fusion-bench 0.2.28__py3-none-any.whl → 0.2.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. fusion_bench/constants/__init__.py +5 -1
  2. fusion_bench/constants/runtime.py +111 -7
  3. fusion_bench/dataset/gsm8k.py +6 -2
  4. fusion_bench/dataset/image_corruption/make_corruption.py +168 -0
  5. fusion_bench/method/__init__.py +1 -1
  6. fusion_bench/method/classification/image_classification_finetune.py +1 -2
  7. fusion_bench/method/gossip/clip_task_wise_gossip.py +1 -29
  8. fusion_bench/metrics/nyuv2/__init__.py +31 -0
  9. fusion_bench/metrics/nyuv2/depth.py +30 -0
  10. fusion_bench/metrics/nyuv2/loss.py +40 -0
  11. fusion_bench/metrics/nyuv2/noise.py +24 -0
  12. fusion_bench/metrics/nyuv2/normal.py +34 -1
  13. fusion_bench/metrics/nyuv2/segmentation.py +35 -1
  14. fusion_bench/mixins/clip_classification.py +30 -2
  15. fusion_bench/mixins/lightning_fabric.py +46 -5
  16. fusion_bench/mixins/rich_live.py +76 -0
  17. fusion_bench/modelpool/base_pool.py +86 -5
  18. fusion_bench/scripts/webui.py +250 -17
  19. fusion_bench/utils/__init__.py +14 -0
  20. fusion_bench/utils/data.py +100 -9
  21. fusion_bench/utils/fabric.py +185 -4
  22. fusion_bench/utils/json.py +6 -0
  23. fusion_bench/utils/validation.py +197 -0
  24. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/METADATA +66 -7
  25. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/RECORD +35 -35
  26. fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +6 -19
  27. fusion_bench_config/llama_full_finetune.yaml +4 -16
  28. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  29. fusion_bench_config/nyuv2_config.yaml +4 -13
  30. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  31. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  32. fusion_bench/utils/auto.py +0 -31
  33. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/WHEEL +0 -0
  34. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/entry_points.txt +0 -0
  35. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/licenses/LICENSE +0 -0
  36. {fusion_bench-0.2.28.dist-info → fusion_bench-0.2.29.dist-info}/top_level.txt +0 -0
@@ -13,16 +13,16 @@ fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZy
13
13
  fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
14
14
  fusion_bench/compat/taskpool/clip_image_classification.py,sha256=2L-VzsmKxNg8tglUzGA_qmLZ2oR5zKl352ylCmeY9mI,7426
15
15
  fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=JsdAE72V1C1eDcA1WCa0PIcSDTrGPclNKFDQ9G-hYts,5786
16
- fusion_bench/constants/__init__.py,sha256=Kgd1ex7odRVAlWAoKfi5iB4IMahndgJYJXqknH8R3vA,195
16
+ fusion_bench/constants/__init__.py,sha256=icLBUEZ84oExUXRNm5Nrm4FVcvAZ-SiQ5HWOLOuzU00,363
17
17
  fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
18
18
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
- fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
20
+ fusion_bench/constants/runtime.py,sha256=0X8ldWJLGZ38lg_MbQE3M2ewm_vz9bUBPx3QkN3fNW4,4755
21
21
  fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
22
22
  fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
24
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
- fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
25
+ fusion_bench/dataset/gsm8k.py,sha256=26IVIIm8vldN8xYYVfdrdTre6WizilCacVyY2Ti4qog,2274
26
26
  fusion_bench/dataset/image_dataset.py,sha256=_N5JJC0lH3EbbrZMeuDatJILrKDK2EKHqtJB-m1pdFs,1879
27
27
  fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
28
28
  fusion_bench/dataset/nyuv2.py,sha256=9SAmRMxkWvZ6cYNRoOIBgf9fH8AXQCmdBOIkYxcz-1c,3811
@@ -35,7 +35,7 @@ fusion_bench/dataset/arc_agi/np_cache.py,sha256=Ec1DQFtlBdMy-f4dvGEhSr4jyVnBLQEL
35
35
  fusion_bench/dataset/arc_agi/preprocess.py,sha256=lQrXqV4SkhrxREgbqFAop-IwC5qaoxkKosoMO-ZHITY,8509
36
36
  fusion_bench/dataset/arc_agi/representers.py,sha256=-2eTYl-UcFW4zULDjkUrOQYv9P31nttMjc9eTJsaN0g,35852
37
37
  fusion_bench/dataset/image_corruption/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
- fusion_bench/dataset/image_corruption/make_corruption.py,sha256=ohYO7QAnyxsxbUBMHXUMHImk8-5Z7kNeVph9nz5_VrI,5454
38
+ fusion_bench/dataset/image_corruption/make_corruption.py,sha256=-v23617McqivbY90bn0Ciqngca4zfH_UK8FBaW5FRvY,11047
39
39
  fusion_bench/dataset/llama/__init__.py,sha256=p8M7G69L6bga4qLl5lvAO6SKNeUBn99kkJrAQEeOvHw,22
40
40
  fusion_bench/dataset/llama/alpaca.py,sha256=0nCQRBZzIPaMzA5VSJAsWw-nE0aVhiAQD5MGJRSrvEQ,7787
41
41
  fusion_bench/dataset/llama/collate.py,sha256=fSH-vKKCGCpPT47gchETXLF2yTCMPUE3NTE-inCdczg,3869
@@ -48,7 +48,7 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
51
+ fusion_bench/method/__init__.py,sha256=sXjV8DDn3yXVjzsl6k-nMVx6EABQDjXjY3xK-I6nvr0,9527
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
54
  fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
@@ -80,7 +80,7 @@ fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0Y
80
80
  fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
81
81
  fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
82
82
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
83
- fusion_bench/method/classification/image_classification_finetune.py,sha256=xWSspEuiyM9mz7nTFCLMbJMvkuD-k3B7mx-KMvq7nEU,15310
83
+ fusion_bench/method/classification/image_classification_finetune.py,sha256=JGD8zpt_f4HojZ7Y9b7mFI-x9os1J0440tgorQMMZGY,15282
84
84
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
85
85
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
86
86
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
@@ -122,7 +122,7 @@ fusion_bench/method/fw_merging/fw_soft.py,sha256=rmwwcEtJOqotxDqS9Vs2YVtwxYK--fw
122
122
  fusion_bench/method/fw_merging/utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
123
123
  fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1beJjNCbc8,198
124
124
  fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=spio-nPSRDHrA4hSMtAc746AX_lLIgN0shOvZ0LYZVc,1218
125
- fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
125
+ fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=a0sH4NCShVWbhGVv6Wt10cJmIbOl1JKhGP46pztpa60,6210
126
126
  fusion_bench/method/gossip/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
127
127
  fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=H4KpVkZtcm90GCWodHNJYChxUj3beXn3GajqI4iNiYw,15674
128
128
  fusion_bench/method/gossip/layer_wise_gossip.py,sha256=btcQxAZ6LepJMGPbsUsypAOlmGfUjKu2GfeTg_BfaVw,17173
@@ -257,31 +257,31 @@ fusion_bench/method/wudi/wudi.py,sha256=HL3Y0MPjozp7NML_UNjIWWPbQDQxYH_WG_Buyrip
257
257
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
258
258
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
259
259
  fusion_bench/metrics/continual_learning/backward_transfer.py,sha256=LCMWFFmBgWv7UIAJqiTaSvVvanx4qjnXIGuCMYvzmtc,559
260
- fusion_bench/metrics/nyuv2/__init__.py,sha256=ozlWR3QgvlP260iaScqavQ4qs_PWsid4WN6S5wKgzAM,282
261
- fusion_bench/metrics/nyuv2/depth.py,sha256=oKc8NUZd0yAsk7-f78CbOzyuqmFpBhVFA8GOOdaNP7c,1548
262
- fusion_bench/metrics/nyuv2/loss.py,sha256=oBrkU8cDTczjIKixHjUGLJ_rghx0Vw59OL9DB-kZT3M,914
263
- fusion_bench/metrics/nyuv2/noise.py,sha256=I2CZbOnarvnosQEQbxT9Ye34k0zfSzJjgL_4nMkuPYc,295
264
- fusion_bench/metrics/nyuv2/normal.py,sha256=vLunq7YJ19Xa4LSCuezETrq7PH2QYko9qif02rVvFtA,1489
265
- fusion_bench/metrics/nyuv2/segmentation.py,sha256=tITINYu1UcuN5UXj03RPd3qy-NXUve_-R8a8-b6-qy8,1245
260
+ fusion_bench/metrics/nyuv2/__init__.py,sha256=Ed1FQTJAxguJoorZLHIO-cSIgKYHHfqdf17J3o9_feI,1390
261
+ fusion_bench/metrics/nyuv2/depth.py,sha256=xmUokztxyPrl90qtcoQaanti6DbFaIVqglAo3PDnEso,2851
262
+ fusion_bench/metrics/nyuv2/loss.py,sha256=YKZSqycNyPWJV29Qa12--Wh87zZvtJcuUxUuiPbccpM,2529
263
+ fusion_bench/metrics/nyuv2/noise.py,sha256=2--bmTGN000zMFAf1t46PQrh_8M6_4a_EFEjggqlptA,1007
264
+ fusion_bench/metrics/nyuv2/normal.py,sha256=DJQRr3CEVGo0FnT2KjYYxFoH_8DQ3KbuJr7zRbQqAus,2901
265
+ fusion_bench/metrics/nyuv2/segmentation.py,sha256=l5VYish76PtdMQQrWxLk-WhAdlwuQRbOzNgmo1suI1I,2688
266
266
  fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWyJDP8oAFr1w56Gz9pAhmN2etaJimg,394
267
267
  fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
268
268
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
269
269
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
270
270
  fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fgyY,1320
271
- fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
271
+ fusion_bench/mixins/clip_classification.py,sha256=Ifc3R_RO1yb-nbT_lipfNudQS3iiB3G_trNMS1dEfRU,11329
272
272
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
273
273
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
274
- fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
274
+ fusion_bench/mixins/lightning_fabric.py,sha256=Ezg4WRhfXBQYM5ndErWWX1vvKLmYBfpDf0wyQIB0nCY,9237
275
275
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
276
276
  fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
277
- fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
277
+ fusion_bench/mixins/rich_live.py,sha256=bzUu4F90bq9x8DCY8rZmLz7sfmZiFH0GPIoY1O2ysHg,2970
278
278
  fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
279
279
  fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
280
280
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
281
281
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
282
282
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
283
283
  fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
284
- fusion_bench/modelpool/base_pool.py,sha256=7v01al93RjJ5CynUM-HnM6mCgCX9asUmaqPNmxioNoA,12531
284
+ fusion_bench/modelpool/base_pool.py,sha256=WzAJf1Quj7DAPVycBnwE-LQ9ddv1rZ8qPid7R71QZdA,15501
285
285
  fusion_bench/modelpool/convnext_for_image_classification.py,sha256=m9MxFgfzNjGnHOU6gufaTPgkk67lifNNwW03nHUxXKo,7377
286
286
  fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
287
287
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
@@ -395,7 +395,7 @@ fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
395
395
  fusion_bench/scripts/cli.py,sha256=kEWLEkZEBqUr1_-XTePzNC5NM8lwWvgUBf0Lcuk_FI8,2739
396
396
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
397
397
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
398
- fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
398
+ fusion_bench/scripts/webui.py,sha256=ROvZUIj-hR4JLgCiWEKGc25LMtAjaMAZLJ5ckDYt-w4,21513
399
399
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
400
400
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
401
401
  fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
@@ -454,19 +454,18 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
454
454
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
455
455
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
456
456
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
457
- fusion_bench/utils/__init__.py,sha256=b61bfpNY2FOm3QWdexEOMMv1Tcp8zz2pR6644r18RSM,4778
458
- fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
457
+ fusion_bench/utils/__init__.py,sha256=EvrvupFGAzxll_jO0HYk1-I6jCHqDrIwZ5vswlR-9Pw,5149
459
458
  fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
460
- fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
459
+ fusion_bench/utils/data.py,sha256=QAXpsvzHOgfAf6G_Pe2a5HOKUAP8Mxz77avujQI9Fd8,10027
461
460
  fusion_bench/utils/devices.py,sha256=6AkGcs3flt0FSo9yfEREuehoTrgcc65gkwpTWQy8XsI,9546
462
461
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
463
462
  fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
464
463
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
465
- fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,617
464
+ fusion_bench/utils/fabric.py,sha256=qKcJ6Xj-6rEGy35dsUPHzxZT6az9RkSNcyBQl1uOv0M,6050
466
465
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
467
466
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
468
467
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
469
- fusion_bench/utils/json.py,sha256=LXmlqdUxgBepaFjf2JoLrOHQ7CdFAcKLzHL8LaSkPog,4359
468
+ fusion_bench/utils/json.py,sha256=XZvEqBGpq-e0MaKkkX-1_PD8xMf6IDLAn4BrAF7IeiU,4552
470
469
  fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
471
470
  fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
472
471
  fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
@@ -481,6 +480,7 @@ fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW
481
480
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
482
481
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
483
482
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
483
+ fusion_bench/utils/validation.py,sha256=-pUbATmeuinfceB7PNljCYgMk9gUQKwNn1dHvkuevtE,6082
484
484
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
485
485
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
486
486
  fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
@@ -488,15 +488,15 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
488
488
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
489
489
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
490
490
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
491
- fusion_bench-0.2.28.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
491
+ fusion_bench-0.2.29.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
492
492
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
493
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
493
+ fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=pZ5dFgg5n1W9cKdNyGNa7b4yPd4aQSu2iR2-yw9hhbY,442
494
494
  fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
495
- fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
495
+ fusion_bench_config/llama_full_finetune.yaml,sha256=2xBhxEJxLZNDYc_9X8TtpXMRu85ksJxjkfqsz_xn5Yo,195
496
496
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
497
497
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
498
498
  fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
499
- fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
499
+ fusion_bench_config/nyuv2_config.yaml,sha256=SJ-jcYmFsVNgIix_S8bloCMtNFqwISQNNkrCoFpatKA,181
500
500
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
501
501
  fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
502
502
  fusion_bench_config/_get_started/clip_simple_average.yaml,sha256=MHaqUyuaLfHKMn5OPeNMpv3jCI1_zIEfsIQjonp3fow,780
@@ -849,7 +849,7 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generali
849
849
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml,sha256=ocGSa4hzUFiAaRG1DjBenazAeO_DsCGNGCue-0tUl28,160
850
850
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml,sha256=pQr8lF-hIFrPXPcZYlbSxx8PF8EClZ6nm2L4yqEmHTk,176
851
851
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml,sha256=7oQtoqXs37fctajb6E7UOB0GT515eEGzFNm93dWOKKk,509
852
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=txMh1k0O3Spusqewp7zV0N0L9e2fg87lviDEnNJSHGQ,900
852
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=GiCY7GVaJtjLJjFV-GILiELm-KoFhM6wHdXfh10sDEM,901
853
853
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml,sha256=XOweydALcCrXCaH14e5Fn7UDWihSkNmXYEu9daG43jY,236
854
854
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml,sha256=i78xIL-vP28dYZaXntLsm7e9IdI2yAeUwZZze5fd9Do,288
855
855
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml,sha256=gDEzNfwsMtIu2xH8WSIUblx4ZyL1FsLXoSEpXPHiMaI,482
@@ -972,14 +972,14 @@ fusion_bench_config/modelpool/SequenceClassificationModelPool/roberta-base_glue.
972
972
  fusion_bench_config/modelpool/SequenceClassificationModelPool/single_reward_model.yaml,sha256=sWGcEngJfBOEE2uaah33UBQa3hjoDxtFfGOgT2GtzxQ,624
973
973
  fusion_bench_config/path/default.yaml,sha256=jSEGsRp2YSyvQeBq9FncX1W_piLGVZp71RiyvjGzXPw,1346
974
974
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
975
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
975
+ fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=uYuOXJ3x9RB6TDHjrQl7gNLJxIqitmGnBYkF-mGuv2E,759
976
976
  fusion_bench_config/taskpool/dummy.yaml,sha256=Id4Y_j7oc39qWjjEFG3qLmmMI1fGXXt34gVO56NFZ0U,68
977
977
  fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml,sha256=3MxfXiiwWJHEVgJ7aViTR7kzOV_YxXLL-fNHtnBaWN4,1002
978
978
  fusion_bench_config/taskpool/gpt-2_glue.yaml,sha256=pkiZnblniEU-VMEiKVuoE9Ian0Fk2TTZH527GgZQUCc,949
979
979
  fusion_bench_config/taskpool/nyuv2_taskpool.yaml,sha256=UaxDpFqEPkEz3h2CjFleUxsmnFnaY1aLXerkud8Zm9s,133
980
980
  fusion_bench_config/taskpool/reward_model_evaluation.yaml,sha256=WvhlUnIt3w0MpYNrYTp3tYvn5WOoYoUSj6stBF2ZiWk,438
981
981
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml,sha256=nOr_clBk9Nfbj4Q2DliMbhNqqVnV3OfDA-KKCLhyJoA,1307
982
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
982
+ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=uYuOXJ3x9RB6TDHjrQl7gNLJxIqitmGnBYkF-mGuv2E,759
983
983
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=N1cbBiAz0dty2uiWoxiAmG2yrF5fbUrmoVGNaaqNU34,1159
984
984
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml,sha256=eoNUaX-cBjpJJt0BYb-ZCNiIlv1SarX9toiGAwHbES0,227
985
985
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml,sha256=R9q595jKLAjuIV6BFqc646l08BJEQ7bSLFAO7QBtZAA,782
@@ -1015,8 +1015,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
1015
1015
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
1016
1016
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
1017
1017
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
1018
- fusion_bench-0.2.28.dist-info/METADATA,sha256=2m3tF3J5gbcupGjZt_0Md77Tb7h3oDxwwp_Q_sZsdIM,24307
1019
- fusion_bench-0.2.28.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1020
- fusion_bench-0.2.28.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1021
- fusion_bench-0.2.28.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1022
- fusion_bench-0.2.28.dist-info/RECORD,,
1018
+ fusion_bench-0.2.29.dist-info/METADATA,sha256=RivzHbrFvjc6WrrpTlsPwyCpUz8vw8Kc7GfxIwtIKxk,26292
1019
+ fusion_bench-0.2.29.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1020
+ fusion_bench-0.2.29.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1021
+ fusion_bench-0.2.29.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1022
+ fusion_bench-0.2.29.dist-info/RECORD,,
@@ -1,22 +1,9 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: auto
4
- # --- Model, Method, Task ---
5
- - modelpool: CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted
6
- - method: dummy # change this to the method you want to use
7
- - taskpool: CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted
2
+ - fabric_model_fusion
3
+ - override modelpool: CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted
4
+ - override method: dummy # change this to the method you want to use
5
+ - override taskpool: CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted
8
6
  - _self_
9
- _target_: fusion_bench.programs.FabricModelFusionProgram
10
- _recursive_: false
11
- fast_dev_run: false # Run a single batch of data to test the model or method
12
- # Run the script without actually running the experiment, use with `print_config=true`.
13
- # You can also use `--cfg` or `-c` to show the configuration instead of running.
14
- dry_run: false
15
- print_config: true # Print the configuration to the console
16
- merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
17
- merged_model_save_kwargs: null
18
- report_save_path: null # path to save the result report
19
- print_function_call: true # set to false if you don't want to print the details of instantiate calls
20
- # `corrption` can be one of:
7
+ # `corruption` can be one of:
21
8
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
22
- corruption: ???
9
+ corruption: gaussian_noise
@@ -1,18 +1,6 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: llama_fsdp
4
- - path: default
5
- # --- Model, Method, Task ---
6
- - method: lm_finetune/fullfinetune_sft.yaml
7
- - modelpool: CausalLMPool/llama_alpaca_cleaned.yaml
8
- - taskpool: dummy
2
+ - fabric_model_fusion
3
+ - override fabric: llama_fsdp
4
+ - override method: lm_finetune/fullfinetune_sft.yaml
5
+ - override modelpool: CausalLMPool/llama_alpaca_cleaned.yaml
9
6
  - _self_
10
- _target_: fusion_bench.programs.FabricModelFusionProgram
11
- _recursive_: false
12
- fast_dev_run: false # Run a single batch of data to test the model or method
13
- # Run the script without actually running the experiment, use with `print_config=true`.
14
- # You can also use `--cfg` or `-c` to show the configuration instead of running.
15
- dry_run: false
16
- print_config: true # Print the configuration to the console
17
- report_save_path: null # path to save the result report
18
- print_function_call: true # set to false if you don't want to print the details of instantiate calls
@@ -6,7 +6,7 @@ defaults:
6
6
  - clip-vit-base-patch32_eurosat
7
7
  - clip-vit-base-patch32_resisc45
8
8
  - clip-vit-base-patch32_gtsrb
9
- # `corrption` can be one of:
9
+ # `corruption` can be one of:
10
10
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
11
11
  corruption: ${corruption}
12
12
  # The following datasets are used for test-time adaptation
@@ -1,17 +1,8 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: auto
4
- - path: default
5
- # --- Model, Method, Task ---
6
- - method: simple_average
7
- - modelpool: nyuv2_modelpool
8
- - taskpool: nyuv2_taskpool
2
+ - fabric_model_fusion
3
+ - override method: simple_average
4
+ - override modelpool: nyuv2_modelpool
5
+ - override taskpool: nyuv2_taskpool
9
6
  - _self_
10
- _target_: fusion_bench.programs.FabricModelFusionProgram
11
- _recursive_: false
12
- fast_dev_run: false # Run a single batch of data to test the model or method
13
- use_lightning: true # Use the fabric to run the experiment
14
- print_config: true # Print the configuration to the console
15
- save_report: false # path to save the result report
16
7
  trainer:
17
8
  devices: 1
@@ -1,6 +1,6 @@
1
1
  type: clip_vit_classification
2
2
  name: clip-vit-robustness_clean
3
- # corrption can be one of:
3
+ # corruption can be one of:
4
4
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
5
5
  corruption: ${corruption}
6
6
  dataset_type: huggingface_image_classification
@@ -1,6 +1,6 @@
1
1
  type: clip_vit_classification
2
2
  name: clip-vit-robustness_clean
3
- # corrption can be one of:
3
+ # corruption can be one of:
4
4
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
5
5
  corruption: ${corruption}
6
6
  dataset_type: huggingface_image_classification
@@ -1,31 +0,0 @@
1
- from omegaconf import DictConfig
2
-
3
- from fusion_bench.utils import import_object
4
-
5
-
6
- class BaseFactoryClass:
7
- _registry = {}
8
-
9
- @classmethod
10
- def from_config(cls, config: DictConfig):
11
- name = config.name
12
- if name not in cls._registry:
13
- raise ValueError(
14
- f"Unknown name: {name}, available names: {cls._registry.keys()}. "
15
- f"You can register a new item using `{cls.__name__}.register()` method."
16
- )
17
-
18
- item_cls = cls._registry[name]
19
- if isinstance(item_cls, str):
20
- if item_cls.startswith("."):
21
- item_cls = f"{cls.__module__}.{item_cls[1:]}"
22
- item_cls = import_object(item_cls)
23
- return item_cls(config)
24
-
25
- @classmethod
26
- def register(cls, name: str, item_cls):
27
- cls._registry[name] = item_cls
28
-
29
- @classmethod
30
- def available_items(cls):
31
- return list(cls._registry.keys())