fusion-bench 0.2.25__py3-none-any.whl → 0.2.27__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/dataset/clip_dataset.py +1 -0
- fusion_bench/method/__init__.py +4 -0
- fusion_bench/method/adamerging/__init__.py +28 -5
- fusion_bench/method/adamerging/resnet_adamerging.py +279 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +2 -14
- fusion_bench/method/adamerging/utils.py +58 -0
- fusion_bench/method/classification/clip_finetune.py +6 -4
- fusion_bench/method/classification/image_classification_finetune.py +156 -12
- fusion_bench/method/dare/simple_average.py +3 -2
- fusion_bench/method/dare/task_arithmetic.py +3 -2
- fusion_bench/method/dop/__init__.py +1 -0
- fusion_bench/method/dop/dop.py +366 -0
- fusion_bench/method/dop/min_norm_solvers.py +227 -0
- fusion_bench/method/dop/utils.py +73 -0
- fusion_bench/method/simple_average.py +6 -4
- fusion_bench/mixins/lightning_fabric.py +9 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +2 -1
- fusion_bench/modelpool/resnet_for_image_classification.py +285 -4
- fusion_bench/models/hf_clip.py +4 -7
- fusion_bench/models/hf_utils.py +4 -1
- fusion_bench/taskpool/__init__.py +2 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
- fusion_bench/taskpool/resnet_for_image_classification.py +231 -0
- fusion_bench/utils/state_dict_arithmetic.py +91 -10
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/METADATA +9 -3
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/RECORD +140 -77
- fusion_bench_config/fabric/auto.yaml +1 -1
- fusion_bench_config/fabric/loggers/swandb_logger.yaml +5 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric_model_fusion.yaml +1 -0
- fusion_bench_config/method/adamerging/resnet.yaml +18 -0
- fusion_bench_config/method/bitdelta/bitdelta.yaml +3 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +5 -0
- fusion_bench_config/method/classification/image_classification_finetune.yaml +9 -0
- fusion_bench_config/method/depth_upscaling.yaml +9 -0
- fusion_bench_config/method/dop/dop.yaml +30 -0
- fusion_bench_config/method/dummy.yaml +6 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +6 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +8 -1
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +8 -0
- fusion_bench_config/method/linear/expo.yaml +5 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +8 -0
- fusion_bench_config/method/linear/llama_expo.yaml +5 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +3 -0
- fusion_bench_config/method/linear/simple_average_for_causallm.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +3 -0
- fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +5 -0
- fusion_bench_config/method/linear/weighted_average.yaml +3 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +6 -1
- fusion_bench_config/method/mixtral_moe_merging.yaml +3 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +5 -0
- fusion_bench_config/method/model_recombination.yaml +8 -0
- fusion_bench_config/method/model_stock/model_stock.yaml +4 -1
- fusion_bench_config/method/opcm/opcm.yaml +5 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +5 -0
- fusion_bench_config/method/opcm/weight_average.yaml +5 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +3 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +3 -0
- fusion_bench_config/method/regmean/regmean.yaml +3 -0
- fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +3 -0
- fusion_bench_config/method/simple_average.yaml +9 -0
- fusion_bench_config/method/slerp/slerp.yaml +9 -0
- fusion_bench_config/method/slerp/slerp_lm.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/projected_energy.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +3 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +3 -0
- fusion_bench_config/method/task_arithmetic.yaml +9 -0
- fusion_bench_config/method/ties_merging.yaml +3 -0
- fusion_bench_config/method/wudi/wudi.yaml +3 -0
- fusion_bench_config/model_fusion.yaml +2 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py +138 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml +14 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml +14 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml +14 -0
- fusion_bench_config/method/clip_finetune.yaml +0 -26
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.25.dist-info → fusion_bench-0.2.27.dist-info}/top_level.txt +0 -0
|
@@ -6,10 +6,13 @@ import torch
|
|
|
6
6
|
from torch import Tensor
|
|
7
7
|
from tqdm.auto import tqdm
|
|
8
8
|
|
|
9
|
+
from fusion_bench.utils.type import TorchModelType
|
|
10
|
+
|
|
9
11
|
from .type import BoolStateDictType, StateDictType
|
|
10
12
|
|
|
11
13
|
__all__ = [
|
|
12
14
|
"ArithmeticStateDict",
|
|
15
|
+
"load_state_dict_with_prefix",
|
|
13
16
|
"state_dicts_check_keys",
|
|
14
17
|
"state_dict_to_device",
|
|
15
18
|
"num_params_of_state_dict",
|
|
@@ -646,6 +649,48 @@ def _validate_list_lengths_equal(
|
|
|
646
649
|
pass
|
|
647
650
|
|
|
648
651
|
|
|
652
|
+
def load_state_dict_with_prefix(
|
|
653
|
+
model: TorchModelType,
|
|
654
|
+
state_dict: StateDictType,
|
|
655
|
+
strict: bool = True,
|
|
656
|
+
assign: bool = False,
|
|
657
|
+
key_prefix: str = "model.",
|
|
658
|
+
operation: Literal["add", "remove"] = "remove",
|
|
659
|
+
) -> TorchModelType:
|
|
660
|
+
"""
|
|
661
|
+
Load a state dict into a model, adding or removing a prefix from the keys.
|
|
662
|
+
|
|
663
|
+
This is useful when loading state dicts saved with DataParallel, pytorch lightning or similar wrappers.
|
|
664
|
+
|
|
665
|
+
Args:
|
|
666
|
+
model: The model to load the state dict into.
|
|
667
|
+
state_dict: The state dictionary to load.
|
|
668
|
+
key_prefix: The prefix to add or remove from the keys.
|
|
669
|
+
operation: 'add' to add the prefix, 'remove' to remove it.
|
|
670
|
+
|
|
671
|
+
Returns:
|
|
672
|
+
The model with the loaded state dict.
|
|
673
|
+
"""
|
|
674
|
+
if operation not in ("add", "remove"):
|
|
675
|
+
raise ValueError("operation must be either 'add' or 'remove'")
|
|
676
|
+
|
|
677
|
+
modified_state_dict = OrderedDict()
|
|
678
|
+
for key, value in state_dict.items():
|
|
679
|
+
if operation == "add":
|
|
680
|
+
new_key = f"{key_prefix}{key}"
|
|
681
|
+
else: # operation == "remove"
|
|
682
|
+
if key.startswith(key_prefix):
|
|
683
|
+
new_key = key[len(key_prefix) :]
|
|
684
|
+
else:
|
|
685
|
+
raise ValueError(
|
|
686
|
+
f"Key '{key}' does not start with prefix '{key_prefix}'"
|
|
687
|
+
)
|
|
688
|
+
modified_state_dict[new_key] = value
|
|
689
|
+
|
|
690
|
+
model.load_state_dict(modified_state_dict, strict=strict, assign=assign)
|
|
691
|
+
return model
|
|
692
|
+
|
|
693
|
+
|
|
649
694
|
def state_dict_to_device(
|
|
650
695
|
state_dict: StateDictType,
|
|
651
696
|
device: Union[torch.device, str],
|
|
@@ -851,22 +896,48 @@ def state_dict_add_scalar(state_dict: StateDictType, scalar: Number) -> StateDic
|
|
|
851
896
|
return OrderedDict((key, tensor + scalar) for key, tensor in state_dict.items())
|
|
852
897
|
|
|
853
898
|
|
|
854
|
-
def state_dict_mul(
|
|
899
|
+
def state_dict_mul(
|
|
900
|
+
state_dict: StateDictType,
|
|
901
|
+
scalar: float,
|
|
902
|
+
*,
|
|
903
|
+
keep_dtype_when_zero: bool = True,
|
|
904
|
+
show_pbar: bool = False,
|
|
905
|
+
) -> StateDictType:
|
|
855
906
|
"""
|
|
856
907
|
Multiply all parameters in a state dict by a scalar.
|
|
857
908
|
|
|
858
909
|
Args:
|
|
859
910
|
state_dict: The state dict to multiply.
|
|
860
|
-
scalar: The scalar value to multiply each parameter by.
|
|
911
|
+
scalar (float): The scalar value to multiply each parameter by.
|
|
912
|
+
keep_dtype_when_zero (bool): Whether to keep the original data type of the tensors if either the tensor is all zeros or the scalar is zero.
|
|
913
|
+
show_pbar (bool): Whether to show a progress bar during computation.
|
|
861
914
|
|
|
862
915
|
Returns:
|
|
863
916
|
A new state dict with each parameter multiplied by the scalar.
|
|
864
917
|
"""
|
|
865
|
-
|
|
918
|
+
new_state_dict = OrderedDict()
|
|
919
|
+
for key, tensor in (
|
|
920
|
+
state_dict.items()
|
|
921
|
+
if not show_pbar
|
|
922
|
+
else tqdm(state_dict.items(), desc="Multiplying state dict")
|
|
923
|
+
):
|
|
924
|
+
if (
|
|
925
|
+
keep_dtype_when_zero
|
|
926
|
+
and not tensor.is_floating_point() # when tensor is not floating point, multiplication by 0 keeps dtype
|
|
927
|
+
and (scalar == 0 or torch.all(tensor == 0))
|
|
928
|
+
):
|
|
929
|
+
new_state_dict[key] = tensor.clone()
|
|
930
|
+
else:
|
|
931
|
+
new_state_dict[key] = scalar * tensor
|
|
932
|
+
return new_state_dict
|
|
866
933
|
|
|
867
934
|
|
|
868
935
|
def state_dict_div(
|
|
869
|
-
state_dict: StateDictType,
|
|
936
|
+
state_dict: StateDictType,
|
|
937
|
+
scalar: float,
|
|
938
|
+
*,
|
|
939
|
+
keep_dtype_when_zero: bool = True,
|
|
940
|
+
show_pbar: bool = False,
|
|
870
941
|
) -> StateDictType:
|
|
871
942
|
"""
|
|
872
943
|
Divide all parameters in a state dict by a scalar.
|
|
@@ -874,6 +945,7 @@ def state_dict_div(
|
|
|
874
945
|
Args:
|
|
875
946
|
state_dict: The state dict to divide.
|
|
876
947
|
scalar: The scalar value to divide each parameter by.
|
|
948
|
+
keep_dtype_when_zero: Whether to keep the original data type of the tensors if the tensor is all zeros.
|
|
877
949
|
show_pbar: Whether to show a progress bar during computation.
|
|
878
950
|
|
|
879
951
|
Returns:
|
|
@@ -885,12 +957,21 @@ def state_dict_div(
|
|
|
885
957
|
if scalar == 0:
|
|
886
958
|
raise ZeroDivisionError("Cannot divide state dict by zero")
|
|
887
959
|
|
|
888
|
-
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
960
|
+
new_state_dict = OrderedDict()
|
|
961
|
+
for key, tensor in (
|
|
962
|
+
state_dict.items()
|
|
963
|
+
if not show_pbar
|
|
964
|
+
else tqdm(state_dict.items(), desc="Dividing state dict")
|
|
965
|
+
):
|
|
966
|
+
if (
|
|
967
|
+
keep_dtype_when_zero
|
|
968
|
+
and not tensor.is_floating_point() # when tensor is not floating point, division by any scalar keeps dtype
|
|
969
|
+
and torch.all(tensor == 0) # only check tensor for zero
|
|
970
|
+
):
|
|
971
|
+
new_state_dict[key] = tensor.clone()
|
|
972
|
+
else:
|
|
973
|
+
new_state_dict[key] = tensor / scalar
|
|
974
|
+
return new_state_dict
|
|
894
975
|
|
|
895
976
|
|
|
896
977
|
def state_dict_power(state_dict: StateDictType, p: float) -> StateDictType:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
|
-
Name:
|
|
3
|
-
Version: 0.2.
|
|
2
|
+
Name: fusion-bench
|
|
3
|
+
Version: 0.2.27
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
Project-URL: Repository, https://github.com/tanganke/fusion_bench
|
|
@@ -82,7 +82,13 @@ Model merging has emerged as a promising approach for multi-task learning (MTL),
|
|
|
82
82
|
</details>
|
|
83
83
|
|
|
84
84
|
<details>
|
|
85
|
-
<summary>
|
|
85
|
+
<summary>Enneng Yang, et al. Continual Model Merging without Data: Dual Projections for Balancing Stability and Plasticity. NeurIPS 2025. https://github.com/EnnengYang/DOP</summary>
|
|
86
|
+
|
|
87
|
+
Model merging integrates multiple expert models with diverse capabilities into a unified framework, facilitating collaborative learning. However, most existing methods assume simultaneous access to all models, which is often impractical in real-world scenarios where models are received sequentially. While some studies have investigated continual model merging (CMM)--which involves sequentially merging multiple models--the challenge of balancing prior knowledge (stability) and incorporating new tasks (plasticity) remains unresolved. This paper, for the first time, formally defines the stability and plasticity of CMM from the perspective of orthogonal projection. Subsequently, we analyze the relationships among the spaces spanned by task data, historical gradients, and accumulated gradients. Building on this, we propose a data-free Dual Orthogonal Projection (DOP) method, which eliminates data dependence and mitigates interference between the merged model and models for old and new tasks by projecting their parameter differences onto their respective approximate data spaces. Finally, to solve potential conflicts between stability and plasticity, we reformulate DOP as a multi-objective optimization problem and employ a multi-gradient descent algorithm to obtain a Pareto-optimal solution. Extensive experiments across multiple architectures and task configurations validate that our approach significantly outperforms state-of-the-art CMM methods.
|
|
88
|
+
</details>
|
|
89
|
+
|
|
90
|
+
<details>
|
|
91
|
+
<summary>Anke Tang, et al. Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging. NeurIPS 2025. Jan 2025. https://arxiv.org/pdf/2501.09522</summary>
|
|
86
92
|
|
|
87
93
|
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
|
|
88
94
|
</details>
|
|
@@ -19,7 +19,7 @@ fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3y
|
|
|
19
19
|
fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
|
|
20
20
|
fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
|
|
21
21
|
fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
|
|
22
|
-
fusion_bench/dataset/clip_dataset.py,sha256=
|
|
22
|
+
fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
|
|
23
23
|
fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
|
|
24
24
|
fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
|
|
25
25
|
fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
|
|
@@ -48,15 +48,15 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
|
|
|
48
48
|
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
49
49
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
50
50
|
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
|
-
fusion_bench/method/__init__.py,sha256=
|
|
51
|
+
fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
|
|
52
52
|
fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
|
|
53
53
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
54
54
|
fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
|
|
55
55
|
fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
|
|
56
|
-
fusion_bench/method/simple_average.py,sha256=
|
|
56
|
+
fusion_bench/method/simple_average.py,sha256=Er9jiLCmweE_AAQ-QkJ1LoytjHY45t707iIRXr8ZPpE,5735
|
|
57
57
|
fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
|
|
58
58
|
fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
|
|
59
|
-
fusion_bench/method/adamerging/__init__.py,sha256=
|
|
59
|
+
fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
|
|
60
60
|
fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=LvLYIzl2TsUeNwMeoGK1rW7T0mlxnpxqt3CJD31BKxI,1316
|
|
61
61
|
fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=MBWHFApCaD_Del8l58CQGfn3eCWhwH-mVSVEBm_Nq4E,6279
|
|
62
62
|
fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
|
|
@@ -65,8 +65,9 @@ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z
|
|
|
65
65
|
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=qN4x-2Iy4CuprdlH3fyBFMhjGm36cfM7NMMknL3ZdSA,9877
|
|
66
66
|
fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
|
|
67
67
|
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
68
|
-
fusion_bench/method/adamerging/
|
|
69
|
-
fusion_bench/method/adamerging/
|
|
68
|
+
fusion_bench/method/adamerging/resnet_adamerging.py,sha256=36uH1tFhQVlvD7SoLmlo8Pa5nDjgaI73NyeBugb3Pf0,10952
|
|
69
|
+
fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=HXWyn8WJRXFMaqy5UIsC4gpXkRJDou3Rc5Mt5bu2h00,5682
|
|
70
|
+
fusion_bench/method/adamerging/utils.py,sha256=FJrB_FHlqSMKfHTEHqNsWKny_0fSDNpKMYknR5KLRmg,2078
|
|
70
71
|
fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
|
|
71
72
|
fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
|
|
72
73
|
fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
|
|
@@ -77,17 +78,17 @@ fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cw
|
|
|
77
78
|
fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
|
|
78
79
|
fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
|
|
79
80
|
fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
|
|
80
|
-
fusion_bench/method/classification/clip_finetune.py,sha256=
|
|
81
|
+
fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
|
|
81
82
|
fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
|
|
82
|
-
fusion_bench/method/classification/image_classification_finetune.py,sha256=
|
|
83
|
+
fusion_bench/method/classification/image_classification_finetune.py,sha256=ExUwsBsDHX6Kq1G9arapgf3xQZJLBcNoRfCIXqIsbD0,14967
|
|
83
84
|
fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
|
|
84
85
|
fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
|
|
85
86
|
fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
|
|
86
87
|
fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
|
|
87
88
|
fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
|
|
88
89
|
fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
|
|
89
|
-
fusion_bench/method/dare/simple_average.py,sha256=
|
|
90
|
-
fusion_bench/method/dare/task_arithmetic.py,sha256=
|
|
90
|
+
fusion_bench/method/dare/simple_average.py,sha256=ZNQEznItNgntEI704nD0R2vSu9HLXQ9-I23G7LcfsU4,950
|
|
91
|
+
fusion_bench/method/dare/task_arithmetic.py,sha256=ogPwONZ7faci3WS948ppuhXzYVDBl3ghSB-TVzqP4p8,2824
|
|
91
92
|
fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
|
|
92
93
|
fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
|
|
93
94
|
fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
|
|
@@ -101,6 +102,10 @@ fusion_bench/method/doge_ta/__init__.py,sha256=dixO0i5fmhgC_W2_DAQ4PzYnkMCZX5D8t
|
|
|
101
102
|
fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=4WPG2fhFw-u6oSoT-fBrP2K9YpX-MH-AotBL1DknfpA,1304
|
|
102
103
|
fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4smG6rEO74c,13790
|
|
103
104
|
fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
|
|
105
|
+
fusion_bench/method/dop/__init__.py,sha256=MD8c44ovLLJX_-v9t2SdLrvKLxVf8PijzFFNjJfvhpE,37
|
|
106
|
+
fusion_bench/method/dop/dop.py,sha256=_wNjN1DSK27aKEyWVay61fqc7prwJ1uiv_3618_bQ20,14160
|
|
107
|
+
fusion_bench/method/dop/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
108
|
+
fusion_bench/method/dop/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
|
|
104
109
|
fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
|
|
105
110
|
fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
|
|
106
111
|
fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
|
|
@@ -266,7 +271,7 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
|
|
|
266
271
|
fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
|
|
267
272
|
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
268
273
|
fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
|
|
269
|
-
fusion_bench/mixins/lightning_fabric.py,sha256
|
|
274
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
|
|
270
275
|
fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
|
|
271
276
|
fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
|
|
272
277
|
fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
|
|
@@ -281,9 +286,9 @@ fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__B
|
|
|
281
286
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
282
287
|
fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
|
|
283
288
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
284
|
-
fusion_bench/modelpool/resnet_for_image_classification.py,sha256=
|
|
289
|
+
fusion_bench/modelpool/resnet_for_image_classification.py,sha256=1Q79oj3FIBQBOr13zCvIcscBKLA0PHbPmTarwVlhIww,19873
|
|
285
290
|
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
286
|
-
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=
|
|
291
|
+
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fxmbq0N6xwajolXpdg,19993
|
|
287
292
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
288
293
|
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
|
|
289
294
|
fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
|
|
@@ -294,8 +299,8 @@ fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNM
|
|
|
294
299
|
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
295
300
|
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
|
|
296
301
|
fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
|
|
297
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
298
|
-
fusion_bench/models/hf_utils.py,sha256=
|
|
302
|
+
fusion_bench/models/hf_clip.py,sha256=1xdcAQtkHYJzLhOSlJl24qhMiwC_jdhp2Va-eN5X9vs,7499
|
|
303
|
+
fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
|
|
299
304
|
fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
|
|
300
305
|
fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
|
|
301
306
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
@@ -391,16 +396,17 @@ fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpw
|
|
|
391
396
|
fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
|
|
392
397
|
fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
393
398
|
fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
|
|
394
|
-
fusion_bench/taskpool/__init__.py,sha256
|
|
399
|
+
fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
|
|
395
400
|
fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
|
|
396
401
|
fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
|
|
397
402
|
fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
|
|
398
403
|
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
|
|
404
|
+
fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
|
|
399
405
|
fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
|
|
400
406
|
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
|
|
401
407
|
fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
|
|
402
408
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
|
|
403
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256
|
|
409
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=-BMgFR8quJLfU60vU9mq6Ye-4bFGPp-4e_xY8RfhB84,16503
|
|
404
410
|
fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
405
411
|
fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
|
|
406
412
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
@@ -469,7 +475,7 @@ fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,26
|
|
|
469
475
|
fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
|
|
470
476
|
fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
|
|
471
477
|
fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
|
|
472
|
-
fusion_bench/utils/state_dict_arithmetic.py,sha256=
|
|
478
|
+
fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW5V5IhuXGtI_nxk,41234
|
|
473
479
|
fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
|
|
474
480
|
fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
|
|
475
481
|
fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
|
|
@@ -480,14 +486,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
|
|
|
480
486
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
481
487
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
482
488
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
483
|
-
fusion_bench-0.2.
|
|
489
|
+
fusion_bench-0.2.27.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
484
490
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
485
491
|
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
|
|
486
|
-
fusion_bench_config/fabric_model_fusion.yaml,sha256=
|
|
492
|
+
fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
|
|
487
493
|
fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
|
|
488
494
|
fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
|
|
489
495
|
fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
|
|
490
|
-
fusion_bench_config/model_fusion.yaml,sha256=
|
|
496
|
+
fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
|
|
491
497
|
fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
|
|
492
498
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
|
|
493
499
|
fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
|
|
@@ -584,40 +590,41 @@ fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml,sha25
|
|
|
584
590
|
fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml,sha256=4lb37lxTUStAR8eXhNxp3RONwSOYJI0bKY-hViZnjtE,94
|
|
585
591
|
fusion_bench_config/dataset/text_generation/train/gsm8k.yaml,sha256=gP-xAZQxHHqTEf_Dgbi4F_SQDgGZFeddwMFsvcE1WW0,90
|
|
586
592
|
fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha256=6BhKgApz8LhdDyATqCsaonBo0Q99o1uM22F0yj_pJi4,178
|
|
587
|
-
fusion_bench_config/fabric/auto.yaml,sha256=
|
|
593
|
+
fusion_bench_config/fabric/auto.yaml,sha256=PoYC5vtDogZ3Ce9H8fv2nlLTTT-q6hMPW-7CwSQ-g08,652
|
|
588
594
|
fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sRzsipW7GDQJWs,705
|
|
589
595
|
fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
|
|
590
596
|
fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
|
|
591
597
|
fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
|
|
592
598
|
fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
|
|
599
|
+
fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
|
|
593
600
|
fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
|
|
594
|
-
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=
|
|
601
|
+
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
|
|
595
602
|
fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
|
|
596
603
|
fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
|
|
597
604
|
fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=4NTFnpZTEByH4Z6f-nwDtS4GUFtcluja27hXKWNRUiE,347
|
|
598
605
|
fusion_bench_config/hydra/default.yaml,sha256=Fpi3pV1hqPoPk5QdBncse6NlNOAl2YHzD44LvRNbzq4,256
|
|
599
606
|
fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
|
|
600
607
|
fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
|
|
601
|
-
fusion_bench_config/method/
|
|
602
|
-
fusion_bench_config/method/
|
|
603
|
-
fusion_bench_config/method/
|
|
604
|
-
fusion_bench_config/method/
|
|
605
|
-
fusion_bench_config/method/
|
|
606
|
-
fusion_bench_config/method/
|
|
607
|
-
fusion_bench_config/method/
|
|
608
|
-
fusion_bench_config/method/
|
|
609
|
-
fusion_bench_config/method/ties_merging.yaml,sha256=0lsy-q-9SNY5xzfoAOFpeva2AqdwcbLwMxb0ZtTU2PA,292
|
|
608
|
+
fusion_bench_config/method/depth_upscaling.yaml,sha256=86YqczaMzZftymLy_k2cb-GMy4C42yTxxP4c4htZTBs,1230
|
|
609
|
+
fusion_bench_config/method/dummy.yaml,sha256=Pw2w6WQiw3K4_KH0THPs4NSM7lZoZLsNbB72iPSVsl8,427
|
|
610
|
+
fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=Fdd4rHhHm7rkhP8_KJoivX8Wxh_tcKOXz1udDMtb4k0,374
|
|
611
|
+
fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=igjbRMt7CGeyIzajRhjWgAIDOgInaMSBFqZM_COmjkY,584
|
|
612
|
+
fusion_bench_config/method/model_recombination.yaml,sha256=DeyVPdDCL-eyJDlPZXLAIWfKi3p8nN0dLFRx5ydsERc,740
|
|
613
|
+
fusion_bench_config/method/simple_average.yaml,sha256=uB51mNlFKb9S3Go1p6SLGgr3PWJFZs97Ccn1zZZkEug,577
|
|
614
|
+
fusion_bench_config/method/task_arithmetic.yaml,sha256=zQmNpnQrZTHiRv_KmYnHPMScKf8MUMLbQYh9254_1Jg,580
|
|
615
|
+
fusion_bench_config/method/ties_merging.yaml,sha256=c3BjnFo-ZU5hmCrfi-1VQPhd_EYGtftxxYDHTVCMy6s,501
|
|
610
616
|
fusion_bench_config/method/ada_svd/clip_vision.yaml,sha256=3l0VKCL66rZNx020UKhf_UzXScZ5XZYOUeNm8mqo0So,183
|
|
611
617
|
fusion_bench_config/method/adamerging/clip.yaml,sha256=NBJaK0a4RxV3D2LRciUeWmTqabRwu6OxZnT7u7iz6ug,753
|
|
612
618
|
fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml,sha256=DxkZhcuu_-ErIUqBUmWKN5UXYYWKoKPX6IgjV-Txwv0,541
|
|
613
619
|
fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml,sha256=bLz6zc5CofeUO2XhS5zthkkuWlcX7rCBpyujYckmUqk,536
|
|
614
620
|
fusion_bench_config/method/adamerging/llama_sft.yaml,sha256=khKzfhvQ5oxBMH0d-YvyjN-qIgQNeevDodXngS5g9KY,1022
|
|
621
|
+
fusion_bench_config/method/adamerging/resnet.yaml,sha256=qYD_DnDC5yXcBOOQIlwWetsUXR5xTHbtEG71KppAIm0,534
|
|
615
622
|
fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml,sha256=hxVA4deUr1go1RZl12qD8PekwydWJ9SBQowSqmo3A8I,139
|
|
616
623
|
fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib2xYd-49x_xZSeVbExwL-A9-tHhHTMBrT_Fg,134
|
|
617
|
-
fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=
|
|
624
|
+
fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=uuR5x1IVTWyZjTSd5i1JXd_D8tG7tWBfOpgMBDCBgR0,436
|
|
618
625
|
fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
|
|
619
|
-
fusion_bench_config/method/classification/clip_finetune.yaml,sha256=
|
|
620
|
-
fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=
|
|
626
|
+
fusion_bench_config/method/classification/clip_finetune.yaml,sha256=VnP3JKcRaLQFRt6ohvKkh6MTLC6cf8AruSUqQ7bXC6A,1020
|
|
627
|
+
fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=oB2LgEgvtxSww_RLsE0B0uMPFqBsng4Py7qcpF7PrzU,778
|
|
621
628
|
fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
|
|
622
629
|
fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
|
|
623
630
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
|
|
@@ -631,9 +638,10 @@ fusion_bench_config/method/dare/task_arithmetic.yaml,sha256=cUAweNJ6p2aOv__0dvUL
|
|
|
631
638
|
fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX26JnqAc85A-MY66DGvuE,416
|
|
632
639
|
fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
|
|
633
640
|
fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
|
|
634
|
-
fusion_bench_config/method/
|
|
635
|
-
fusion_bench_config/method/ensemble/
|
|
636
|
-
fusion_bench_config/method/ensemble/
|
|
641
|
+
fusion_bench_config/method/dop/dop.yaml,sha256=ZgdjuVfTj83kAvrS4RrPgGX7d_QQ7d1lIMlzhjiVeUc,954
|
|
642
|
+
fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=ugO9FbEYqQk3RkX7wUDE9UOg-4D0F4Rezv0O-7hTeRg,476
|
|
643
|
+
fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=kfPAaPVQIet9dYThKNsEBfe9gHdeCREnsM-snSOPahM,546
|
|
644
|
+
fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=LhlxU2P_inxR8MB0Z62phHWj5S4qxD7ITG4Ly-GUcQo,770
|
|
637
645
|
fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
|
|
638
646
|
fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
|
|
639
647
|
fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=-m5uDA9hfBg_8vF3s0MnUp0JTl3MqpB4-rlPEg9CHD4,569
|
|
@@ -645,24 +653,24 @@ fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDL
|
|
|
645
653
|
fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
|
|
646
654
|
fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
|
|
647
655
|
fusion_bench_config/method/isotropic_merging/iso_cts.yaml,sha256=70BODJt69pZ_9xH7S_Z2Yzb299LFIGkXy1bQiHQad6A,110
|
|
648
|
-
fusion_bench_config/method/linear/expo.yaml,sha256=
|
|
649
|
-
fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=
|
|
650
|
-
fusion_bench_config/method/linear/llama_expo.yaml,sha256=
|
|
651
|
-
fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=
|
|
652
|
-
fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=
|
|
653
|
-
fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=
|
|
654
|
-
fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=
|
|
655
|
-
fusion_bench_config/method/linear/weighted_average.yaml,sha256=
|
|
656
|
-
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=
|
|
656
|
+
fusion_bench_config/method/linear/expo.yaml,sha256=A8fpPnR12je2kgqDuC3Y18jZ6GPm6QPPhro7PFZADWc,768
|
|
657
|
+
fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=cAL_ekEIJhJD4cfAbKilV0k_lNNPoJqY4sABVEKcM7E,523
|
|
658
|
+
fusion_bench_config/method/linear/llama_expo.yaml,sha256=87grnsueFkhjKPuFOsiOjoTpBNAdqOD3zvclsofGt4A,984
|
|
659
|
+
fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=6P9fUXZdf3stVMkwKjFglKzHNEQ0GpYSh64kfrTCVmw,602
|
|
660
|
+
fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=KfNu3scx18S3KmfFpb_wsnbguE7hoGFk_L_Z-AXtxsQ,693
|
|
661
|
+
fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=lkNQ56q3reQTKR40BkEta_eORXdqPQV8dEpjKcgimvM,366
|
|
662
|
+
fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=bqUXMlf5PngHyT-aZ1FqEHzi5-KeUwGyTdHLpL_2E1Q,869
|
|
663
|
+
fusion_bench_config/method/linear/weighted_average.yaml,sha256=OjE4EdfDHPYx8PlBJ6xIpCz4ITu_65VsRyefioRXGQ8,408
|
|
664
|
+
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=VHGfLIE6G0FMwJ_8sVG1jKWFsSacgmErst0sdu7NeB8,902
|
|
657
665
|
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
|
|
658
666
|
fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
|
|
659
667
|
fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
|
|
660
|
-
fusion_bench_config/method/model_stock/model_stock.yaml,sha256=
|
|
668
|
+
fusion_bench_config/method/model_stock/model_stock.yaml,sha256=4KHAFCjL4AQ5dxkv7IGkUTxE8g-GCoxDkA3BbnlzQC0,530
|
|
661
669
|
fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
|
|
662
|
-
fusion_bench_config/method/opcm/opcm.yaml,sha256=
|
|
663
|
-
fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=
|
|
664
|
-
fusion_bench_config/method/opcm/ties_merging.yaml,sha256=
|
|
665
|
-
fusion_bench_config/method/opcm/weight_average.yaml,sha256=
|
|
670
|
+
fusion_bench_config/method/opcm/opcm.yaml,sha256=7NBOGo6W1FDbqdkT8gfM5PI2kHfqB8ofMfgcxVI1suM,686
|
|
671
|
+
fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=WL_nVXhZWV9fe_ttChShkjYZVJnOCzvZ3i7NBppYsxk,743
|
|
672
|
+
fusion_bench_config/method/opcm/ties_merging.yaml,sha256=1-xR0dVEEFJue9r-oBk1ZfGmGM9vCu4cJBG5aZnJ3C8,917
|
|
673
|
+
fusion_bench_config/method/opcm/weight_average.yaml,sha256=n-eyxVkpRanlRJdFWFK3kppiO_W1S99WNjyjdBLDnw0,668
|
|
666
674
|
fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
|
|
667
675
|
fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
|
|
668
676
|
fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml,sha256=gC6Ss0n2tKSb4gyVfx45BvsFbVBGN-om4-2S1sKS-_w,505
|
|
@@ -675,19 +683,19 @@ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE3
|
|
|
675
683
|
fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
|
|
676
684
|
fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
|
|
677
685
|
fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
|
|
678
|
-
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=
|
|
679
|
-
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=
|
|
680
|
-
fusion_bench_config/method/regmean/regmean.yaml,sha256=
|
|
681
|
-
fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=
|
|
682
|
-
fusion_bench_config/method/slerp/slerp.yaml,sha256=
|
|
683
|
-
fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=
|
|
684
|
-
fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=
|
|
685
|
-
fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=
|
|
686
|
-
fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=
|
|
687
|
-
fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=
|
|
688
|
-
fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=
|
|
689
|
-
fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=
|
|
690
|
-
fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=
|
|
686
|
+
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=cxv_6-a2WzqdrotZMPY3vMcbCuY4O0qM14I6GPKJ84I,637
|
|
687
|
+
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=Qd4hS5rt0L8zxM-YsXoChCjyR5rJc0jC1k4VA3czhUo,634
|
|
688
|
+
fusion_bench_config/method/regmean/regmean.yaml,sha256=mi1FHMg2YmScFfZfN2F82TisSju32YiLtrPYvBXO6oE,312
|
|
689
|
+
fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=8CSUdznjVuzGMPSGiLHlxCazBBVNbNNDDzpPHkCFSH8,647
|
|
690
|
+
fusion_bench_config/method/slerp/slerp.yaml,sha256=XR3z6iqyHirkoFSdLAeV2bP1yyI25MoWG-LqdE-ypjA,719
|
|
691
|
+
fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=hO07n6elZg_FrqEfSfbdR-tb1hqwT7vaLgAZKdF8O1o,479
|
|
692
|
+
fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=_fUBKoz9Jts6ogflFi4D7z7rsrLgCQBbnL1yVVxahro,1347
|
|
693
|
+
fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=p99GZc4s1tfro2NJggNcuuLGrcAPralF6EMxUaywmAQ,537
|
|
694
|
+
fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=wFwwJVjoTgBhM9yqkCanGxiivMqQN6VHjHZQEBDCiiQ,496
|
|
695
|
+
fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=Tx8TCKEESIy2NQge_lP48wJlNdyk2BH5E7TVyiNl2kM,430
|
|
696
|
+
fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=twzNiksQpAn0PQexMLvRyFwjLb7PsTPhk8vllOiVD64,754
|
|
697
|
+
fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=lArBuG-mdHTRCgW_zaQS--vtiGU0JZGtGcFHu6avOmc,800
|
|
698
|
+
fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=38DGdOjpDo-dOMpfy807p3x-eAvibjED-BGtFGnaycA,689
|
|
691
699
|
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
|
|
692
700
|
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
|
|
693
701
|
fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
|
|
@@ -698,7 +706,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
|
|
|
698
706
|
fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
|
|
699
707
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
|
|
700
708
|
fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
|
|
701
|
-
fusion_bench_config/method/wudi/wudi.yaml,sha256=
|
|
709
|
+
fusion_bench_config/method/wudi/wudi.yaml,sha256=ZX3HI0vLjTJ5iFZt32-M_O60h6D6oBuf0WY7zBXUOWI,285
|
|
702
710
|
fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
|
|
703
711
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
|
|
704
712
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
|
|
@@ -887,12 +895,67 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
|
|
|
887
895
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
|
|
888
896
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
|
|
889
897
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
|
|
890
|
-
fusion_bench_config/modelpool/
|
|
891
|
-
fusion_bench_config/modelpool/
|
|
892
|
-
fusion_bench_config/modelpool/
|
|
893
|
-
fusion_bench_config/modelpool/
|
|
894
|
-
fusion_bench_config/modelpool/
|
|
895
|
-
fusion_bench_config/modelpool/
|
|
898
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py,sha256=c3vWGNGQJ6ybd43NeQZsNFo9gmvKoHERzswHYCnBtH0,4102
|
|
899
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar10.yaml,sha256=MjEdh1WQ1Cgd_9KQg53Egr0gjcptTl8eDt_jhJIzOhY,374
|
|
900
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar100.yaml,sha256=zIWKMuMS0HXsisR46PVGi2Kqs2_1OW2DfQDKeAfIhxU,377
|
|
901
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml,sha256=BkPCRMQsJdn5oU-jlLj-nBBidLNhxPRwCwdFs3L99dw,362
|
|
902
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml,sha256=g2Rc-B852dFIVydK77hcJTVa-_b15pL6i3yESP0jDeo,395
|
|
903
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml,sha256=Sc_lrZLIyNrRt0V7z1K96juyNHPQHBEbzMjjkqtQNtw,374
|
|
904
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml,sha256=qwtFygQQo_G7KfWR-kjLcyzHu4Sl6KVQEgbgborLtJg,392
|
|
905
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml,sha256=eFQFV2mCHPjLA3eBVk7oU0moah6szOjyDgNY9a_NFj4,374
|
|
906
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml,sha256=gl4iQdogT7A35YaGxYnmh27F-U7I6XgHGaFPX4d1xcQ,374
|
|
907
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml,sha256=zCmDzrj76hJgl6_-m-C90raKDZAoy2jvyzVBKCytFGs,368
|
|
908
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml,sha256=_HWFcO_t3qDrf-35-e2tcCTAJ3wF7EOW682IHuaN0Vs,371
|
|
909
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml,sha256=Jmfv4pbFrzt6DgRLBaZ9dBTKPyZ1K89v0qTcAdLDD_Y,368
|
|
910
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml,sha256=NBQQUFxEgE_aNJhtW0VODNWjzoAzGr6Sv5bWZtuewgE,398
|
|
911
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml,sha256=iJBZeAX4pZoo16Z42fkF_iSY9L3Vk7gdHr3045Mb4U8,404
|
|
912
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml,sha256=mMQr_cmnCHDnEUmIWrwNofMXrDw8WTD26CdgAlliVdA,365
|
|
913
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml,sha256=-cx_JY09HJO-kDN-Gloq8rLx11LcWWqVQ_90b_YmFLQ,392
|
|
914
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml,sha256=94YlYy2WMHuyeG3Yrf1XzKWkXbsKljmZ1lI189ENltU,377
|
|
915
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml,sha256=-2e3YTLg6vZogzcPggWlRXvVZgU_kRX7YrYp_XPDR3Y,392
|
|
916
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml,sha256=Jn9e14gnho8FSzwphpvLR67JYVm-_Xh0VnXU7egYOrs,368
|
|
917
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml,sha256=ATLUWhHsHYYFEcKiouzBajEluuSjbo0RUG4vSTaLTWA,371
|
|
918
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml,sha256=mwhu_DYicLAOzPIo__2cItat2xwF5N1B45owxqCvRhA,365
|
|
919
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar10.yaml,sha256=xsiXuZssaumpWk1QHUKk_qcHz7s9SOmkuimLZ7NLXB0,373
|
|
920
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar100.yaml,sha256=IT85uNPz7WvJkqzZ-IKAuQFoDzooBKQSiLPLdDLCWcQ,376
|
|
921
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml,sha256=bJJIo3s-u5c5U5Ty3f20QwEhx_I7T3qv7BHivZ1uIMI,361
|
|
922
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml,sha256=mYnfUSjEOOvqGqy_0TpzoMkEdLezzNGbixoltP_EnpQ,394
|
|
923
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml,sha256=wqBYl115VoFo66BNn_yhJ_eKy6ESOamVlTQkkWDduQE,373
|
|
924
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml,sha256=Yf1-q73whqAO-_uXgEqT1S-pRHLA4OA4RS-dgYIIZQU,391
|
|
925
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml,sha256=ASUBIhghLH_HLPKDIDDWtkgiwY2RmofzWBjeyLW5R-A,373
|
|
926
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml,sha256=EC2S3n3Vca8MUB2CYmsctNM__nErHWNRr6A869rClGY,373
|
|
927
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml,sha256=j8dAX4t99KSOG3n7lJgF57iQOEUvIC-C7pMaUALpKDQ,367
|
|
928
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml,sha256=YyrdVREoWdr_W0D15Hmrzasdd2u0sSbIFeKw0Npu1kE,370
|
|
929
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml,sha256=jfGzGmT4Z4YUac6AuAKxKgRwMiJgOWp0qjeT7YdT8zg,367
|
|
930
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml,sha256=HuPpnNMm_cWicrLsWd3vLZPLXZYhyrZZmlgKrI6O3hU,397
|
|
931
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml,sha256=6GAh1U8nJ76PU0Plrszz-6Jcc9XIPdP8tJdp81ON6Rc,403
|
|
932
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml,sha256=hUqs6xSzjtNUFuuxxPbvq9I6sixv4mxlQ81dxPESurI,364
|
|
933
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml,sha256=hlZjBSQTFrkQYMnIIIh-a-dj0DTqf2V2XbLYhzJwSMo,391
|
|
934
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml,sha256=wHYquC1bT3OVlfwR_IQhnRUhAA4OA1mXvylgXbUgF4E,376
|
|
935
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml,sha256=N8GDAVR4akC_LgWpSq-OBhmZXE8EnHcgmZT9C4Mf88E,391
|
|
936
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml,sha256=NOHcRm0iKiGADXej-ovDD9gk_uPtPIGqfoUiTC00CuY,367
|
|
937
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml,sha256=rytamVle0ACaUpK0kQJWq1dqvH9UN5UmpAFATYFYJ40,370
|
|
938
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml,sha256=1OKSAr-CZqP7JN9w255Qpj-hOy52K78kgMXsUeveQZU,364
|
|
939
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar10.yaml,sha256=g38RQxsEHKCs-4mY7JYaoJEs7KKyKEr6K6iWgGIRG-U,373
|
|
940
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar100.yaml,sha256=CqoolQghhRczOv9y7mWAsBVVOgBXKR3iY2_OAdokFMQ,376
|
|
941
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml,sha256=Q6bJM92ZDMflKN9ato0pzVbFI3H70yfUfk8Du-bnTiM,361
|
|
942
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml,sha256=fAIuxU_p0iU2oNNYnhVr33-15BttA297hN_5XJnlnGo,394
|
|
943
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml,sha256=awDPy5b-QOSGzwYNKUv2_1k38Wj_cWAso13LXeIwi4A,373
|
|
944
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml,sha256=x-v6DawF_Mvbh5xI3zgBxj2ZMEB6WLBHDGk8O6C2NCQ,391
|
|
945
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml,sha256=046EAIV7tssMkOLVJew9ZLCPzZUX4QUfkHwGRAQy6PA,373
|
|
946
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml,sha256=G9KmdAIfdMWp2KcZUkdacq1CWYCiXbNhL695xVs8myo,373
|
|
947
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml,sha256=q0o79gEpDrQ-KAsoVlfEig5No29S4DgKT2pR8X-43Co,367
|
|
948
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml,sha256=LpBnMQC1x6WnsaMHz4Dfxgrbzr6yHazViPxejY3gQLI,370
|
|
949
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml,sha256=h095GSEtx_vL1fvphkmnmifQSnNkMMqy3pXcBmJF7h0,367
|
|
950
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml,sha256=0jgc2SF5eFAzTqwHSD312EEvBhlUaiZ3PZncgPd5Xd8,397
|
|
951
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml,sha256=2ZtTD1AhJY88V9LrnxXovQn7a3AcLINBoTxSW4B3tyw,403
|
|
952
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml,sha256=y9evfipe7w_oq7Fn1rTNHvXylwTll3TgzP_u2oy_AYU,364
|
|
953
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml,sha256=vsoHGxzFMOwNSMkd10ri1_WqtUp9sTDmlmrEPPP2ECw,391
|
|
954
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml,sha256=f3Fz2zcS15hZC94QX1f1kgUclk9_9if_V8d98-h4RlE,376
|
|
955
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml,sha256=HUmMrlBzg5BhDelLc3TLY_A0p3ValfXjHZo9jruo4vk,391
|
|
956
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml,sha256=5LS4T1BQHpNxzTSdMwEMAtt9SZ2Am9sPABG5rinGags,367
|
|
957
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml,sha256=IhUORkW5FT329LjiQC3nIXNbuIM846urzM3dNchPUdk,370
|
|
958
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml,sha256=HtK3e0F1XpnzdyCbaePdDOt8tvnUtpywuYNephXQl5A,364
|
|
896
959
|
fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
|
|
897
960
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
|
|
898
961
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
|
|
@@ -948,8 +1011,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
|
|
|
948
1011
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
|
|
949
1012
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
|
|
950
1013
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
|
|
951
|
-
fusion_bench-0.2.
|
|
952
|
-
fusion_bench-0.2.
|
|
953
|
-
fusion_bench-0.2.
|
|
954
|
-
fusion_bench-0.2.
|
|
955
|
-
fusion_bench-0.2.
|
|
1014
|
+
fusion_bench-0.2.27.dist-info/METADATA,sha256=TnLxGqALTnvyF-GXwk-iGvl-eNvBjNvZzkDODdkVLVo,24307
|
|
1015
|
+
fusion_bench-0.2.27.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
1016
|
+
fusion_bench-0.2.27.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
1017
|
+
fusion_bench-0.2.27.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
1018
|
+
fusion_bench-0.2.27.dist-info/RECORD,,
|