fusion-bench 0.2.25__py3-none-any.whl → 0.2.27__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (141) hide show
  1. fusion_bench/dataset/clip_dataset.py +1 -0
  2. fusion_bench/method/__init__.py +4 -0
  3. fusion_bench/method/adamerging/__init__.py +28 -5
  4. fusion_bench/method/adamerging/resnet_adamerging.py +279 -0
  5. fusion_bench/method/adamerging/task_wise_adamerging.py +2 -14
  6. fusion_bench/method/adamerging/utils.py +58 -0
  7. fusion_bench/method/classification/clip_finetune.py +6 -4
  8. fusion_bench/method/classification/image_classification_finetune.py +156 -12
  9. fusion_bench/method/dare/simple_average.py +3 -2
  10. fusion_bench/method/dare/task_arithmetic.py +3 -2
  11. fusion_bench/method/dop/__init__.py +1 -0
  12. fusion_bench/method/dop/dop.py +366 -0
  13. fusion_bench/method/dop/min_norm_solvers.py +227 -0
  14. fusion_bench/method/dop/utils.py +73 -0
  15. fusion_bench/method/simple_average.py +6 -4
  16. fusion_bench/mixins/lightning_fabric.py +9 -0
  17. fusion_bench/modelpool/causal_lm/causal_lm.py +2 -1
  18. fusion_bench/modelpool/resnet_for_image_classification.py +285 -4
  19. fusion_bench/models/hf_clip.py +4 -7
  20. fusion_bench/models/hf_utils.py +4 -1
  21. fusion_bench/taskpool/__init__.py +2 -0
  22. fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
  23. fusion_bench/taskpool/resnet_for_image_classification.py +231 -0
  24. fusion_bench/utils/state_dict_arithmetic.py +91 -10
  25. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/METADATA +9 -3
  26. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/RECORD +140 -77
  27. fusion_bench_config/fabric/auto.yaml +1 -1
  28. fusion_bench_config/fabric/loggers/swandb_logger.yaml +5 -0
  29. fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
  30. fusion_bench_config/fabric_model_fusion.yaml +1 -0
  31. fusion_bench_config/method/adamerging/resnet.yaml +18 -0
  32. fusion_bench_config/method/bitdelta/bitdelta.yaml +3 -0
  33. fusion_bench_config/method/classification/clip_finetune.yaml +5 -0
  34. fusion_bench_config/method/classification/image_classification_finetune.yaml +9 -0
  35. fusion_bench_config/method/depth_upscaling.yaml +9 -0
  36. fusion_bench_config/method/dop/dop.yaml +30 -0
  37. fusion_bench_config/method/dummy.yaml +6 -0
  38. fusion_bench_config/method/ensemble/max_model_predictor.yaml +6 -0
  39. fusion_bench_config/method/ensemble/simple_ensemble.yaml +8 -1
  40. fusion_bench_config/method/ensemble/weighted_ensemble.yaml +8 -0
  41. fusion_bench_config/method/linear/expo.yaml +5 -0
  42. fusion_bench_config/method/linear/linear_interpolation.yaml +8 -0
  43. fusion_bench_config/method/linear/llama_expo.yaml +5 -0
  44. fusion_bench_config/method/linear/llama_expo_with_dare.yaml +3 -0
  45. fusion_bench_config/method/linear/simple_average_for_causallm.yaml +5 -0
  46. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +3 -0
  47. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +5 -0
  48. fusion_bench_config/method/linear/weighted_average.yaml +3 -0
  49. fusion_bench_config/method/linear/weighted_average_for_llama.yaml +6 -1
  50. fusion_bench_config/method/mixtral_moe_merging.yaml +3 -0
  51. fusion_bench_config/method/mixtral_moe_upscaling.yaml +5 -0
  52. fusion_bench_config/method/model_recombination.yaml +8 -0
  53. fusion_bench_config/method/model_stock/model_stock.yaml +4 -1
  54. fusion_bench_config/method/opcm/opcm.yaml +5 -0
  55. fusion_bench_config/method/opcm/task_arithmetic.yaml +6 -0
  56. fusion_bench_config/method/opcm/ties_merging.yaml +5 -0
  57. fusion_bench_config/method/opcm/weight_average.yaml +5 -0
  58. fusion_bench_config/method/regmean/clip_regmean.yaml +3 -0
  59. fusion_bench_config/method/regmean/gpt2_regmean.yaml +3 -0
  60. fusion_bench_config/method/regmean/regmean.yaml +3 -0
  61. fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +3 -0
  62. fusion_bench_config/method/simple_average.yaml +9 -0
  63. fusion_bench_config/method/slerp/slerp.yaml +9 -0
  64. fusion_bench_config/method/slerp/slerp_lm.yaml +5 -0
  65. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +6 -0
  66. fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
  67. fusion_bench_config/method/smile_upscaling/projected_energy.yaml +5 -0
  68. fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +3 -0
  69. fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +5 -0
  70. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +5 -0
  71. fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +3 -0
  72. fusion_bench_config/method/task_arithmetic.yaml +9 -0
  73. fusion_bench_config/method/ties_merging.yaml +3 -0
  74. fusion_bench_config/method/wudi/wudi.yaml +3 -0
  75. fusion_bench_config/model_fusion.yaml +2 -1
  76. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py +138 -0
  77. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar10.yaml +1 -1
  78. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar100.yaml +1 -1
  79. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml +14 -0
  80. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml +14 -0
  81. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml +14 -0
  82. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml +14 -0
  83. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml +14 -0
  84. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml +14 -0
  85. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml +14 -0
  86. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml +14 -0
  87. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml +14 -0
  88. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml +14 -0
  89. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml +14 -0
  90. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml +14 -0
  91. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml +14 -0
  92. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml +14 -0
  93. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml +14 -0
  94. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml +14 -0
  95. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml +14 -0
  96. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml +14 -0
  97. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar10.yaml +1 -1
  98. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar100.yaml +1 -1
  99. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml +14 -0
  100. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml +14 -0
  101. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml +14 -0
  102. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml +14 -0
  103. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml +14 -0
  104. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml +14 -0
  105. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml +14 -0
  106. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml +14 -0
  107. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml +14 -0
  108. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml +14 -0
  109. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml +14 -0
  110. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml +14 -0
  111. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml +14 -0
  112. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml +14 -0
  113. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml +14 -0
  114. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml +14 -0
  115. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml +14 -0
  116. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml +14 -0
  117. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar10.yaml +1 -1
  118. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar100.yaml +1 -1
  119. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml +14 -0
  120. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml +14 -0
  121. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml +14 -0
  122. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml +14 -0
  123. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml +14 -0
  124. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml +14 -0
  125. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml +14 -0
  126. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml +14 -0
  127. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml +14 -0
  128. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml +14 -0
  129. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml +14 -0
  130. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml +14 -0
  131. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml +14 -0
  132. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml +14 -0
  133. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml +14 -0
  134. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml +14 -0
  135. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml +14 -0
  136. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml +14 -0
  137. fusion_bench_config/method/clip_finetune.yaml +0 -26
  138. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/WHEEL +0 -0
  139. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/entry_points.txt +0 -0
  140. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/licenses/LICENSE +0 -0
  141. {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/top_level.txt +0 -0
@@ -6,10 +6,13 @@ import torch
6
6
  from torch import Tensor
7
7
  from tqdm.auto import tqdm
8
8
 
9
+ from fusion_bench.utils.type import TorchModelType
10
+
9
11
  from .type import BoolStateDictType, StateDictType
10
12
 
11
13
  __all__ = [
12
14
  "ArithmeticStateDict",
15
+ "load_state_dict_with_prefix",
13
16
  "state_dicts_check_keys",
14
17
  "state_dict_to_device",
15
18
  "num_params_of_state_dict",
@@ -646,6 +649,48 @@ def _validate_list_lengths_equal(
646
649
  pass
647
650
 
648
651
 
652
+ def load_state_dict_with_prefix(
653
+ model: TorchModelType,
654
+ state_dict: StateDictType,
655
+ strict: bool = True,
656
+ assign: bool = False,
657
+ key_prefix: str = "model.",
658
+ operation: Literal["add", "remove"] = "remove",
659
+ ) -> TorchModelType:
660
+ """
661
+ Load a state dict into a model, adding or removing a prefix from the keys.
662
+
663
+ This is useful when loading state dicts saved with DataParallel, pytorch lightning or similar wrappers.
664
+
665
+ Args:
666
+ model: The model to load the state dict into.
667
+ state_dict: The state dictionary to load.
668
+ key_prefix: The prefix to add or remove from the keys.
669
+ operation: 'add' to add the prefix, 'remove' to remove it.
670
+
671
+ Returns:
672
+ The model with the loaded state dict.
673
+ """
674
+ if operation not in ("add", "remove"):
675
+ raise ValueError("operation must be either 'add' or 'remove'")
676
+
677
+ modified_state_dict = OrderedDict()
678
+ for key, value in state_dict.items():
679
+ if operation == "add":
680
+ new_key = f"{key_prefix}{key}"
681
+ else: # operation == "remove"
682
+ if key.startswith(key_prefix):
683
+ new_key = key[len(key_prefix) :]
684
+ else:
685
+ raise ValueError(
686
+ f"Key '{key}' does not start with prefix '{key_prefix}'"
687
+ )
688
+ modified_state_dict[new_key] = value
689
+
690
+ model.load_state_dict(modified_state_dict, strict=strict, assign=assign)
691
+ return model
692
+
693
+
649
694
  def state_dict_to_device(
650
695
  state_dict: StateDictType,
651
696
  device: Union[torch.device, str],
@@ -851,22 +896,48 @@ def state_dict_add_scalar(state_dict: StateDictType, scalar: Number) -> StateDic
851
896
  return OrderedDict((key, tensor + scalar) for key, tensor in state_dict.items())
852
897
 
853
898
 
854
- def state_dict_mul(state_dict: StateDictType, scalar: float) -> StateDictType:
899
+ def state_dict_mul(
900
+ state_dict: StateDictType,
901
+ scalar: float,
902
+ *,
903
+ keep_dtype_when_zero: bool = True,
904
+ show_pbar: bool = False,
905
+ ) -> StateDictType:
855
906
  """
856
907
  Multiply all parameters in a state dict by a scalar.
857
908
 
858
909
  Args:
859
910
  state_dict: The state dict to multiply.
860
- scalar: The scalar value to multiply each parameter by.
911
+ scalar (float): The scalar value to multiply each parameter by.
912
+ keep_dtype_when_zero (bool): Whether to keep the original data type of the tensors if either the tensor is all zeros or the scalar is zero.
913
+ show_pbar (bool): Whether to show a progress bar during computation.
861
914
 
862
915
  Returns:
863
916
  A new state dict with each parameter multiplied by the scalar.
864
917
  """
865
- return OrderedDict((key, scalar * tensor) for key, tensor in state_dict.items())
918
+ new_state_dict = OrderedDict()
919
+ for key, tensor in (
920
+ state_dict.items()
921
+ if not show_pbar
922
+ else tqdm(state_dict.items(), desc="Multiplying state dict")
923
+ ):
924
+ if (
925
+ keep_dtype_when_zero
926
+ and not tensor.is_floating_point() # when tensor is not floating point, multiplication by 0 keeps dtype
927
+ and (scalar == 0 or torch.all(tensor == 0))
928
+ ):
929
+ new_state_dict[key] = tensor.clone()
930
+ else:
931
+ new_state_dict[key] = scalar * tensor
932
+ return new_state_dict
866
933
 
867
934
 
868
935
  def state_dict_div(
869
- state_dict: StateDictType, scalar: float, show_pbar: bool = False
936
+ state_dict: StateDictType,
937
+ scalar: float,
938
+ *,
939
+ keep_dtype_when_zero: bool = True,
940
+ show_pbar: bool = False,
870
941
  ) -> StateDictType:
871
942
  """
872
943
  Divide all parameters in a state dict by a scalar.
@@ -874,6 +945,7 @@ def state_dict_div(
874
945
  Args:
875
946
  state_dict: The state dict to divide.
876
947
  scalar: The scalar value to divide each parameter by.
948
+ keep_dtype_when_zero: Whether to keep the original data type of the tensors if the tensor is all zeros.
877
949
  show_pbar: Whether to show a progress bar during computation.
878
950
 
879
951
  Returns:
@@ -885,12 +957,21 @@ def state_dict_div(
885
957
  if scalar == 0:
886
958
  raise ZeroDivisionError("Cannot divide state dict by zero")
887
959
 
888
- keys_iter = (
889
- tqdm(state_dict.keys(), desc="Dividing state dict")
890
- if show_pbar
891
- else state_dict.keys()
892
- )
893
- return OrderedDict((key, state_dict[key] / scalar) for key in keys_iter)
960
+ new_state_dict = OrderedDict()
961
+ for key, tensor in (
962
+ state_dict.items()
963
+ if not show_pbar
964
+ else tqdm(state_dict.items(), desc="Dividing state dict")
965
+ ):
966
+ if (
967
+ keep_dtype_when_zero
968
+ and not tensor.is_floating_point() # when tensor is not floating point, division by any scalar keeps dtype
969
+ and torch.all(tensor == 0) # only check tensor for zero
970
+ ):
971
+ new_state_dict[key] = tensor.clone()
972
+ else:
973
+ new_state_dict[key] = tensor / scalar
974
+ return new_state_dict
894
975
 
895
976
 
896
977
  def state_dict_power(state_dict: StateDictType, p: float) -> StateDictType:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
- Name: fusion_bench
3
- Version: 0.2.25
2
+ Name: fusion-bench
3
+ Version: 0.2.27
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  Project-URL: Repository, https://github.com/tanganke/fusion_bench
@@ -82,7 +82,13 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
82
82
  </details>
83
83
 
84
84
  <details>
85
- <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
85
+ <summary>Enneng Yang, et al. Continual Model Merging without Data: Dual Projections for Balancing Stability and Plasticity. NeurIPS 2025. https://github.com/EnnengYang/DOP</summary>
86
+
87
+ Model merging integrates multiple expert models with diverse capabilities into a unified framework, facilitating collaborative learning. However, most existing methods assume simultaneous access to all models, which is often impractical in real-world scenarios where models are received sequentially. While some studies have investigated continual model merging (CMM)--which involves sequentially merging multiple models--the challenge of balancing prior knowledge (stability) and incorporating new tasks (plasticity) remains unresolved. This paper, for the first time, formally defines the stability and plasticity of CMM from the perspective of orthogonal projection. Subsequently, we analyze the relationships among the spaces spanned by task data, historical gradients, and accumulated gradients. Building on this, we propose a data-free Dual Orthogonal Projection (DOP) method, which eliminates data dependence and mitigates interference between the merged model and models for old and new tasks by projecting their parameter differences onto their respective approximate data spaces. Finally, to solve potential conflicts between stability and plasticity, we reformulate DOP as a multi-objective optimization problem and employ a multi-gradient descent algorithm to obtain a Pareto-optimal solution. Extensive experiments across multiple architectures and task configurations validate that our approach significantly outperforms state-of-the-art CMM methods.
88
+ </details>
89
+
90
+ <details>
91
+ <summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. NeurIPS 2025. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
86
92
 
87
93
  Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
88
94
  </details>
@@ -19,7 +19,7 @@ fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3y
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
20
  fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
21
21
  fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
22
- fusion_bench/dataset/clip_dataset.py,sha256=Y27odUQWiUOb-WdJnorhcxccDvzrHISxisxFbiRrQHs,3185
22
+ fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
24
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
25
  fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
@@ -48,15 +48,15 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=QOcRQ3AmUpSiDikH1tq-EcxakX7akFPOizcynTLmUwQ,9377
51
+ fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
54
  fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
55
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
56
- fusion_bench/method/simple_average.py,sha256=FuIwHCUNK5CoToBzVt-lo8SK7wjj8CdRpiNLRnAflH4,5519
56
+ fusion_bench/method/simple_average.py,sha256=Er9jiLCmweE_AAQ-QkJ1LoytjHY45t707iIRXr8ZPpE,5735
57
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
58
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
59
- fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
59
+ fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
60
60
  fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=LvLYIzl2TsUeNwMeoGK1rW7T0mlxnpxqt3CJD31BKxI,1316
61
61
  fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=MBWHFApCaD_Del8l58CQGfn3eCWhwH-mVSVEBm_Nq4E,6279
62
62
  fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
@@ -65,8 +65,9 @@ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z
65
65
  fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=qN4x-2Iy4CuprdlH3fyBFMhjGm36cfM7NMMknL3ZdSA,9877
66
66
  fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
67
67
  fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
68
- fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
69
- fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
68
+ fusion_bench/method/adamerging/resnet_adamerging.py,sha256=36uH1tFhQVlvD7SoLmlo8Pa5nDjgaI73NyeBugb3Pf0,10952
69
+ fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=HXWyn8WJRXFMaqy5UIsC4gpXkRJDou3Rc5Mt5bu2h00,5682
70
+ fusion_bench/method/adamerging/utils.py,sha256=FJrB_FHlqSMKfHTEHqNsWKny_0fSDNpKMYknR5KLRmg,2078
70
71
  fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
71
72
  fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
72
73
  fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
@@ -77,17 +78,17 @@ fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cw
77
78
  fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
78
79
  fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
79
80
  fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
80
- fusion_bench/method/classification/clip_finetune.py,sha256=QNOw9O-BTOVOsW7lzRu8L-UfbiBpsT_8tS6i6BpbVyA,15726
81
+ fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
81
82
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
82
- fusion_bench/method/classification/image_classification_finetune.py,sha256=CPMpZvaULWaim01EvJJHlU4C6HQ16OCqZGoMvPBEWtY,8157
83
+ fusion_bench/method/classification/image_classification_finetune.py,sha256=ExUwsBsDHX6Kq1G9arapgf3xQZJLBcNoRfCIXqIsbD0,14967
83
84
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
84
85
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
85
86
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
86
87
  fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
87
88
  fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
88
89
  fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
89
- fusion_bench/method/dare/simple_average.py,sha256=jR08PokPIr5PWSZbGVOp3IApgKvxAIovg3vnB2KiTwk,906
90
- fusion_bench/method/dare/task_arithmetic.py,sha256=Seno_2BhuogdRxXOni8alnHG-fdW15_OWoAvMoBoJj0,2780
90
+ fusion_bench/method/dare/simple_average.py,sha256=ZNQEznItNgntEI704nD0R2vSu9HLXQ9-I23G7LcfsU4,950
91
+ fusion_bench/method/dare/task_arithmetic.py,sha256=ogPwONZ7faci3WS948ppuhXzYVDBl3ghSB-TVzqP4p8,2824
91
92
  fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
92
93
  fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
93
94
  fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
@@ -101,6 +102,10 @@ fusion_bench/method/doge_ta/__init__.py,sha256=dixO0i5fmhgC_W2_DAQ4PzYnkMCZX5D8t
101
102
  fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=4WPG2fhFw-u6oSoT-fBrP2K9YpX-MH-AotBL1DknfpA,1304
102
103
  fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4smG6rEO74c,13790
103
104
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
105
+ fusion_bench/method/dop/__init__.py,sha256=MD8c44ovLLJX_-v9t2SdLrvKLxVf8PijzFFNjJfvhpE,37
106
+ fusion_bench/method/dop/dop.py,sha256=_wNjN1DSK27aKEyWVay61fqc7prwJ1uiv_3618_bQ20,14160
107
+ fusion_bench/method/dop/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
108
+ fusion_bench/method/dop/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
104
109
  fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
105
110
  fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
106
111
  fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
@@ -266,7 +271,7 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
266
271
  fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
267
272
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
268
273
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
269
- fusion_bench/mixins/lightning_fabric.py,sha256=5iamAL7YV6lEm_-8NuzFjfIy1vslwKthSpCSWLLhlCM,7506
274
+ fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
270
275
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
271
276
  fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
272
277
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
@@ -281,9 +286,9 @@ fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__B
281
286
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
282
287
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
283
288
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
284
- fusion_bench/modelpool/resnet_for_image_classification.py,sha256=G72gRG6LzVWZcf_AvH5TKDVB2zyRrVG3RUe3WlU9_wE,7398
289
+ fusion_bench/modelpool/resnet_for_image_classification.py,sha256=1Q79oj3FIBQBOr13zCvIcscBKLA0PHbPmTarwVlhIww,19873
285
290
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
286
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=gpUQqxZIuKoaQ-gvdPsLVxI7UifueR6k3YzbUV1i0lk,19902
291
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fxmbq0N6xwajolXpdg,19993
287
292
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
288
293
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
289
294
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
@@ -294,8 +299,8 @@ fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNM
294
299
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
295
300
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
296
301
  fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
297
- fusion_bench/models/hf_clip.py,sha256=lL4LxbdwC_rDWRozdEJmRlzKaNcQMpWwCSMDE0tfZRM,7525
298
- fusion_bench/models/hf_utils.py,sha256=bfB3QAUqsG-TyUeOWrZt8V7GeWDhp-fKg3P0J3D_TbQ,5497
302
+ fusion_bench/models/hf_clip.py,sha256=1xdcAQtkHYJzLhOSlJl24qhMiwC_jdhp2Va-eN5X9vs,7499
303
+ fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
299
304
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
300
305
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
301
306
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
@@ -391,16 +396,17 @@ fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpw
391
396
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
392
397
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
393
398
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
394
- fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
399
+ fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
395
400
  fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
396
401
  fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
397
402
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
398
403
  fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
404
+ fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
399
405
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
400
406
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
401
407
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
402
408
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
403
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=99F8w_e4-UnoeDkSjo0z_8Wstx6e635h0IqSdtfT7ms,16460
409
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=-BMgFR8quJLfU60vU9mq6Ye-4bFGPp-4e_xY8RfhB84,16503
404
410
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
405
411
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
406
412
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -469,7 +475,7 @@ fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,26
469
475
  fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
470
476
  fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
471
477
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
472
- fusion_bench/utils/state_dict_arithmetic.py,sha256=kETybQPAcmupmTuKYKFThBDU2WBlhFPdj_Qzv500cFg,38385
478
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW5V5IhuXGtI_nxk,41234
473
479
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
474
480
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
475
481
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
@@ -480,14 +486,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
480
486
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
481
487
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
482
488
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
483
- fusion_bench-0.2.25.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
489
+ fusion_bench-0.2.27.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
484
490
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
485
491
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
486
- fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
492
+ fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
487
493
  fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
488
494
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
489
495
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
490
- fusion_bench_config/model_fusion.yaml,sha256=hODoFHcSl4hla0X8lt2oXwUKwYS4V6aw-Sxhyv6j70M,2467
496
+ fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
491
497
  fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
492
498
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
493
499
  fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
@@ -584,40 +590,41 @@ fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml,sha25
584
590
  fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml,sha256=4lb37lxTUStAR8eXhNxp3RONwSOYJI0bKY-hViZnjtE,94
585
591
  fusion_bench_config/dataset/text_generation/train/gsm8k.yaml,sha256=gP-xAZQxHHqTEf_Dgbi4F_SQDgGZFeddwMFsvcE1WW0,90
586
592
  fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha256=6BhKgApz8LhdDyATqCsaonBo0Q99o1uM22F0yj_pJi4,178
587
- fusion_bench_config/fabric/auto.yaml,sha256=dB2OvR2P5W7r9Zf1ada2qcQ6hjBnFwWMpszGS-Gmua4,574
593
+ fusion_bench_config/fabric/auto.yaml,sha256=PoYC5vtDogZ3Ce9H8fv2nlLTTT-q6hMPW-7CwSQ-g08,652
588
594
  fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sRzsipW7GDQJWs,705
589
595
  fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
590
596
  fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
591
597
  fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
592
598
  fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
599
+ fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
593
600
  fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
594
- fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
601
+ fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
595
602
  fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
596
603
  fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
597
604
  fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=4NTFnpZTEByH4Z6f-nwDtS4GUFtcluja27hXKWNRUiE,347
598
605
  fusion_bench_config/hydra/default.yaml,sha256=Fpi3pV1hqPoPk5QdBncse6NlNOAl2YHzD44LvRNbzq4,256
599
606
  fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
600
607
  fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
601
- fusion_bench_config/method/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
602
- fusion_bench_config/method/depth_upscaling.yaml,sha256=m2XUK8Znf8nnaPKMNH7Un19DQXJlFwpaHE02UId1nxY,632
603
- fusion_bench_config/method/dummy.yaml,sha256=5qs6OuIfriKOH7FgqvcMXMUoRLmXDZmjA4irpAsc5xo,45
604
- fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=AdVhXD6Crw-B3QyNpP4ToHRSg-EeSCIGtazA7lQvPOU,148
605
- fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=wYDRnWOpZ6SgvL2Fm9wIDomrN2x5Jaq5vg1hjh3druk,210
606
- fusion_bench_config/method/model_recombination.yaml,sha256=RGb4boklWcN_GnI-bB5o_qr5o5vGgfIfi_EnTqQ_qcA,195
607
- fusion_bench_config/method/simple_average.yaml,sha256=GtMNvt0-qWOevRX2V6fjiYUO2BwDvMw-EcxRMS_PhZQ,53
608
- fusion_bench_config/method/task_arithmetic.yaml,sha256=hqkbc8kbzEFPFmBIKbf-6-vT2ZsBYxhhlP7ZmNT13PM,74
609
- fusion_bench_config/method/ties_merging.yaml,sha256=0lsy-q-9SNY5xzfoAOFpeva2AqdwcbLwMxb0ZtTU2PA,292
608
+ fusion_bench_config/method/depth_upscaling.yaml,sha256=86YqczaMzZftymLy_k2cb-GMy4C42yTxxP4c4htZTBs,1230
609
+ fusion_bench_config/method/dummy.yaml,sha256=Pw2w6WQiw3K4_KH0THPs4NSM7lZoZLsNbB72iPSVsl8,427
610
+ fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=Fdd4rHhHm7rkhP8_KJoivX8Wxh_tcKOXz1udDMtb4k0,374
611
+ fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=igjbRMt7CGeyIzajRhjWgAIDOgInaMSBFqZM_COmjkY,584
612
+ fusion_bench_config/method/model_recombination.yaml,sha256=DeyVPdDCL-eyJDlPZXLAIWfKi3p8nN0dLFRx5ydsERc,740
613
+ fusion_bench_config/method/simple_average.yaml,sha256=uB51mNlFKb9S3Go1p6SLGgr3PWJFZs97Ccn1zZZkEug,577
614
+ fusion_bench_config/method/task_arithmetic.yaml,sha256=zQmNpnQrZTHiRv_KmYnHPMScKf8MUMLbQYh9254_1Jg,580
615
+ fusion_bench_config/method/ties_merging.yaml,sha256=c3BjnFo-ZU5hmCrfi-1VQPhd_EYGtftxxYDHTVCMy6s,501
610
616
  fusion_bench_config/method/ada_svd/clip_vision.yaml,sha256=3l0VKCL66rZNx020UKhf_UzXScZ5XZYOUeNm8mqo0So,183
611
617
  fusion_bench_config/method/adamerging/clip.yaml,sha256=NBJaK0a4RxV3D2LRciUeWmTqabRwu6OxZnT7u7iz6ug,753
612
618
  fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml,sha256=DxkZhcuu_-ErIUqBUmWKN5UXYYWKoKPX6IgjV-Txwv0,541
613
619
  fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml,sha256=bLz6zc5CofeUO2XhS5zthkkuWlcX7rCBpyujYckmUqk,536
614
620
  fusion_bench_config/method/adamerging/llama_sft.yaml,sha256=khKzfhvQ5oxBMH0d-YvyjN-qIgQNeevDodXngS5g9KY,1022
621
+ fusion_bench_config/method/adamerging/resnet.yaml,sha256=qYD_DnDC5yXcBOOQIlwWetsUXR5xTHbtEG71KppAIm0,534
615
622
  fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml,sha256=hxVA4deUr1go1RZl12qD8PekwydWJ9SBQowSqmo3A8I,139
616
623
  fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib2xYd-49x_xZSeVbExwL-A9-tHhHTMBrT_Fg,134
617
- fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=b92xQpufqrSHAiU0QFE8g0nQ7RGSowOubGrEz_KugsQ,231
624
+ fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=uuR5x1IVTWyZjTSd5i1JXd_D8tG7tWBfOpgMBDCBgR0,436
618
625
  fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
619
- fusion_bench_config/method/classification/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
620
- fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=fl60RFCYwmrwwu3QlaJTFiBLmSmnjHxl-xyq4Gb80iU,401
626
+ fusion_bench_config/method/classification/clip_finetune.yaml,sha256=VnP3JKcRaLQFRt6ohvKkh6MTLC6cf8AruSUqQ7bXC6A,1020
627
+ fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=oB2LgEgvtxSww_RLsE0B0uMPFqBsng4Py7qcpF7PrzU,778
621
628
  fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
622
629
  fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
623
630
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
@@ -631,9 +638,10 @@ fusion_bench_config/method/dare/task_arithmetic.yaml,sha256=cUAweNJ6p2aOv__0dvUL
631
638
  fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX26JnqAc85A-MY66DGvuE,416
632
639
  fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
633
640
  fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
634
- fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
635
- fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=RKa3IgN3DfFZVmeXVIdTt0NdPVV0jFkpQz6SxLs3Kso,124
636
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
641
+ fusion_bench_config/method/dop/dop.yaml,sha256=ZgdjuVfTj83kAvrS4RrPgGX7d_QQ7d1lIMlzhjiVeUc,954
642
+ fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=ugO9FbEYqQk3RkX7wUDE9UOg-4D0F4Rezv0O-7hTeRg,476
643
+ fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=kfPAaPVQIet9dYThKNsEBfe9gHdeCREnsM-snSOPahM,546
644
+ fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=LhlxU2P_inxR8MB0Z62phHWj5S4qxD7ITG4Ly-GUcQo,770
637
645
  fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
638
646
  fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
639
647
  fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=-m5uDA9hfBg_8vF3s0MnUp0JTl3MqpB4-rlPEg9CHD4,569
@@ -645,24 +653,24 @@ fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDL
645
653
  fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
646
654
  fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
647
655
  fusion_bench_config/method/isotropic_merging/iso_cts.yaml,sha256=70BODJt69pZ_9xH7S_Z2Yzb299LFIGkXy1bQiHQad6A,110
648
- fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdtsLTEWQTbO9wQ0Y,420
649
- fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
650
- fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
651
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
652
- fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=qqeIr61PJEcfZclZ5vV64GCzyt-8b1zB0FDZu8DsbXQ,322
653
- fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=tJA0n0_XVvll4rZYVHQVqFCz8W3Bey6NjPKMIH3-P0U,142
654
- fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=1oEIdxV0OqWjDQ9V_lmXEPUayp4KbKHE2SvpCLmiKOU,489
655
- fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
656
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
656
+ fusion_bench_config/method/linear/expo.yaml,sha256=A8fpPnR12je2kgqDuC3Y18jZ6GPm6QPPhro7PFZADWc,768
657
+ fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=cAL_ekEIJhJD4cfAbKilV0k_lNNPoJqY4sABVEKcM7E,523
658
+ fusion_bench_config/method/linear/llama_expo.yaml,sha256=87grnsueFkhjKPuFOsiOjoTpBNAdqOD3zvclsofGt4A,984
659
+ fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=6P9fUXZdf3stVMkwKjFglKzHNEQ0GpYSh64kfrTCVmw,602
660
+ fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=KfNu3scx18S3KmfFpb_wsnbguE7hoGFk_L_Z-AXtxsQ,693
661
+ fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=lkNQ56q3reQTKR40BkEta_eORXdqPQV8dEpjKcgimvM,366
662
+ fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=bqUXMlf5PngHyT-aZ1FqEHzi5-KeUwGyTdHLpL_2E1Q,869
663
+ fusion_bench_config/method/linear/weighted_average.yaml,sha256=OjE4EdfDHPYx8PlBJ6xIpCz4ITu_65VsRyefioRXGQ8,408
664
+ fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=VHGfLIE6G0FMwJ_8sVG1jKWFsSacgmErst0sdu7NeB8,902
657
665
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
658
666
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
659
667
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
660
- fusion_bench_config/method/model_stock/model_stock.yaml,sha256=G92eRhG_Zsgi2R2FRnMViGC9QPvo7ge-o_eI4ZZLxao,321
668
+ fusion_bench_config/method/model_stock/model_stock.yaml,sha256=4KHAFCjL4AQ5dxkv7IGkUTxE8g-GCoxDkA3BbnlzQC0,530
661
669
  fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
662
- fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
663
- fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
664
- fusion_bench_config/method/opcm/ties_merging.yaml,sha256=XOE1XzSdYXYzqev9bFD4g4prcmE1OiVINkVXsquizAA,541
665
- fusion_bench_config/method/opcm/weight_average.yaml,sha256=SmhftSJ_YXN6tn-0GuzQgjbE2sOd7YXoPYjDWzpY_9E,304
670
+ fusion_bench_config/method/opcm/opcm.yaml,sha256=7NBOGo6W1FDbqdkT8gfM5PI2kHfqB8ofMfgcxVI1suM,686
671
+ fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=WL_nVXhZWV9fe_ttChShkjYZVJnOCzvZ3i7NBppYsxk,743
672
+ fusion_bench_config/method/opcm/ties_merging.yaml,sha256=1-xR0dVEEFJue9r-oBk1ZfGmGM9vCu4cJBG5aZnJ3C8,917
673
+ fusion_bench_config/method/opcm/weight_average.yaml,sha256=n-eyxVkpRanlRJdFWFK3kppiO_W1S99WNjyjdBLDnw0,668
666
674
  fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
667
675
  fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
668
676
  fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml,sha256=gC6Ss0n2tKSb4gyVfx45BvsFbVBGN-om4-2S1sKS-_w,505
@@ -675,19 +683,19 @@ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE3
675
683
  fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
676
684
  fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
677
685
  fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
678
- fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=QfkCHCLK9wbyB1Tq1S7YT3351MbWzOjUQiALE-EJBgw,426
679
- fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o8tYQkhXxPV8lRf-dRNPIsOs,422
680
- fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
681
- fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=A034ryEwvosqyQzA3KWs7kdp-3CUnoJtCujVywV-uzA,434
682
- fusion_bench_config/method/slerp/slerp.yaml,sha256=xldDUULtfCdwzAkQUb0C8-TmbW7FqcAlIOsPX8p4n6w,116
683
- fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=c5OQ0zD7e0lXQyec09joHOFNxV1LMT4bHuwgk9GWskc,114
684
- fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=skLwgu_VHShm4m0oEOkqKzcBS5Cz7J29xEj7pTaSm0k,916
685
- fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=6Gui-OuQ3P_4TwO_syh9SWJCNeHiAQzS55aO-ByYKbQ,154
686
- fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=M_EBOC3B_pxaBO3tD6mnbXpvy6-EaegSsE-jdJs-HY0,114
687
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=ZMn_ImRjjc2uozf7ocQIzbgvFDpBV7S-34KptbBXVGo,200
688
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
689
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=MfZ1u1HIJoy_csWiLzR4GLz-eiaVxo2gmNYre224yqo,433
690
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
686
+ fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=cxv_6-a2WzqdrotZMPY3vMcbCuY4O0qM14I6GPKJ84I,637
687
+ fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=Qd4hS5rt0L8zxM-YsXoChCjyR5rJc0jC1k4VA3czhUo,634
688
+ fusion_bench_config/method/regmean/regmean.yaml,sha256=mi1FHMg2YmScFfZfN2F82TisSju32YiLtrPYvBXO6oE,312
689
+ fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=8CSUdznjVuzGMPSGiLHlxCazBBVNbNNDDzpPHkCFSH8,647
690
+ fusion_bench_config/method/slerp/slerp.yaml,sha256=XR3z6iqyHirkoFSdLAeV2bP1yyI25MoWG-LqdE-ypjA,719
691
+ fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=hO07n6elZg_FrqEfSfbdR-tb1hqwT7vaLgAZKdF8O1o,479
692
+ fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=_fUBKoz9Jts6ogflFi4D7z7rsrLgCQBbnL1yVVxahro,1347
693
+ fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=p99GZc4s1tfro2NJggNcuuLGrcAPralF6EMxUaywmAQ,537
694
+ fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=wFwwJVjoTgBhM9yqkCanGxiivMqQN6VHjHZQEBDCiiQ,496
695
+ fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=Tx8TCKEESIy2NQge_lP48wJlNdyk2BH5E7TVyiNl2kM,430
696
+ fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=twzNiksQpAn0PQexMLvRyFwjLb7PsTPhk8vllOiVD64,754
697
+ fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=lArBuG-mdHTRCgW_zaQS--vtiGU0JZGtGcFHu6avOmc,800
698
+ fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=38DGdOjpDo-dOMpfy807p3x-eAvibjED-BGtFGnaycA,689
691
699
  fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
692
700
  fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
693
701
  fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
@@ -698,7 +706,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
698
706
  fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
699
707
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
700
708
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
701
- fusion_bench_config/method/wudi/wudi.yaml,sha256=3mJ6-XKHwwHALS3d503ybGM7pc1PhEK91YwwMybuzMc,76
709
+ fusion_bench_config/method/wudi/wudi.yaml,sha256=ZX3HI0vLjTJ5iFZt32-M_O60h6D6oBuf0WY7zBXUOWI,285
702
710
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
703
711
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
704
712
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
@@ -887,12 +895,67 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
887
895
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
888
896
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
889
897
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
890
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml,sha256=CLn-9uSMsQurlUL1uvfiXfPe7huQDTyehkhs4NJ5GOs,375
891
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml,sha256=_WD401eyMtDXdwse_nb3Y8ELCIG_EL2PpHuY40-y0pU,378
892
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml,sha256=DPsMtgtczaP8WOqADkjqbJUTnNk3ZOsHiCf6A4_oPu0,374
893
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml,sha256=VzCKLMbhNXxlqtKUEDpsiL-GVOeoG7iNsu5TZAWK51I,377
894
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml,sha256=rOOzE5KFamspHgBzAqQg5m0a4B22_uniK6WHhG6-kBA,374
895
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml,sha256=8t5OR0yhdnGsLgASVJwUbdUgsl4GHLS4HhDuXyxNERU,377
898
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py,sha256=c3vWGNGQJ6ybd43NeQZsNFo9gmvKoHERzswHYCnBtH0,4102
899
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar10.yaml,sha256=MjEdh1WQ1Cgd_9KQg53Egr0gjcptTl8eDt_jhJIzOhY,374
900
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar100.yaml,sha256=zIWKMuMS0HXsisR46PVGi2Kqs2_1OW2DfQDKeAfIhxU,377
901
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml,sha256=BkPCRMQsJdn5oU-jlLj-nBBidLNhxPRwCwdFs3L99dw,362
902
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml,sha256=g2Rc-B852dFIVydK77hcJTVa-_b15pL6i3yESP0jDeo,395
903
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml,sha256=Sc_lrZLIyNrRt0V7z1K96juyNHPQHBEbzMjjkqtQNtw,374
904
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml,sha256=qwtFygQQo_G7KfWR-kjLcyzHu4Sl6KVQEgbgborLtJg,392
905
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml,sha256=eFQFV2mCHPjLA3eBVk7oU0moah6szOjyDgNY9a_NFj4,374
906
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml,sha256=gl4iQdogT7A35YaGxYnmh27F-U7I6XgHGaFPX4d1xcQ,374
907
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml,sha256=zCmDzrj76hJgl6_-m-C90raKDZAoy2jvyzVBKCytFGs,368
908
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml,sha256=_HWFcO_t3qDrf-35-e2tcCTAJ3wF7EOW682IHuaN0Vs,371
909
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml,sha256=Jmfv4pbFrzt6DgRLBaZ9dBTKPyZ1K89v0qTcAdLDD_Y,368
910
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml,sha256=NBQQUFxEgE_aNJhtW0VODNWjzoAzGr6Sv5bWZtuewgE,398
911
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml,sha256=iJBZeAX4pZoo16Z42fkF_iSY9L3Vk7gdHr3045Mb4U8,404
912
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml,sha256=mMQr_cmnCHDnEUmIWrwNofMXrDw8WTD26CdgAlliVdA,365
913
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml,sha256=-cx_JY09HJO-kDN-Gloq8rLx11LcWWqVQ_90b_YmFLQ,392
914
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml,sha256=94YlYy2WMHuyeG3Yrf1XzKWkXbsKljmZ1lI189ENltU,377
915
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml,sha256=-2e3YTLg6vZogzcPggWlRXvVZgU_kRX7YrYp_XPDR3Y,392
916
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml,sha256=Jn9e14gnho8FSzwphpvLR67JYVm-_Xh0VnXU7egYOrs,368
917
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml,sha256=ATLUWhHsHYYFEcKiouzBajEluuSjbo0RUG4vSTaLTWA,371
918
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml,sha256=mwhu_DYicLAOzPIo__2cItat2xwF5N1B45owxqCvRhA,365
919
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar10.yaml,sha256=xsiXuZssaumpWk1QHUKk_qcHz7s9SOmkuimLZ7NLXB0,373
920
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar100.yaml,sha256=IT85uNPz7WvJkqzZ-IKAuQFoDzooBKQSiLPLdDLCWcQ,376
921
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml,sha256=bJJIo3s-u5c5U5Ty3f20QwEhx_I7T3qv7BHivZ1uIMI,361
922
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml,sha256=mYnfUSjEOOvqGqy_0TpzoMkEdLezzNGbixoltP_EnpQ,394
923
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml,sha256=wqBYl115VoFo66BNn_yhJ_eKy6ESOamVlTQkkWDduQE,373
924
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml,sha256=Yf1-q73whqAO-_uXgEqT1S-pRHLA4OA4RS-dgYIIZQU,391
925
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml,sha256=ASUBIhghLH_HLPKDIDDWtkgiwY2RmofzWBjeyLW5R-A,373
926
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml,sha256=EC2S3n3Vca8MUB2CYmsctNM__nErHWNRr6A869rClGY,373
927
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml,sha256=j8dAX4t99KSOG3n7lJgF57iQOEUvIC-C7pMaUALpKDQ,367
928
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml,sha256=YyrdVREoWdr_W0D15Hmrzasdd2u0sSbIFeKw0Npu1kE,370
929
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml,sha256=jfGzGmT4Z4YUac6AuAKxKgRwMiJgOWp0qjeT7YdT8zg,367
930
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml,sha256=HuPpnNMm_cWicrLsWd3vLZPLXZYhyrZZmlgKrI6O3hU,397
931
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml,sha256=6GAh1U8nJ76PU0Plrszz-6Jcc9XIPdP8tJdp81ON6Rc,403
932
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml,sha256=hUqs6xSzjtNUFuuxxPbvq9I6sixv4mxlQ81dxPESurI,364
933
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml,sha256=hlZjBSQTFrkQYMnIIIh-a-dj0DTqf2V2XbLYhzJwSMo,391
934
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml,sha256=wHYquC1bT3OVlfwR_IQhnRUhAA4OA1mXvylgXbUgF4E,376
935
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml,sha256=N8GDAVR4akC_LgWpSq-OBhmZXE8EnHcgmZT9C4Mf88E,391
936
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml,sha256=NOHcRm0iKiGADXej-ovDD9gk_uPtPIGqfoUiTC00CuY,367
937
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml,sha256=rytamVle0ACaUpK0kQJWq1dqvH9UN5UmpAFATYFYJ40,370
938
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml,sha256=1OKSAr-CZqP7JN9w255Qpj-hOy52K78kgMXsUeveQZU,364
939
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar10.yaml,sha256=g38RQxsEHKCs-4mY7JYaoJEs7KKyKEr6K6iWgGIRG-U,373
940
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar100.yaml,sha256=CqoolQghhRczOv9y7mWAsBVVOgBXKR3iY2_OAdokFMQ,376
941
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml,sha256=Q6bJM92ZDMflKN9ato0pzVbFI3H70yfUfk8Du-bnTiM,361
942
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml,sha256=fAIuxU_p0iU2oNNYnhVr33-15BttA297hN_5XJnlnGo,394
943
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml,sha256=awDPy5b-QOSGzwYNKUv2_1k38Wj_cWAso13LXeIwi4A,373
944
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml,sha256=x-v6DawF_Mvbh5xI3zgBxj2ZMEB6WLBHDGk8O6C2NCQ,391
945
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml,sha256=046EAIV7tssMkOLVJew9ZLCPzZUX4QUfkHwGRAQy6PA,373
946
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml,sha256=G9KmdAIfdMWp2KcZUkdacq1CWYCiXbNhL695xVs8myo,373
947
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml,sha256=q0o79gEpDrQ-KAsoVlfEig5No29S4DgKT2pR8X-43Co,367
948
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml,sha256=LpBnMQC1x6WnsaMHz4Dfxgrbzr6yHazViPxejY3gQLI,370
949
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml,sha256=h095GSEtx_vL1fvphkmnmifQSnNkMMqy3pXcBmJF7h0,367
950
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml,sha256=0jgc2SF5eFAzTqwHSD312EEvBhlUaiZ3PZncgPd5Xd8,397
951
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml,sha256=2ZtTD1AhJY88V9LrnxXovQn7a3AcLINBoTxSW4B3tyw,403
952
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml,sha256=y9evfipe7w_oq7Fn1rTNHvXylwTll3TgzP_u2oy_AYU,364
953
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml,sha256=vsoHGxzFMOwNSMkd10ri1_WqtUp9sTDmlmrEPPP2ECw,391
954
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml,sha256=f3Fz2zcS15hZC94QX1f1kgUclk9_9if_V8d98-h4RlE,376
955
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml,sha256=HUmMrlBzg5BhDelLc3TLY_A0p3ValfXjHZo9jruo4vk,391
956
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml,sha256=5LS4T1BQHpNxzTSdMwEMAtt9SZ2Am9sPABG5rinGags,367
957
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml,sha256=IhUORkW5FT329LjiQC3nIXNbuIM846urzM3dNchPUdk,370
958
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml,sha256=HtK3e0F1XpnzdyCbaePdDOt8tvnUtpywuYNephXQl5A,364
896
959
  fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
897
960
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
898
961
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
@@ -948,8 +1011,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
948
1011
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
949
1012
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
950
1013
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
951
- fusion_bench-0.2.25.dist-info/METADATA,sha256=hOFNvf8-PM-SP8-58zf4yeOFX27dLWS27Ow1PaPpu30,22621
952
- fusion_bench-0.2.25.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
953
- fusion_bench-0.2.25.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
954
- fusion_bench-0.2.25.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
955
- fusion_bench-0.2.25.dist-info/RECORD,,
1014
+ fusion_bench-0.2.27.dist-info/METADATA,sha256=TnLxGqALTnvyF-GXwk-iGvl-eNvBjNvZzkDODdkVLVo,24307
1015
+ fusion_bench-0.2.27.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1016
+ fusion_bench-0.2.27.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1017
+ fusion_bench-0.2.27.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1018
+ fusion_bench-0.2.27.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  defaults:
2
- - loggers: tensorboard_logger
2
+ - loggers: tensorboard_logger # to choose the logger, e.g., tensorboard_logger, wandb_logger, swandb_logger
3
3
  - _self_
4
4
  _target_: lightning.Fabric
5
5
  _recursive_: true
@@ -0,0 +1,5 @@
1
+ #https://github.com/SwanHubX/SwanLab/blob/main/swanlab/integration/pytorch_lightning.py
2
+ _target_: swandb.integration.pytorch_lightning.SwanLabLogger
3
+ project: ${hydra:job.config_name}
4
+ description: "SwanLab logger with FusionBench"
5
+ save_dir: ${path.log_dir}