamIa3TtUAVa0,14305
|
|
369
378
|
fusion_bench/models/nyuv2/resnet_dilated.py,sha256=4EXB6vrBJS307YP6k-TRY1dFJ50LURcTuzqN4tZzYRk,3125
|
|
370
379
|
fusion_bench/models/open_clip/__init__.py,sha256=zT2sGAT98Py5vXMckZF4aD8MYEICEWa2p7nRg4IrS0w,192
|
|
371
|
-
fusion_bench/models/open_clip/modeling.py,sha256=
|
|
372
|
-
fusion_bench/models/open_clip/utils.py,sha256=
|
|
380
|
+
fusion_bench/models/open_clip/modeling.py,sha256=Z9H1r-faxqp60eQ1vAW3Vuc4SgAkA0pCQXAYNMLR2ow,8351
|
|
381
|
+
fusion_bench/models/open_clip/utils.py,sha256=omwypFHchva6aTZ4BmHXb4NTspZaWZEKac17utbXQCo,10788
|
|
373
382
|
fusion_bench/models/open_clip/variables_and_paths.py,sha256=_OBcKvZwSGvYSmgKtXOuekEJI-btW94Ia-BQ9n4isfY,1231
|
|
374
383
|
fusion_bench/models/smile_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
375
384
|
fusion_bench/models/smile_moe/linear_from_hf_config.py,sha256=4vzYYjDHGOf1IO7gO0dzQC1xqcwEij9M7d4tVZm-7dY,11919
|
|
@@ -382,6 +391,7 @@ fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
|
|
|
382
391
|
fusion_bench/models/wrappers/ensemble.py,sha256=T-DAKrAm-ciZwV6Hbt8uASbjtoQpHTlvVyan3rhk_8k,11632
|
|
383
392
|
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=T1sbujx_84Pj5yHFy5QqfipT6v3p96gUmnMgyy4lG0c,12560
|
|
384
393
|
fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=q5Hc4BtLpAawMbxsWJRL-8OR-x7994Jhr9IyN7vKZ9o,16930
|
|
394
|
+
fusion_bench/models/wrappers/switch.py,sha256=fDxbZA1m_9-zVgCpm51Tk8-Mmfnglsh4V8YsSBbuOZ4,2953
|
|
385
395
|
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=iCrevrkG4uTr3U8_hgT_xEY4epnEK0EJO8yg-uEMIUI,17836
|
|
386
396
|
fusion_bench/optim/__init__.py,sha256=JS7J2VjrM2LdkiFCxuQnIuFwBsWiPyFb7QuEU6V2bPY,845
|
|
387
397
|
fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
|
|
@@ -392,20 +402,21 @@ fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502A
|
|
|
392
402
|
fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
|
|
393
403
|
fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
|
|
394
404
|
fusion_bench/programs/__init__.py,sha256=YFlvpDC6y2Vm66VSlHKD1vu5nRDQRYNR_Nkn_61xqiI,605
|
|
395
|
-
fusion_bench/programs/base_program.py,sha256=
|
|
396
|
-
fusion_bench/programs/fabric_fusion_program.py,sha256=
|
|
405
|
+
fusion_bench/programs/base_program.py,sha256=0xjYvul5jR5OAKKpd4QpeBje91hgfHF8Im_fJ7083e4,3595
|
|
406
|
+
fusion_bench/programs/fabric_fusion_program.py,sha256=CpMplceJU-IsOs1IDoWgoMyuja8Jl8GtvzrxzzHKPTE,12608
|
|
397
407
|
fusion_bench/programs/fusion_program.py,sha256=qLyA3FHJUMM1L3mlYn4jlnZzv9OKguWM5aGGIoLts2I,11309
|
|
398
408
|
fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
399
|
-
fusion_bench/scripts/cli.py,sha256=
|
|
400
|
-
fusion_bench/scripts/imgui.py,sha256=
|
|
409
|
+
fusion_bench/scripts/cli.py,sha256=S-AMwYUREGzMbcQ3dAHxknJP0pp6Ich2aTSF4SpF0So,3427
|
|
410
|
+
fusion_bench/scripts/imgui.py,sha256=P8YGem3XnyN0J4esuXTnBhB7Qp7uY6GGdJWhre29Xgo,7611
|
|
401
411
|
fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
|
|
402
|
-
fusion_bench/scripts/webui.py,sha256=
|
|
412
|
+
fusion_bench/scripts/webui.py,sha256=xMZXbHGKPI3ns3p1BIomVR31QyNoAb-5sdrvjlgTeq8,21511
|
|
403
413
|
fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
404
414
|
fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
|
|
405
415
|
fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
|
|
406
416
|
fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
|
|
407
417
|
fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
|
|
408
418
|
fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
|
|
419
|
+
fusion_bench/taskpool/image_classification.py,sha256=MyP2D0d-pUCvbhHprSDPRq58B_yfj-AyiiM45DT0jJI,9452
|
|
409
420
|
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
|
|
410
421
|
fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
|
|
411
422
|
fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
|
|
@@ -458,30 +469,30 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
|
|
|
458
469
|
fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
|
|
459
470
|
fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
|
|
460
471
|
fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
|
|
461
|
-
fusion_bench/utils/__init__.py,sha256=
|
|
472
|
+
fusion_bench/utils/__init__.py,sha256=Fngm67MS6XgoeIDkE7dbQ0rUU-Qf1ielnZsl66usPDs,5593
|
|
462
473
|
fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
|
|
463
|
-
fusion_bench/utils/data.py,sha256=
|
|
474
|
+
fusion_bench/utils/data.py,sha256=nZqH68LmbE9029JULNDRAloZ3FJ2JjTDJsLiDvhIbO0,10020
|
|
464
475
|
fusion_bench/utils/devices.py,sha256=IyUBaWbnZGDsAxI97LEioUj-JIjYTzxQo_EhyKY3RZM,9566
|
|
465
|
-
fusion_bench/utils/dict.py,sha256=
|
|
466
|
-
fusion_bench/utils/dtype.py,sha256=
|
|
476
|
+
fusion_bench/utils/dict.py,sha256=y2on21QIFEWgR32Jalbcb6nmkAJXb6gMrKuVi9NsyQE,1990
|
|
477
|
+
fusion_bench/utils/dtype.py,sha256=sL6kRT40KtKAGYMaLP4_23tfQ-pTohDy7O0DaV7MBD4,4815
|
|
467
478
|
fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
|
|
468
479
|
fusion_bench/utils/fabric.py,sha256=qKcJ6Xj-6rEGy35dsUPHzxZT6az9RkSNcyBQl1uOv0M,6050
|
|
469
480
|
fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
|
|
470
|
-
fusion_bench/utils/hydra_utils.py,sha256
|
|
481
|
+
fusion_bench/utils/hydra_utils.py,sha256=-7wMwOZOLIoKp_aXu64UU5x6c-mTRO55uQzox2XZkDg,3455
|
|
471
482
|
fusion_bench/utils/instantiate_utils.py,sha256=UNfx188feTDrMSgp-ocLHetj6uD6axZcC46dRfBMtko,17884
|
|
472
483
|
fusion_bench/utils/json.py,sha256=XZvEqBGpq-e0MaKkkX-1_PD8xMf6IDLAn4BrAF7IeiU,4552
|
|
473
484
|
fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
|
|
474
485
|
fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
|
|
475
|
-
fusion_bench/utils/misc.py,sha256=
|
|
486
|
+
fusion_bench/utils/misc.py,sha256=WjK8PskxhBjV4n_LNVJ1qPfMDGwkMPghyx0UhiKtbhc,5810
|
|
476
487
|
fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
|
|
477
|
-
fusion_bench/utils/packages.py,sha256=
|
|
478
|
-
fusion_bench/utils/parameters.py,sha256=
|
|
488
|
+
fusion_bench/utils/packages.py,sha256=iacHgcrYvirWD8M9qZgX2EtY8ZUfH2xzGtABohxZ7cI,2283
|
|
489
|
+
fusion_bench/utils/parameters.py,sha256=Up0DcFAomPery9kG5QI9v8BGcTWATacLp8jE_P4Mp28,12966
|
|
479
490
|
fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,2643
|
|
480
491
|
fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
|
|
481
|
-
fusion_bench/utils/rich_utils.py,sha256=
|
|
492
|
+
fusion_bench/utils/rich_utils.py,sha256=y3Kj6CxmGAtDlI0M9fVTMJgXjas2IKP725Ivn81ZV-A,10698
|
|
482
493
|
fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
|
|
483
|
-
fusion_bench/utils/state_dict_arithmetic.py,sha256=
|
|
484
|
-
fusion_bench/utils/tensorboard.py,sha256=
|
|
494
|
+
fusion_bench/utils/state_dict_arithmetic.py,sha256=kkX0larPMkz4W0Wzv49NpEKTzzVNS6ReCOL0hUjidlM,45789
|
|
495
|
+
fusion_bench/utils/tensorboard.py,sha256=Hv900B328n3A9znsH84XqzAWCCxqIZJVyiI6XWqNSV8,2260
|
|
485
496
|
fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
|
|
486
497
|
fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
|
|
487
498
|
fusion_bench/utils/validation.py,sha256=-pUbATmeuinfceB7PNljCYgMk9gUQKwNn1dHvkuevtE,6082
|
|
@@ -492,8 +503,8 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
|
|
|
492
503
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
493
504
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
494
505
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
495
|
-
fusion_bench-0.2.
|
|
496
|
-
fusion_bench_config/README.md,sha256=
|
|
506
|
+
fusion_bench-0.2.32.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
507
|
+
fusion_bench_config/README.md,sha256=oHbaJW_stRvcWHqj-h6t2de20rZwjYxTE1u6AY5Vwj8,1101
|
|
497
508
|
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=pZ5dFgg5n1W9cKdNyGNa7b4yPd4aQSu2iR2-yw9hhbY,442
|
|
498
509
|
fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
|
|
499
510
|
fusion_bench_config/llama_full_finetune.yaml,sha256=2xBhxEJxLZNDYc_9X8TtpXMRu85ksJxjkfqsz_xn5Yo,195
|
|
@@ -596,19 +607,19 @@ fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml,sha25
|
|
|
596
607
|
fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml,sha256=4lb37lxTUStAR8eXhNxp3RONwSOYJI0bKY-hViZnjtE,94
|
|
597
608
|
fusion_bench_config/dataset/text_generation/train/gsm8k.yaml,sha256=gP-xAZQxHHqTEf_Dgbi4F_SQDgGZFeddwMFsvcE1WW0,90
|
|
598
609
|
fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha256=6BhKgApz8LhdDyATqCsaonBo0Q99o1uM22F0yj_pJi4,178
|
|
599
|
-
fusion_bench_config/fabric/auto.yaml,sha256=
|
|
610
|
+
fusion_bench_config/fabric/auto.yaml,sha256=jlAgdPmyRGWl37FJjBYSchN3kwtfjwfUrvNtEELggzI,668
|
|
600
611
|
fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sRzsipW7GDQJWs,705
|
|
601
612
|
fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
|
|
602
613
|
fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
|
|
603
614
|
fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
|
|
604
|
-
fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=
|
|
615
|
+
fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=0GT4RJ0-e2oqlo19u3IaFknqODy1_35ki-EMfcp85B0,229
|
|
605
616
|
fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
|
|
606
617
|
fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
|
|
607
618
|
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
|
|
608
619
|
fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
|
|
609
620
|
fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
|
|
610
621
|
fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=4NTFnpZTEByH4Z6f-nwDtS4GUFtcluja27hXKWNRUiE,347
|
|
611
|
-
fusion_bench_config/hydra/default.yaml,sha256=
|
|
622
|
+
fusion_bench_config/hydra/default.yaml,sha256=bmDolgyshoLe9zJLQ6SBn2Hif8WNWX15Skc_ND7m2fU,511
|
|
612
623
|
fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
|
|
613
624
|
fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
|
|
614
625
|
fusion_bench_config/method/depth_upscaling.yaml,sha256=86YqczaMzZftymLy_k2cb-GMy4C42yTxxP4c4htZTBs,1230
|
|
@@ -635,6 +646,7 @@ fusion_bench_config/method/classification/image_classification_finetune_test.yam
|
|
|
635
646
|
fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
|
|
636
647
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
|
|
637
648
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml,sha256=P3mwQQewFFiqZNYJp8c02Sf8zBuStKInr_Yn74OCOxI,738
|
|
649
|
+
fusion_bench_config/method/concrete_subspace/clip_concrete_tsvm.yaml,sha256=rRA-TIG1SCl2cSA27ZHWVujhvfpJjzsJ6SZausb9O9g,1129
|
|
638
650
|
fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml,sha256=pHkZoUKesiGifxaY5BAltCnjceDVQcxyW-LRDGgzang,837
|
|
639
651
|
fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml,sha256=grOw6PdcEHh0iYUEDEBFKk53jsToksHx4L7Dv003wHE,879
|
|
640
652
|
fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml,sha256=lkCtwN_Xo1WcoGC0mkrfiJ2WwmqeNsKO_cCEUnRA1pk,913
|
|
@@ -645,6 +657,8 @@ fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX
|
|
|
645
657
|
fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
|
|
646
658
|
fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
|
|
647
659
|
fusion_bench_config/method/dop/dop.yaml,sha256=ZgdjuVfTj83kAvrS4RrPgGX7d_QQ7d1lIMlzhjiVeUc,954
|
|
660
|
+
fusion_bench_config/method/dop/dop_general.yaml,sha256=xTuJlQ52I61AI4nX_tjkdhwl6M7VTdWpLVwsihx6_SE,1045
|
|
661
|
+
fusion_bench_config/method/emr_merging/emr_merging.yaml,sha256=L3ks8gIcrX4izeYtc8bwdWsd0jWknZTHkYuAfbU6bec,53
|
|
648
662
|
fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=ugO9FbEYqQk3RkX7wUDE9UOg-4D0F4Rezv0O-7hTeRg,476
|
|
649
663
|
fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=kfPAaPVQIet9dYThKNsEBfe9gHdeCREnsM-snSOPahM,546
|
|
650
664
|
fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=LhlxU2P_inxR8MB0Z62phHWj5S4qxD7ITG4Ly-GUcQo,770
|
|
@@ -674,6 +688,7 @@ fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQ
|
|
|
674
688
|
fusion_bench_config/method/model_stock/model_stock.yaml,sha256=4KHAFCjL4AQ5dxkv7IGkUTxE8g-GCoxDkA3BbnlzQC0,530
|
|
675
689
|
fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
|
|
676
690
|
fusion_bench_config/method/opcm/opcm.yaml,sha256=7NBOGo6W1FDbqdkT8gfM5PI2kHfqB8ofMfgcxVI1suM,686
|
|
691
|
+
fusion_bench_config/method/opcm/opcm_general.yaml,sha256=qDfVy7ycPNBHfPV22kiByi2JHsTBClEHj1e9ena7xUo,763
|
|
677
692
|
fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=WL_nVXhZWV9fe_ttChShkjYZVJnOCzvZ3i7NBppYsxk,743
|
|
678
693
|
fusion_bench_config/method/opcm/ties_merging.yaml,sha256=1-xR0dVEEFJue9r-oBk1ZfGmGM9vCu4cJBG5aZnJ3C8,917
|
|
679
694
|
fusion_bench_config/method/opcm/weight_average.yaml,sha256=n-eyxVkpRanlRJdFWFK3kppiO_W1S99WNjyjdBLDnw0,668
|
|
@@ -894,6 +909,7 @@ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SOD
|
|
|
894
909
|
fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
|
|
895
910
|
fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
|
|
896
911
|
fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml,sha256=gcXV5WIYe9Ep-54fjgT9HqbCBY7UiqbqkHvoNCQx62Y,259
|
|
912
|
+
fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224_8-tasks.yaml,sha256=hSS1XqY_t9oTO2bkB3MYyHXupImSHJla6uy-iHWqswI,852
|
|
897
913
|
fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml,sha256=jxe6rvV37FBGsV-Pdnyxe-G-Vw-HzOXuT2NMHKBSBOU,270
|
|
898
914
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
|
|
899
915
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
|
|
@@ -1015,12 +1031,13 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397
|
|
|
1015
1031
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml,sha256=2AqMiNCRRunLIrssHvFzu1lUzOaQn8uOHM9yjrQq-_A,109
|
|
1016
1032
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=DNm1LRlQS9KbukEl6oEZzWLizyaOBcYZ2r7L8ZQtnJc,434
|
|
1017
1033
|
fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=EjN3Pu1F_7EuZrk-geyL4qohqJ5-F2UFjWjj2V57ju0,433
|
|
1034
|
+
fusion_bench_config/taskpool/ImageClassificationTaskPool/convnext-base-224_8-tasks.yaml,sha256=T3oqzZAAwuZ8XBG7YjDRI8BWN3VJW8EzDAJVYO2trzM,389
|
|
1018
1035
|
fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaMSdxLOxzomrruDmu2pJo8oQD95S7y3S20_4,415
|
|
1019
1036
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
|
|
1020
1037
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
|
|
1021
1038
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
|
|
1022
|
-
fusion_bench-0.2.
|
|
1023
|
-
fusion_bench-0.2.
|
|
1024
|
-
fusion_bench-0.2.
|
|
1025
|
-
fusion_bench-0.2.
|
|
1026
|
-
fusion_bench-0.2.
|
|
1039
|
+
fusion_bench-0.2.32.dist-info/METADATA,sha256=2OSKvbBaXvzS3FWlhHM_ACrtgLRPo9qncQXlFPFrdMY,26331
|
|
1040
|
+
fusion_bench-0.2.32.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
1041
|
+
fusion_bench-0.2.32.dist-info/entry_points.txt,sha256=f7HrhfWplbDOgyf0Yfz53VZ_ajUfMNcNJqGnO7OD8QY,123
|
|
1042
|
+
fusion_bench-0.2.32.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
1043
|
+
fusion_bench-0.2.32.dist-info/RECORD,,
|
fusion_bench_config/README.md
CHANGED
|
@@ -3,6 +3,15 @@
|
|
|
3
3
|
This directory contains configuration files for FusionBench.
|
|
4
4
|
These configurations are essential for setting up and managing various algorithms and their hyperparameters.
|
|
5
5
|
|
|
6
|
+
## Built on Hydra
|
|
7
|
+
|
|
8
|
+
FusionBench's configuration system is built on [Hydra](https://hydra.cc/), a powerful framework for configuring complex applications. If you're new to Hydra, we recommend starting with the [Hydra documentation](https://hydra.cc/docs/intro/) to understand concepts like:
|
|
9
|
+
|
|
10
|
+
- Configuration composition and defaults
|
|
11
|
+
- Override syntax
|
|
12
|
+
- Configuration groups
|
|
13
|
+
- Variable interpolation
|
|
14
|
+
|
|
6
15
|
## Configuration Structure
|
|
7
16
|
|
|
8
17
|
FusionBench employs a modular configuration system, which is divided into three primary groups:
|