fusion-bench 0.2.27__py3-none-any.whl → 0.2.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. fusion_bench/__init__.py +4 -0
  2. fusion_bench/constants/__init__.py +5 -1
  3. fusion_bench/constants/runtime.py +111 -7
  4. fusion_bench/dataset/gsm8k.py +6 -2
  5. fusion_bench/dataset/image_corruption/make_corruption.py +168 -0
  6. fusion_bench/method/__init__.py +1 -1
  7. fusion_bench/method/classification/image_classification_finetune.py +13 -2
  8. fusion_bench/method/gossip/clip_task_wise_gossip.py +1 -29
  9. fusion_bench/method/task_arithmetic/task_arithmetic.py +4 -1
  10. fusion_bench/metrics/nyuv2/__init__.py +31 -0
  11. fusion_bench/metrics/nyuv2/depth.py +30 -0
  12. fusion_bench/metrics/nyuv2/loss.py +40 -0
  13. fusion_bench/metrics/nyuv2/noise.py +24 -0
  14. fusion_bench/metrics/nyuv2/normal.py +34 -1
  15. fusion_bench/metrics/nyuv2/segmentation.py +35 -1
  16. fusion_bench/mixins/clip_classification.py +30 -2
  17. fusion_bench/mixins/lightning_fabric.py +46 -5
  18. fusion_bench/mixins/rich_live.py +76 -0
  19. fusion_bench/modelpool/__init__.py +24 -2
  20. fusion_bench/modelpool/base_pool.py +94 -6
  21. fusion_bench/modelpool/convnext_for_image_classification.py +198 -0
  22. fusion_bench/modelpool/dinov2_for_image_classification.py +197 -0
  23. fusion_bench/modelpool/resnet_for_image_classification.py +4 -1
  24. fusion_bench/models/model_card_templates/default.md +1 -1
  25. fusion_bench/scripts/webui.py +250 -17
  26. fusion_bench/utils/__init__.py +14 -0
  27. fusion_bench/utils/data.py +100 -9
  28. fusion_bench/utils/fabric.py +185 -4
  29. fusion_bench/utils/json.py +55 -8
  30. fusion_bench/utils/validation.py +197 -0
  31. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/METADATA +66 -7
  32. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/RECORD +44 -40
  33. fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +6 -19
  34. fusion_bench_config/llama_full_finetune.yaml +4 -16
  35. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  36. fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml +10 -0
  37. fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml +10 -0
  38. fusion_bench_config/nyuv2_config.yaml +4 -13
  39. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  40. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +1 -1
  41. fusion_bench/utils/auto.py +0 -31
  42. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/WHEEL +0 -0
  43. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/entry_points.txt +0 -0
  44. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/licenses/LICENSE +0 -0
  45. {fusion_bench-0.2.27.dist-info → fusion_bench-0.2.29.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- fusion_bench/__init__.py,sha256=Rw9sT2ZegKMxZAG7FBDgqVOqBGlJ-43C5p_EarRHd1M,5816
1
+ fusion_bench/__init__.py,sha256=C-0-HgZFdRjscXqpfNsz7iGUijUeSoP4GFRnFxuxQ7M,5992
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
@@ -13,16 +13,16 @@ fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZy
13
13
  fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
14
14
  fusion_bench/compat/taskpool/clip_image_classification.py,sha256=2L-VzsmKxNg8tglUzGA_qmLZ2oR5zKl352ylCmeY9mI,7426
15
15
  fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=JsdAE72V1C1eDcA1WCa0PIcSDTrGPclNKFDQ9G-hYts,5786
16
- fusion_bench/constants/__init__.py,sha256=Kgd1ex7odRVAlWAoKfi5iB4IMahndgJYJXqknH8R3vA,195
16
+ fusion_bench/constants/__init__.py,sha256=icLBUEZ84oExUXRNm5Nrm4FVcvAZ-SiQ5HWOLOuzU00,363
17
17
  fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
18
18
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
- fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
20
+ fusion_bench/constants/runtime.py,sha256=0X8ldWJLGZ38lg_MbQE3M2ewm_vz9bUBPx3QkN3fNW4,4755
21
21
  fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
22
22
  fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
24
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
- fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
25
+ fusion_bench/dataset/gsm8k.py,sha256=26IVIIm8vldN8xYYVfdrdTre6WizilCacVyY2Ti4qog,2274
26
26
  fusion_bench/dataset/image_dataset.py,sha256=_N5JJC0lH3EbbrZMeuDatJILrKDK2EKHqtJB-m1pdFs,1879
27
27
  fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
28
28
  fusion_bench/dataset/nyuv2.py,sha256=9SAmRMxkWvZ6cYNRoOIBgf9fH8AXQCmdBOIkYxcz-1c,3811
@@ -35,7 +35,7 @@ fusion_bench/dataset/arc_agi/np_cache.py,sha256=Ec1DQFtlBdMy-f4dvGEhSr4jyVnBLQEL
35
35
  fusion_bench/dataset/arc_agi/preprocess.py,sha256=lQrXqV4SkhrxREgbqFAop-IwC5qaoxkKosoMO-ZHITY,8509
36
36
  fusion_bench/dataset/arc_agi/representers.py,sha256=-2eTYl-UcFW4zULDjkUrOQYv9P31nttMjc9eTJsaN0g,35852
37
37
  fusion_bench/dataset/image_corruption/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
- fusion_bench/dataset/image_corruption/make_corruption.py,sha256=ohYO7QAnyxsxbUBMHXUMHImk8-5Z7kNeVph9nz5_VrI,5454
38
+ fusion_bench/dataset/image_corruption/make_corruption.py,sha256=-v23617McqivbY90bn0Ciqngca4zfH_UK8FBaW5FRvY,11047
39
39
  fusion_bench/dataset/llama/__init__.py,sha256=p8M7G69L6bga4qLl5lvAO6SKNeUBn99kkJrAQEeOvHw,22
40
40
  fusion_bench/dataset/llama/alpaca.py,sha256=0nCQRBZzIPaMzA5VSJAsWw-nE0aVhiAQD5MGJRSrvEQ,7787
41
41
  fusion_bench/dataset/llama/collate.py,sha256=fSH-vKKCGCpPT47gchETXLF2yTCMPUE3NTE-inCdczg,3869
@@ -48,7 +48,7 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
51
+ fusion_bench/method/__init__.py,sha256=sXjV8DDn3yXVjzsl6k-nMVx6EABQDjXjY3xK-I6nvr0,9527
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
54
  fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
@@ -80,7 +80,7 @@ fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0Y
80
80
  fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
81
81
  fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
82
82
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
83
- fusion_bench/method/classification/image_classification_finetune.py,sha256=ExUwsBsDHX6Kq1G9arapgf3xQZJLBcNoRfCIXqIsbD0,14967
83
+ fusion_bench/method/classification/image_classification_finetune.py,sha256=JGD8zpt_f4HojZ7Y9b7mFI-x9os1J0440tgorQMMZGY,15282
84
84
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
85
85
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
86
86
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
@@ -122,7 +122,7 @@ fusion_bench/method/fw_merging/fw_soft.py,sha256=rmwwcEtJOqotxDqS9Vs2YVtwxYK--fw
122
122
  fusion_bench/method/fw_merging/utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
123
123
  fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1beJjNCbc8,198
124
124
  fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=spio-nPSRDHrA4hSMtAc746AX_lLIgN0shOvZ0LYZVc,1218
125
- fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
125
+ fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=a0sH4NCShVWbhGVv6Wt10cJmIbOl1JKhGP46pztpa60,6210
126
126
  fusion_bench/method/gossip/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
127
127
  fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=H4KpVkZtcm90GCWodHNJYChxUj3beXn3GajqI4iNiYw,15674
128
128
  fusion_bench/method/gossip/layer_wise_gossip.py,sha256=btcQxAZ6LepJMGPbsUsypAOlmGfUjKu2GfeTg_BfaVw,17173
@@ -229,7 +229,7 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
229
229
  fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
230
230
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
231
231
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
232
- fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=KsSBshf04MUwIjoc0HAAmY6cWMqjZwZOYXbUuU4EaL0,6320
232
+ fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=yGMWk2--VlXTcQjDjnPdiug1q_rpjzu5SFvgCYDfTQ0,6479
233
233
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
234
234
  fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
235
235
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
@@ -257,36 +257,38 @@ fusion_bench/method/wudi/wudi.py,sha256=HL3Y0MPjozp7NML_UNjIWWPbQDQxYH_WG_Buyrip
257
257
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
258
258
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
259
259
  fusion_bench/metrics/continual_learning/backward_transfer.py,sha256=LCMWFFmBgWv7UIAJqiTaSvVvanx4qjnXIGuCMYvzmtc,559
260
- fusion_bench/metrics/nyuv2/__init__.py,sha256=ozlWR3QgvlP260iaScqavQ4qs_PWsid4WN6S5wKgzAM,282
261
- fusion_bench/metrics/nyuv2/depth.py,sha256=oKc8NUZd0yAsk7-f78CbOzyuqmFpBhVFA8GOOdaNP7c,1548
262
- fusion_bench/metrics/nyuv2/loss.py,sha256=oBrkU8cDTczjIKixHjUGLJ_rghx0Vw59OL9DB-kZT3M,914
263
- fusion_bench/metrics/nyuv2/noise.py,sha256=I2CZbOnarvnosQEQbxT9Ye34k0zfSzJjgL_4nMkuPYc,295
264
- fusion_bench/metrics/nyuv2/normal.py,sha256=vLunq7YJ19Xa4LSCuezETrq7PH2QYko9qif02rVvFtA,1489
265
- fusion_bench/metrics/nyuv2/segmentation.py,sha256=tITINYu1UcuN5UXj03RPd3qy-NXUve_-R8a8-b6-qy8,1245
260
+ fusion_bench/metrics/nyuv2/__init__.py,sha256=Ed1FQTJAxguJoorZLHIO-cSIgKYHHfqdf17J3o9_feI,1390
261
+ fusion_bench/metrics/nyuv2/depth.py,sha256=xmUokztxyPrl90qtcoQaanti6DbFaIVqglAo3PDnEso,2851
262
+ fusion_bench/metrics/nyuv2/loss.py,sha256=YKZSqycNyPWJV29Qa12--Wh87zZvtJcuUxUuiPbccpM,2529
263
+ fusion_bench/metrics/nyuv2/noise.py,sha256=2--bmTGN000zMFAf1t46PQrh_8M6_4a_EFEjggqlptA,1007
264
+ fusion_bench/metrics/nyuv2/normal.py,sha256=DJQRr3CEVGo0FnT2KjYYxFoH_8DQ3KbuJr7zRbQqAus,2901
265
+ fusion_bench/metrics/nyuv2/segmentation.py,sha256=l5VYish76PtdMQQrWxLk-WhAdlwuQRbOzNgmo1suI1I,2688
266
266
  fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWyJDP8oAFr1w56Gz9pAhmN2etaJimg,394
267
267
  fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
268
268
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
269
269
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
270
270
  fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fgyY,1320
271
- fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
271
+ fusion_bench/mixins/clip_classification.py,sha256=Ifc3R_RO1yb-nbT_lipfNudQS3iiB3G_trNMS1dEfRU,11329
272
272
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
273
273
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
274
- fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
274
+ fusion_bench/mixins/lightning_fabric.py,sha256=Ezg4WRhfXBQYM5ndErWWX1vvKLmYBfpDf0wyQIB0nCY,9237
275
275
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
276
276
  fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
277
- fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
277
+ fusion_bench/mixins/rich_live.py,sha256=bzUu4F90bq9x8DCY8rZmLz7sfmZiFH0GPIoY1O2ysHg,2970
278
278
  fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
279
279
  fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
280
280
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
281
281
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
282
282
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
283
- fusion_bench/modelpool/__init__.py,sha256=wKAkEgit_1ZtDAOKOntzrUKdCjOFIxnPMYN02B970Wg,1671
284
- fusion_bench/modelpool/base_pool.py,sha256=5snzTmqn1Xs_dy0Ws5QWxs9uCAXMwIuclrwfikKPh9o,12298
283
+ fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
284
+ fusion_bench/modelpool/base_pool.py,sha256=WzAJf1Quj7DAPVycBnwE-LQ9ddv1rZ8qPid7R71QZdA,15501
285
+ fusion_bench/modelpool/convnext_for_image_classification.py,sha256=m9MxFgfzNjGnHOU6gufaTPgkk67lifNNwW03nHUxXKo,7377
286
+ fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
285
287
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
286
288
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
287
289
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
288
290
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
289
- fusion_bench/modelpool/resnet_for_image_classification.py,sha256=1Q79oj3FIBQBOr13zCvIcscBKLA0PHbPmTarwVlhIww,19873
291
+ fusion_bench/modelpool/resnet_for_image_classification.py,sha256=drSQt6xMZnag2drrjepCu8jpORF_ui8MJj_CipqoRCU,20004
290
292
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
291
293
  fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fxmbq0N6xwajolXpdg,19993
292
294
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
@@ -329,7 +331,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
329
331
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
330
332
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
331
333
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
332
- fusion_bench/models/model_card_templates/default.md,sha256=DJXwDODCsqIOhkgP57-iCShxLYK_jnsDsJYH1GfbBY8,1028
334
+ fusion_bench/models/model_card_templates/default.md,sha256=OoU83l1hip1gKsoA08hoKx-nCrOYbKaVTVCjK0pt9WY,1028
333
335
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
334
336
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
335
337
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -393,7 +395,7 @@ fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
393
395
  fusion_bench/scripts/cli.py,sha256=kEWLEkZEBqUr1_-XTePzNC5NM8lwWvgUBf0Lcuk_FI8,2739
394
396
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
395
397
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
396
- fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
398
+ fusion_bench/scripts/webui.py,sha256=ROvZUIj-hR4JLgCiWEKGc25LMtAjaMAZLJ5ckDYt-w4,21513
397
399
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
398
400
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
399
401
  fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
@@ -452,19 +454,18 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
452
454
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
453
455
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
454
456
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
455
- fusion_bench/utils/__init__.py,sha256=b61bfpNY2FOm3QWdexEOMMv1Tcp8zz2pR6644r18RSM,4778
456
- fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
457
+ fusion_bench/utils/__init__.py,sha256=EvrvupFGAzxll_jO0HYk1-I6jCHqDrIwZ5vswlR-9Pw,5149
457
458
  fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
458
- fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
459
+ fusion_bench/utils/data.py,sha256=QAXpsvzHOgfAf6G_Pe2a5HOKUAP8Mxz77avujQI9Fd8,10027
459
460
  fusion_bench/utils/devices.py,sha256=6AkGcs3flt0FSo9yfEREuehoTrgcc65gkwpTWQy8XsI,9546
460
461
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
461
462
  fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
462
463
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
463
- fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,617
464
+ fusion_bench/utils/fabric.py,sha256=qKcJ6Xj-6rEGy35dsUPHzxZT6az9RkSNcyBQl1uOv0M,6050
464
465
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
465
466
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
466
467
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
467
- fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
468
+ fusion_bench/utils/json.py,sha256=XZvEqBGpq-e0MaKkkX-1_PD8xMf6IDLAn4BrAF7IeiU,4552
468
469
  fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
469
470
  fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
470
471
  fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
@@ -479,6 +480,7 @@ fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW
479
480
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
480
481
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
481
482
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
483
+ fusion_bench/utils/validation.py,sha256=-pUbATmeuinfceB7PNljCYgMk9gUQKwNn1dHvkuevtE,6082
482
484
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
483
485
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
484
486
  fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
@@ -486,15 +488,15 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
486
488
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
487
489
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
488
490
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
489
- fusion_bench-0.2.27.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
491
+ fusion_bench-0.2.29.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
490
492
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
491
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
493
+ fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=pZ5dFgg5n1W9cKdNyGNa7b4yPd4aQSu2iR2-yw9hhbY,442
492
494
  fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
493
- fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
495
+ fusion_bench_config/llama_full_finetune.yaml,sha256=2xBhxEJxLZNDYc_9X8TtpXMRu85ksJxjkfqsz_xn5Yo,195
494
496
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
495
497
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
496
498
  fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
497
- fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
499
+ fusion_bench_config/nyuv2_config.yaml,sha256=SJ-jcYmFsVNgIix_S8bloCMtNFqwISQNNkrCoFpatKA,181
498
500
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
499
501
  fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
500
502
  fusion_bench_config/_get_started/clip_simple_average.yaml,sha256=MHaqUyuaLfHKMn5OPeNMpv3jCI1_zIEfsIQjonp3fow,780
@@ -847,7 +849,7 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generali
847
849
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml,sha256=ocGSa4hzUFiAaRG1DjBenazAeO_DsCGNGCue-0tUl28,160
848
850
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml,sha256=pQr8lF-hIFrPXPcZYlbSxx8PF8EClZ6nm2L4yqEmHTk,176
849
851
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml,sha256=7oQtoqXs37fctajb6E7UOB0GT515eEGzFNm93dWOKKk,509
850
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=txMh1k0O3Spusqewp7zV0N0L9e2fg87lviDEnNJSHGQ,900
852
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=GiCY7GVaJtjLJjFV-GILiELm-KoFhM6wHdXfh10sDEM,901
851
853
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml,sha256=XOweydALcCrXCaH14e5Fn7UDWihSkNmXYEu9daG43jY,236
852
854
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml,sha256=i78xIL-vP28dYZaXntLsm7e9IdI2yAeUwZZze5fd9Do,288
853
855
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml,sha256=gDEzNfwsMtIu2xH8WSIUblx4ZyL1FsLXoSEpXPHiMaI,482
@@ -887,6 +889,8 @@ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml,sha256=
887
889
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SODG0kcnAP6yC0_J_SpSVMRV-v5qGV22gcWdiBaZo1I,368
888
890
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
889
891
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
892
+ fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml,sha256=gcXV5WIYe9Ep-54fjgT9HqbCBY7UiqbqkHvoNCQx62Y,259
893
+ fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml,sha256=jxe6rvV37FBGsV-Pdnyxe-G-Vw-HzOXuT2NMHKBSBOU,270
890
894
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
891
895
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
892
896
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml,sha256=q2_E2R1wIOdxd-AF-wjXkPO64gJgD27YXsZ8FFLWUIo,1607
@@ -968,14 +972,14 @@ fusion_bench_config/modelpool/SequenceClassificationModelPool/roberta-base_glue.
968
972
  fusion_bench_config/modelpool/SequenceClassificationModelPool/single_reward_model.yaml,sha256=sWGcEngJfBOEE2uaah33UBQa3hjoDxtFfGOgT2GtzxQ,624
969
973
  fusion_bench_config/path/default.yaml,sha256=jSEGsRp2YSyvQeBq9FncX1W_piLGVZp71RiyvjGzXPw,1346
970
974
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
971
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
975
+ fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=uYuOXJ3x9RB6TDHjrQl7gNLJxIqitmGnBYkF-mGuv2E,759
972
976
  fusion_bench_config/taskpool/dummy.yaml,sha256=Id4Y_j7oc39qWjjEFG3qLmmMI1fGXXt34gVO56NFZ0U,68
973
977
  fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml,sha256=3MxfXiiwWJHEVgJ7aViTR7kzOV_YxXLL-fNHtnBaWN4,1002
974
978
  fusion_bench_config/taskpool/gpt-2_glue.yaml,sha256=pkiZnblniEU-VMEiKVuoE9Ian0Fk2TTZH527GgZQUCc,949
975
979
  fusion_bench_config/taskpool/nyuv2_taskpool.yaml,sha256=UaxDpFqEPkEz3h2CjFleUxsmnFnaY1aLXerkud8Zm9s,133
976
980
  fusion_bench_config/taskpool/reward_model_evaluation.yaml,sha256=WvhlUnIt3w0MpYNrYTp3tYvn5WOoYoUSj6stBF2ZiWk,438
977
981
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml,sha256=nOr_clBk9Nfbj4Q2DliMbhNqqVnV3OfDA-KKCLhyJoA,1307
978
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
982
+ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=uYuOXJ3x9RB6TDHjrQl7gNLJxIqitmGnBYkF-mGuv2E,759
979
983
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=N1cbBiAz0dty2uiWoxiAmG2yrF5fbUrmoVGNaaqNU34,1159
980
984
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml,sha256=eoNUaX-cBjpJJt0BYb-ZCNiIlv1SarX9toiGAwHbES0,227
981
985
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml,sha256=R9q595jKLAjuIV6BFqc646l08BJEQ7bSLFAO7QBtZAA,782
@@ -1011,8 +1015,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
1011
1015
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
1012
1016
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
1013
1017
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
1014
- fusion_bench-0.2.27.dist-info/METADATA,sha256=TnLxGqALTnvyF-GXwk-iGvl-eNvBjNvZzkDODdkVLVo,24307
1015
- fusion_bench-0.2.27.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1016
- fusion_bench-0.2.27.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1017
- fusion_bench-0.2.27.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1018
- fusion_bench-0.2.27.dist-info/RECORD,,
1018
+ fusion_bench-0.2.29.dist-info/METADATA,sha256=RivzHbrFvjc6WrrpTlsPwyCpUz8vw8Kc7GfxIwtIKxk,26292
1019
+ fusion_bench-0.2.29.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1020
+ fusion_bench-0.2.29.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1021
+ fusion_bench-0.2.29.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1022
+ fusion_bench-0.2.29.dist-info/RECORD,,
@@ -1,22 +1,9 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: auto
4
- # --- Model, Method, Task ---
5
- - modelpool: CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted
6
- - method: dummy # change this to the method you want to use
7
- - taskpool: CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted
2
+ - fabric_model_fusion
3
+ - override modelpool: CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted
4
+ - override method: dummy # change this to the method you want to use
5
+ - override taskpool: CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted
8
6
  - _self_
9
- _target_: fusion_bench.programs.FabricModelFusionProgram
10
- _recursive_: false
11
- fast_dev_run: false # Run a single batch of data to test the model or method
12
- # Run the script without actually running the experiment, use with `print_config=true`.
13
- # You can also use `--cfg` or `-c` to show the configuration instead of running.
14
- dry_run: false
15
- print_config: true # Print the configuration to the console
16
- merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
17
- merged_model_save_kwargs: null
18
- report_save_path: null # path to save the result report
19
- print_function_call: true # set to false if you don't want to print the details of instantiate calls
20
- # `corrption` can be one of:
7
+ # `corruption` can be one of:
21
8
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
22
- corruption: ???
9
+ corruption: gaussian_noise
@@ -1,18 +1,6 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: llama_fsdp
4
- - path: default
5
- # --- Model, Method, Task ---
6
- - method: lm_finetune/fullfinetune_sft.yaml
7
- - modelpool: CausalLMPool/llama_alpaca_cleaned.yaml
8
- - taskpool: dummy
2
+ - fabric_model_fusion
3
+ - override fabric: llama_fsdp
4
+ - override method: lm_finetune/fullfinetune_sft.yaml
5
+ - override modelpool: CausalLMPool/llama_alpaca_cleaned.yaml
9
6
  - _self_
10
- _target_: fusion_bench.programs.FabricModelFusionProgram
11
- _recursive_: false
12
- fast_dev_run: false # Run a single batch of data to test the model or method
13
- # Run the script without actually running the experiment, use with `print_config=true`.
14
- # You can also use `--cfg` or `-c` to show the configuration instead of running.
15
- dry_run: false
16
- print_config: true # Print the configuration to the console
17
- report_save_path: null # path to save the result report
18
- print_function_call: true # set to false if you don't want to print the details of instantiate calls
@@ -6,7 +6,7 @@ defaults:
6
6
  - clip-vit-base-patch32_eurosat
7
7
  - clip-vit-base-patch32_resisc45
8
8
  - clip-vit-base-patch32_gtsrb
9
- # `corrption` can be one of:
9
+ # `corruption` can be one of:
10
10
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
11
11
  corruption: ${corruption}
12
12
  # The following datasets are used for test-time adaptation
@@ -0,0 +1,10 @@
1
+ _target_: fusion_bench.modelpool.ConvNextForImageClassificationPool
2
+ _recursive_: False
3
+ models:
4
+ _pretrained_:
5
+ config_path: facebook/convnext-base-224
6
+ pretrained: true
7
+ dataset_name: null
8
+ train_datasets: null
9
+ val_datasets: null
10
+ test_datasets: null
@@ -0,0 +1,10 @@
1
+ _target_: fusion_bench.modelpool.Dinov2ForImageClassificationPool
2
+ _recursive_: False
3
+ models:
4
+ _pretrained_:
5
+ config_path: facebook/dinov2-base-imagenet1k-1-layer
6
+ pretrained: true
7
+ dataset_name: null
8
+ train_datasets: null
9
+ val_datasets: null
10
+ test_datasets: null
@@ -1,17 +1,8 @@
1
1
  defaults:
2
- - hydra: default
3
- - fabric: auto
4
- - path: default
5
- # --- Model, Method, Task ---
6
- - method: simple_average
7
- - modelpool: nyuv2_modelpool
8
- - taskpool: nyuv2_taskpool
2
+ - fabric_model_fusion
3
+ - override method: simple_average
4
+ - override modelpool: nyuv2_modelpool
5
+ - override taskpool: nyuv2_taskpool
9
6
  - _self_
10
- _target_: fusion_bench.programs.FabricModelFusionProgram
11
- _recursive_: false
12
- fast_dev_run: false # Run a single batch of data to test the model or method
13
- use_lightning: true # Use the fabric to run the experiment
14
- print_config: true # Print the configuration to the console
15
- save_report: false # path to save the result report
16
7
  trainer:
17
8
  devices: 1
@@ -1,6 +1,6 @@
1
1
  type: clip_vit_classification
2
2
  name: clip-vit-robustness_clean
3
- # corrption can be one of:
3
+ # corruption can be one of:
4
4
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
5
5
  corruption: ${corruption}
6
6
  dataset_type: huggingface_image_classification
@@ -1,6 +1,6 @@
1
1
  type: clip_vit_classification
2
2
  name: clip-vit-robustness_clean
3
- # corrption can be one of:
3
+ # corruption can be one of:
4
4
  # contrast, gaussian_noise, impulse_noise, jpeg_compression, motion_blur, pixelate, spatter
5
5
  corruption: ${corruption}
6
6
  dataset_type: huggingface_image_classification
@@ -1,31 +0,0 @@
1
- from omegaconf import DictConfig
2
-
3
- from fusion_bench.utils import import_object
4
-
5
-
6
- class BaseFactoryClass:
7
- _registry = {}
8
-
9
- @classmethod
10
- def from_config(cls, config: DictConfig):
11
- name = config.name
12
- if name not in cls._registry:
13
- raise ValueError(
14
- f"Unknown name: {name}, available names: {cls._registry.keys()}. "
15
- f"You can register a new item using `{cls.__name__}.register()` method."
16
- )
17
-
18
- item_cls = cls._registry[name]
19
- if isinstance(item_cls, str):
20
- if item_cls.startswith("."):
21
- item_cls = f"{cls.__module__}.{item_cls[1:]}"
22
- item_cls = import_object(item_cls)
23
- return item_cls(config)
24
-
25
- @classmethod
26
- def register(cls, name: str, item_cls):
27
- cls._registry[name] = item_cls
28
-
29
- @classmethod
30
- def available_items(cls):
31
- return list(cls._registry.keys())