fusion-bench 0.2.24__py3-none-any.whl → 0.2.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +152 -42
- fusion_bench/dataset/__init__.py +27 -4
- fusion_bench/dataset/clip_dataset.py +2 -2
- fusion_bench/method/__init__.py +12 -1
- fusion_bench/method/classification/__init__.py +27 -2
- fusion_bench/method/classification/clip_finetune.py +6 -4
- fusion_bench/method/classification/image_classification_finetune.py +214 -0
- fusion_bench/method/dop/__init__.py +1 -0
- fusion_bench/method/dop/dop.py +366 -0
- fusion_bench/method/dop/min_norm_solvers.py +227 -0
- fusion_bench/method/dop/utils.py +73 -0
- fusion_bench/method/opcm/opcm.py +1 -0
- fusion_bench/method/pwe_moe/module.py +0 -2
- fusion_bench/method/tall_mask/task_arithmetic.py +2 -2
- fusion_bench/mixins/__init__.py +2 -0
- fusion_bench/mixins/pyinstrument.py +174 -0
- fusion_bench/mixins/simple_profiler.py +106 -23
- fusion_bench/modelpool/__init__.py +2 -0
- fusion_bench/modelpool/base_pool.py +77 -14
- fusion_bench/modelpool/clip_vision/modelpool.py +56 -19
- fusion_bench/modelpool/resnet_for_image_classification.py +208 -0
- fusion_bench/models/__init__.py +35 -9
- fusion_bench/optim/__init__.py +40 -2
- fusion_bench/optim/lr_scheduler/__init__.py +27 -1
- fusion_bench/optim/muon.py +339 -0
- fusion_bench/programs/__init__.py +2 -0
- fusion_bench/programs/fabric_fusion_program.py +2 -2
- fusion_bench/programs/fusion_program.py +271 -0
- fusion_bench/tasks/clip_classification/__init__.py +15 -0
- fusion_bench/utils/__init__.py +167 -21
- fusion_bench/utils/lazy_imports.py +91 -12
- fusion_bench/utils/lazy_state_dict.py +55 -5
- fusion_bench/utils/misc.py +104 -13
- fusion_bench/utils/packages.py +4 -0
- fusion_bench/utils/path.py +7 -0
- fusion_bench/utils/pylogger.py +6 -0
- fusion_bench/utils/rich_utils.py +1 -0
- fusion_bench/utils/state_dict_arithmetic.py +935 -162
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/METADATA +8 -2
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/RECORD +75 -56
- fusion_bench_config/method/bitdelta/bitdelta.yaml +3 -0
- fusion_bench_config/method/classification/image_classification_finetune.yaml +16 -0
- fusion_bench_config/method/classification/image_classification_finetune_test.yaml +6 -0
- fusion_bench_config/method/depth_upscaling.yaml +9 -0
- fusion_bench_config/method/dop/dop.yaml +30 -0
- fusion_bench_config/method/dummy.yaml +6 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +6 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +8 -1
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +8 -0
- fusion_bench_config/method/linear/weighted_average.yaml +3 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +1 -1
- fusion_bench_config/method/model_recombination.yaml +8 -0
- fusion_bench_config/method/model_stock/model_stock.yaml +4 -1
- fusion_bench_config/method/opcm/opcm.yaml +5 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +5 -0
- fusion_bench_config/method/opcm/weight_average.yaml +5 -0
- fusion_bench_config/method/simple_average.yaml +9 -0
- fusion_bench_config/method/slerp/slerp.yaml +9 -0
- fusion_bench_config/method/slerp/slerp_lm.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +3 -0
- fusion_bench_config/method/task_arithmetic.yaml +9 -0
- fusion_bench_config/method/ties_merging.yaml +3 -0
- fusion_bench_config/model_fusion.yaml +45 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml +14 -0
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.24.dist-info → fusion_bench-0.2.26.dist-info}/top_level.txt +0 -0
|
@@ -1,323 +1,1065 @@
|
|
|
1
1
|
from collections import OrderedDict
|
|
2
2
|
from numbers import Number
|
|
3
|
-
from typing import Callable, Dict, List, Literal, Union, cast
|
|
3
|
+
from typing import Callable, Dict, List, Literal, Optional, Union, cast
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
from torch import Tensor
|
|
7
7
|
from tqdm.auto import tqdm
|
|
8
8
|
|
|
9
|
-
from .parameters import check_parameters_all_equal
|
|
10
9
|
from .type import BoolStateDictType, StateDictType
|
|
11
10
|
|
|
11
|
+
__all__ = [
|
|
12
|
+
"ArithmeticStateDict",
|
|
13
|
+
"state_dicts_check_keys",
|
|
14
|
+
"state_dict_to_device",
|
|
15
|
+
"num_params_of_state_dict",
|
|
16
|
+
"state_dict_flatten",
|
|
17
|
+
"state_dict_avg",
|
|
18
|
+
"state_dict_sub",
|
|
19
|
+
"state_dict_add",
|
|
20
|
+
"state_dict_add_scalar",
|
|
21
|
+
"state_dict_mul",
|
|
22
|
+
"state_dict_div",
|
|
23
|
+
"state_dict_power",
|
|
24
|
+
"state_dict_interpolation",
|
|
25
|
+
"state_dict_sum",
|
|
26
|
+
"state_dict_weighted_sum",
|
|
27
|
+
"state_dict_diff_abs",
|
|
28
|
+
"state_dict_binary_mask",
|
|
29
|
+
"state_dict_hadamard_product",
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class ArithmeticStateDict(OrderedDict):
|
|
34
|
+
"""
|
|
35
|
+
An OrderedDict subclass that supports arithmetic operations on state dictionaries.
|
|
36
|
+
|
|
37
|
+
This class provides convenient operator overloading for common state dict operations
|
|
38
|
+
like addition, subtraction, multiplication, and division, while maintaining all
|
|
39
|
+
the functionality of OrderedDict.
|
|
40
|
+
|
|
41
|
+
Examples:
|
|
42
|
+
>>> sd1 = ArithmeticStateDict({'weight': torch.tensor([1.0, 2.0]), 'bias': torch.tensor([0.5])})
|
|
43
|
+
>>> sd2 = ArithmeticStateDict({'weight': torch.tensor([2.0, 3.0]), 'bias': torch.tensor([1.0])})
|
|
44
|
+
>>> result = sd1 + sd2 # Element-wise addition
|
|
45
|
+
>>> result = sd1 - sd2 # Element-wise subtraction
|
|
46
|
+
>>> result = sd1 * 2.0 # Scalar multiplication
|
|
47
|
+
>>> result = sd1 / 2.0 # Scalar division
|
|
48
|
+
>>> result = sd1 @ sd2 # Hadamard product
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
def __init__(self, *args, **kwargs):
|
|
52
|
+
"""Initialize ArithmeticStateDict with the same interface as OrderedDict."""
|
|
53
|
+
super().__init__(*args, **kwargs)
|
|
54
|
+
|
|
55
|
+
def __add__(
|
|
56
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
57
|
+
) -> "ArithmeticStateDict":
|
|
58
|
+
"""
|
|
59
|
+
Element-wise addition with another state dict or scalar.
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
other: Another state dict to add or a scalar to add to all elements.
|
|
63
|
+
|
|
64
|
+
Returns:
|
|
65
|
+
A new ArithmeticStateDict with the element-wise sum.
|
|
66
|
+
"""
|
|
67
|
+
if isinstance(other, (int, float, Number)):
|
|
68
|
+
# Scalar addition
|
|
69
|
+
result_dict = state_dict_add_scalar(self, other)
|
|
70
|
+
return ArithmeticStateDict(result_dict)
|
|
71
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
72
|
+
# State dict addition
|
|
73
|
+
result_dict = state_dict_add(self, other, strict=True)
|
|
74
|
+
return ArithmeticStateDict(result_dict)
|
|
75
|
+
else:
|
|
76
|
+
raise TypeError(
|
|
77
|
+
f"Cannot add ArithmeticStateDict with {type(other).__name__}"
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
def __radd__(
|
|
81
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
82
|
+
) -> "ArithmeticStateDict":
|
|
83
|
+
"""
|
|
84
|
+
Right addition (other + self).
|
|
85
|
+
Handles the case where sum() starts with 0 and scalar addition.
|
|
86
|
+
"""
|
|
87
|
+
if other == 0: # sum() starts with 0 by default
|
|
88
|
+
return self
|
|
89
|
+
elif isinstance(other, (int, float, Number)):
|
|
90
|
+
# Scalar addition is commutative
|
|
91
|
+
return self.__add__(other)
|
|
92
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
93
|
+
return self.__add__(other)
|
|
94
|
+
else:
|
|
95
|
+
raise TypeError(
|
|
96
|
+
f"Cannot add {type(other).__name__} with ArithmeticStateDict"
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
def __sub__(
|
|
100
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
101
|
+
) -> "ArithmeticStateDict":
|
|
102
|
+
"""
|
|
103
|
+
Element-wise subtraction with another state dict or scalar.
|
|
104
|
+
|
|
105
|
+
Args:
|
|
106
|
+
other: Another state dict to subtract or a scalar to subtract from all elements.
|
|
107
|
+
|
|
108
|
+
Returns:
|
|
109
|
+
A new ArithmeticStateDict with the element-wise difference.
|
|
110
|
+
"""
|
|
111
|
+
if isinstance(other, (int, float, Number)):
|
|
112
|
+
# Scalar subtraction: subtract scalar from all elements
|
|
113
|
+
result_dict = state_dict_add_scalar(self, -other)
|
|
114
|
+
return ArithmeticStateDict(result_dict)
|
|
115
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
116
|
+
# State dict subtraction
|
|
117
|
+
result_dict = state_dict_sub(self, other, strict=True)
|
|
118
|
+
return ArithmeticStateDict(result_dict)
|
|
119
|
+
else:
|
|
120
|
+
raise TypeError(
|
|
121
|
+
f"Cannot subtract {type(other).__name__} from ArithmeticStateDict"
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
def __rsub__(
|
|
125
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
126
|
+
) -> "ArithmeticStateDict":
|
|
127
|
+
"""Right subtraction (other - self)."""
|
|
128
|
+
if isinstance(other, (int, float, Number)):
|
|
129
|
+
# Scalar - ArithmeticStateDict: subtract each element from scalar
|
|
130
|
+
result = ArithmeticStateDict()
|
|
131
|
+
for key, tensor in self.items():
|
|
132
|
+
result[key] = other - tensor
|
|
133
|
+
return result
|
|
134
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
135
|
+
result_dict = state_dict_sub(other, self, strict=True)
|
|
136
|
+
return ArithmeticStateDict(result_dict)
|
|
137
|
+
else:
|
|
138
|
+
raise TypeError(
|
|
139
|
+
f"Cannot subtract ArithmeticStateDict from {type(other).__name__}"
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
def __mul__(
|
|
143
|
+
self, scalar: Union[Number, "ArithmeticStateDict", StateDictType]
|
|
144
|
+
) -> "ArithmeticStateDict":
|
|
145
|
+
"""
|
|
146
|
+
Scalar multiplication or Hadamard product.
|
|
147
|
+
|
|
148
|
+
Args:
|
|
149
|
+
scalar: A scalar value for element-wise multiplication, or another state dict
|
|
150
|
+
for Hadamard product.
|
|
151
|
+
|
|
152
|
+
Returns:
|
|
153
|
+
A new ArithmeticStateDict with the result.
|
|
154
|
+
"""
|
|
155
|
+
if isinstance(scalar, (int, float, Number)):
|
|
156
|
+
result_dict = state_dict_mul(self, scalar)
|
|
157
|
+
return ArithmeticStateDict(result_dict)
|
|
158
|
+
elif isinstance(scalar, (dict, OrderedDict)):
|
|
159
|
+
# Hadamard product for dict-like objects
|
|
160
|
+
result_dict = state_dict_hadamard_product(self, scalar)
|
|
161
|
+
return ArithmeticStateDict(result_dict)
|
|
162
|
+
else:
|
|
163
|
+
raise TypeError(
|
|
164
|
+
f"Cannot multiply ArithmeticStateDict with {type(scalar).__name__}"
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
def __rmul__(
|
|
168
|
+
self, scalar: Union[Number, "ArithmeticStateDict", StateDictType]
|
|
169
|
+
) -> "ArithmeticStateDict":
|
|
170
|
+
"""Right multiplication (scalar * self)."""
|
|
171
|
+
return self.__mul__(scalar)
|
|
172
|
+
|
|
173
|
+
def __truediv__(self, scalar: Number) -> "ArithmeticStateDict":
|
|
174
|
+
"""
|
|
175
|
+
Scalar division.
|
|
176
|
+
|
|
177
|
+
Args:
|
|
178
|
+
scalar: A scalar value to divide by.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
A new ArithmeticStateDict with each element divided by scalar.
|
|
182
|
+
|
|
183
|
+
Raises:
|
|
184
|
+
ZeroDivisionError: If scalar is zero.
|
|
185
|
+
TypeError: If scalar is not a number.
|
|
186
|
+
"""
|
|
187
|
+
if not isinstance(scalar, (int, float, Number)):
|
|
188
|
+
raise TypeError(
|
|
189
|
+
f"Cannot divide ArithmeticStateDict by {type(scalar).__name__}"
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
result_dict = state_dict_div(self, scalar)
|
|
193
|
+
return ArithmeticStateDict(result_dict)
|
|
194
|
+
|
|
195
|
+
def __pow__(self, exponent: Number) -> "ArithmeticStateDict":
|
|
196
|
+
"""
|
|
197
|
+
Element-wise power operation.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
exponent: The exponent to raise each element to.
|
|
201
|
+
|
|
202
|
+
Returns:
|
|
203
|
+
A new ArithmeticStateDict with each element raised to the power.
|
|
204
|
+
"""
|
|
205
|
+
if not isinstance(exponent, (int, float, Number)):
|
|
206
|
+
raise TypeError(
|
|
207
|
+
f"Cannot raise ArithmeticStateDict to power of {type(exponent).__name__}"
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
result_dict = state_dict_power(self, exponent)
|
|
211
|
+
return ArithmeticStateDict(result_dict)
|
|
212
|
+
|
|
213
|
+
def __matmul__(
|
|
214
|
+
self, other: Union["ArithmeticStateDict", StateDictType]
|
|
215
|
+
) -> "ArithmeticStateDict":
|
|
216
|
+
"""
|
|
217
|
+
Hadamard product (element-wise multiplication) using @ operator.
|
|
218
|
+
|
|
219
|
+
Args:
|
|
220
|
+
other: Another state dict for element-wise multiplication.
|
|
221
|
+
|
|
222
|
+
Returns:
|
|
223
|
+
A new ArithmeticStateDict with the Hadamard product.
|
|
224
|
+
"""
|
|
225
|
+
if not isinstance(other, (dict, OrderedDict)):
|
|
226
|
+
raise TypeError(
|
|
227
|
+
f"Cannot compute Hadamard product with {type(other).__name__}"
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
result_dict = state_dict_hadamard_product(self, other)
|
|
231
|
+
return ArithmeticStateDict(result_dict)
|
|
232
|
+
|
|
233
|
+
def __rmatmul__(
|
|
234
|
+
self, other: Union["ArithmeticStateDict", StateDictType]
|
|
235
|
+
) -> "ArithmeticStateDict":
|
|
236
|
+
"""Right matrix multiplication (other @ self)."""
|
|
237
|
+
return self.__matmul__(other)
|
|
238
|
+
|
|
239
|
+
def __iadd__(
|
|
240
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
241
|
+
) -> "ArithmeticStateDict":
|
|
242
|
+
"""In-place addition."""
|
|
243
|
+
if isinstance(other, (int, float, Number)):
|
|
244
|
+
# Scalar addition
|
|
245
|
+
for key in self:
|
|
246
|
+
self[key] = self[key] + other
|
|
247
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
248
|
+
# State dict addition
|
|
249
|
+
for key in self:
|
|
250
|
+
if key in other:
|
|
251
|
+
self[key] = self[key] + other[key]
|
|
252
|
+
else:
|
|
253
|
+
raise TypeError(f"Cannot add {type(other).__name__} to ArithmeticStateDict")
|
|
254
|
+
return self
|
|
255
|
+
|
|
256
|
+
def __isub__(
|
|
257
|
+
self, other: Union["ArithmeticStateDict", StateDictType, Number]
|
|
258
|
+
) -> "ArithmeticStateDict":
|
|
259
|
+
"""In-place subtraction."""
|
|
260
|
+
if isinstance(other, (int, float, Number)):
|
|
261
|
+
# Scalar subtraction
|
|
262
|
+
for key in self:
|
|
263
|
+
self[key] = self[key] - other
|
|
264
|
+
elif isinstance(other, (dict, OrderedDict)):
|
|
265
|
+
# State dict subtraction
|
|
266
|
+
for key in self:
|
|
267
|
+
if key in other:
|
|
268
|
+
self[key] = self[key] - other[key]
|
|
269
|
+
else:
|
|
270
|
+
raise TypeError(
|
|
271
|
+
f"Cannot subtract {type(other).__name__} from ArithmeticStateDict"
|
|
272
|
+
)
|
|
273
|
+
return self
|
|
274
|
+
|
|
275
|
+
def __imul__(
|
|
276
|
+
self, scalar: Union[Number, "ArithmeticStateDict", StateDictType]
|
|
277
|
+
) -> "ArithmeticStateDict":
|
|
278
|
+
"""In-place multiplication."""
|
|
279
|
+
if isinstance(scalar, (int, float, Number)):
|
|
280
|
+
for key in self:
|
|
281
|
+
self[key] = self[key] * scalar
|
|
282
|
+
elif isinstance(scalar, (dict, OrderedDict)):
|
|
283
|
+
for key in self:
|
|
284
|
+
if key in scalar:
|
|
285
|
+
self[key] = self[key] * scalar[key]
|
|
286
|
+
else:
|
|
287
|
+
raise TypeError(
|
|
288
|
+
f"Cannot multiply ArithmeticStateDict with {type(scalar).__name__}"
|
|
289
|
+
)
|
|
290
|
+
return self
|
|
291
|
+
|
|
292
|
+
def __itruediv__(self, scalar: Number) -> "ArithmeticStateDict":
|
|
293
|
+
"""In-place division."""
|
|
294
|
+
if not isinstance(scalar, (int, float, Number)):
|
|
295
|
+
raise TypeError(
|
|
296
|
+
f"Cannot divide ArithmeticStateDict by {type(scalar).__name__}"
|
|
297
|
+
)
|
|
298
|
+
if scalar == 0:
|
|
299
|
+
raise ZeroDivisionError("Cannot divide by zero")
|
|
300
|
+
|
|
301
|
+
for key in self:
|
|
302
|
+
self[key] = self[key] / scalar
|
|
303
|
+
return self
|
|
304
|
+
|
|
305
|
+
def __ipow__(self, exponent: Number) -> "ArithmeticStateDict":
|
|
306
|
+
"""In-place power operation."""
|
|
307
|
+
if not isinstance(exponent, (int, float, Number)):
|
|
308
|
+
raise TypeError(
|
|
309
|
+
f"Cannot raise ArithmeticStateDict to power of {type(exponent).__name__}"
|
|
310
|
+
)
|
|
311
|
+
|
|
312
|
+
for key in self:
|
|
313
|
+
self[key] = self[key] ** exponent
|
|
314
|
+
return self
|
|
315
|
+
|
|
316
|
+
def abs(self) -> "ArithmeticStateDict":
|
|
317
|
+
"""
|
|
318
|
+
Element-wise absolute value.
|
|
319
|
+
|
|
320
|
+
Returns:
|
|
321
|
+
A new ArithmeticStateDict with absolute values.
|
|
322
|
+
"""
|
|
323
|
+
result = ArithmeticStateDict()
|
|
324
|
+
for key, tensor in self.items():
|
|
325
|
+
result[key] = torch.abs(tensor)
|
|
326
|
+
return result
|
|
327
|
+
|
|
328
|
+
def sqrt(self) -> "ArithmeticStateDict":
|
|
329
|
+
"""
|
|
330
|
+
Element-wise square root.
|
|
331
|
+
|
|
332
|
+
Returns:
|
|
333
|
+
A new ArithmeticStateDict with square roots.
|
|
334
|
+
"""
|
|
335
|
+
result = ArithmeticStateDict()
|
|
336
|
+
for key, tensor in self.items():
|
|
337
|
+
result[key] = torch.sqrt(tensor)
|
|
338
|
+
return result
|
|
339
|
+
|
|
340
|
+
def sum(self) -> "ArithmeticStateDict":
|
|
341
|
+
"""
|
|
342
|
+
Sum with other ArithmeticStateDicts using the + operator.
|
|
343
|
+
|
|
344
|
+
Args:
|
|
345
|
+
*others: Other ArithmeticStateDicts to sum with.
|
|
346
|
+
|
|
347
|
+
Returns:
|
|
348
|
+
A new ArithmeticStateDict with the sum.
|
|
349
|
+
"""
|
|
350
|
+
# This is used for when sum() is called on a list of ArithmeticStateDicts
|
|
351
|
+
return self
|
|
352
|
+
|
|
353
|
+
def to_device(
|
|
354
|
+
self,
|
|
355
|
+
device: Union[torch.device, str],
|
|
356
|
+
copy: bool = False,
|
|
357
|
+
inplace: bool = False,
|
|
358
|
+
) -> "ArithmeticStateDict":
|
|
359
|
+
"""
|
|
360
|
+
Move all tensors to the specified device.
|
|
361
|
+
|
|
362
|
+
Args:
|
|
363
|
+
device: Target device.
|
|
364
|
+
copy: Whether to force a copy.
|
|
365
|
+
inplace: Whether to modify in place.
|
|
366
|
+
|
|
367
|
+
Returns:
|
|
368
|
+
ArithmeticStateDict with tensors on the target device.
|
|
369
|
+
"""
|
|
370
|
+
if inplace:
|
|
371
|
+
for key, tensor in self.items():
|
|
372
|
+
self[key] = tensor.to(device, non_blocking=True, copy=copy)
|
|
373
|
+
return self
|
|
374
|
+
else:
|
|
375
|
+
result = ArithmeticStateDict()
|
|
376
|
+
for key, tensor in self.items():
|
|
377
|
+
result[key] = tensor.to(device, non_blocking=True, copy=copy)
|
|
378
|
+
return result
|
|
379
|
+
|
|
380
|
+
def clone(self) -> "ArithmeticStateDict":
|
|
381
|
+
"""
|
|
382
|
+
Create a deep copy with cloned tensors.
|
|
383
|
+
|
|
384
|
+
Returns:
|
|
385
|
+
A new ArithmeticStateDict with cloned tensors.
|
|
386
|
+
"""
|
|
387
|
+
result = ArithmeticStateDict()
|
|
388
|
+
for key, tensor in self.items():
|
|
389
|
+
result[key] = tensor.clone()
|
|
390
|
+
return result
|
|
391
|
+
|
|
392
|
+
def detach(self) -> "ArithmeticStateDict":
|
|
393
|
+
"""
|
|
394
|
+
Detach all tensors from the computation graph.
|
|
395
|
+
|
|
396
|
+
Returns:
|
|
397
|
+
A new ArithmeticStateDict with detached tensors.
|
|
398
|
+
"""
|
|
399
|
+
result = ArithmeticStateDict()
|
|
400
|
+
for key, tensor in self.items():
|
|
401
|
+
result[key] = tensor.detach()
|
|
402
|
+
return result
|
|
403
|
+
|
|
404
|
+
def num_params(self) -> int:
|
|
405
|
+
"""
|
|
406
|
+
Calculate the total number of parameters.
|
|
407
|
+
|
|
408
|
+
Returns:
|
|
409
|
+
Total number of parameters in all tensors.
|
|
410
|
+
"""
|
|
411
|
+
return sum(tensor.numel() for tensor in self.values())
|
|
412
|
+
|
|
413
|
+
@classmethod
|
|
414
|
+
def from_state_dict(cls, state_dict: StateDictType) -> "ArithmeticStateDict":
|
|
415
|
+
"""
|
|
416
|
+
Create an ArithmeticStateDict from a regular state dict.
|
|
417
|
+
|
|
418
|
+
Args:
|
|
419
|
+
state_dict: A regular state dictionary.
|
|
420
|
+
|
|
421
|
+
Returns:
|
|
422
|
+
A new ArithmeticStateDict with the same data.
|
|
423
|
+
"""
|
|
424
|
+
return cls(state_dict)
|
|
425
|
+
|
|
426
|
+
@classmethod
|
|
427
|
+
def weighted_sum(
|
|
428
|
+
cls,
|
|
429
|
+
state_dicts: List[Union["ArithmeticStateDict", StateDictType]],
|
|
430
|
+
weights: List[float],
|
|
431
|
+
) -> "ArithmeticStateDict":
|
|
432
|
+
"""
|
|
433
|
+
Compute a weighted sum of multiple state dicts.
|
|
434
|
+
|
|
435
|
+
Args:
|
|
436
|
+
state_dicts: List of state dicts to combine.
|
|
437
|
+
weights: List of weights for the combination.
|
|
438
|
+
|
|
439
|
+
Returns:
|
|
440
|
+
A new ArithmeticStateDict with the weighted sum.
|
|
441
|
+
"""
|
|
442
|
+
result_dict = state_dict_weighted_sum(state_dicts, weights)
|
|
443
|
+
return cls(result_dict)
|
|
444
|
+
|
|
445
|
+
@classmethod
|
|
446
|
+
def average(
|
|
447
|
+
cls, state_dicts: List[Union["ArithmeticStateDict", StateDictType]]
|
|
448
|
+
) -> "ArithmeticStateDict":
|
|
449
|
+
"""
|
|
450
|
+
Compute the average of multiple state dicts.
|
|
451
|
+
|
|
452
|
+
Args:
|
|
453
|
+
state_dicts: List of state dicts to average.
|
|
454
|
+
|
|
455
|
+
Returns:
|
|
456
|
+
A new ArithmeticStateDict with the average.
|
|
457
|
+
"""
|
|
458
|
+
result_dict = state_dict_avg(state_dicts)
|
|
459
|
+
return cls(result_dict)
|
|
460
|
+
|
|
461
|
+
|
|
462
|
+
def _validate_state_dict_list_not_empty(state_dicts: List[StateDictType]) -> None:
|
|
463
|
+
"""
|
|
464
|
+
Validate that the list of state dicts is not empty and contains valid state dicts.
|
|
465
|
+
|
|
466
|
+
Args:
|
|
467
|
+
state_dicts: List of state dictionaries to validate.
|
|
468
|
+
|
|
469
|
+
Raises:
|
|
470
|
+
TypeError: If state_dicts is not a list or contains non-dict items.
|
|
471
|
+
ValueError: If the list is empty or contains empty state dicts.
|
|
472
|
+
"""
|
|
473
|
+
if state_dicts is None:
|
|
474
|
+
raise TypeError("state_dicts cannot be None")
|
|
475
|
+
|
|
476
|
+
if not isinstance(state_dicts, (list, tuple)):
|
|
477
|
+
raise TypeError(
|
|
478
|
+
f"Expected list or tuple of state dicts, got {type(state_dicts).__name__}"
|
|
479
|
+
)
|
|
480
|
+
|
|
481
|
+
if not state_dicts:
|
|
482
|
+
raise ValueError("The list of state_dicts must not be empty")
|
|
483
|
+
|
|
484
|
+
for i, state_dict in enumerate(state_dicts):
|
|
485
|
+
if state_dict is None:
|
|
486
|
+
raise ValueError(f"State dict at index {i} is None")
|
|
487
|
+
if not isinstance(state_dict, (dict, OrderedDict)):
|
|
488
|
+
raise TypeError(
|
|
489
|
+
f"Item at index {i} is not a dictionary, got {type(state_dict).__name__}"
|
|
490
|
+
)
|
|
491
|
+
if not state_dict:
|
|
492
|
+
raise ValueError(f"State dict at index {i} is empty")
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
def _validate_state_dict_same_keys(state_dicts: List[StateDictType]) -> None:
|
|
496
|
+
"""
|
|
497
|
+
Validate that all state dicts have the same keys and compatible tensor shapes.
|
|
498
|
+
|
|
499
|
+
Args:
|
|
500
|
+
state_dicts: List of state dictionaries to validate.
|
|
501
|
+
|
|
502
|
+
Raises:
|
|
503
|
+
ValueError: If state dicts have different keys or incompatible tensor shapes.
|
|
504
|
+
TypeError: If tensors have incompatible types.
|
|
505
|
+
"""
|
|
506
|
+
if not state_dicts:
|
|
507
|
+
return
|
|
508
|
+
|
|
509
|
+
if len(state_dicts) < 2:
|
|
510
|
+
return
|
|
511
|
+
|
|
512
|
+
reference_state_dict = state_dicts[0]
|
|
513
|
+
reference_keys = set(reference_state_dict.keys())
|
|
514
|
+
|
|
515
|
+
if not reference_keys:
|
|
516
|
+
raise ValueError("Reference state dict (index 0) has no keys")
|
|
517
|
+
|
|
518
|
+
for i, state_dict in enumerate(state_dicts[1:], 1):
|
|
519
|
+
current_keys = set(state_dict.keys())
|
|
12
520
|
|
|
13
|
-
|
|
521
|
+
# Check for missing keys
|
|
522
|
+
missing_keys = reference_keys - current_keys
|
|
523
|
+
if missing_keys:
|
|
524
|
+
raise ValueError(
|
|
525
|
+
f"State dict at index {i} is missing keys: {sorted(missing_keys)}"
|
|
526
|
+
)
|
|
527
|
+
|
|
528
|
+
# Check for extra keys
|
|
529
|
+
extra_keys = current_keys - reference_keys
|
|
530
|
+
if extra_keys:
|
|
531
|
+
raise ValueError(
|
|
532
|
+
f"State dict at index {i} has extra keys: {sorted(extra_keys)}"
|
|
533
|
+
)
|
|
534
|
+
|
|
535
|
+
# Check tensor shapes and dtypes for compatibility
|
|
536
|
+
for key in reference_keys:
|
|
537
|
+
ref_tensor = reference_state_dict[key]
|
|
538
|
+
curr_tensor = state_dict[key]
|
|
539
|
+
|
|
540
|
+
# Handle None values
|
|
541
|
+
if ref_tensor is None and curr_tensor is None:
|
|
542
|
+
continue
|
|
543
|
+
if ref_tensor is None or curr_tensor is None:
|
|
544
|
+
raise ValueError(
|
|
545
|
+
f"Tensor None mismatch for key '{key}' at index {i}: "
|
|
546
|
+
f"one is None, the other is not"
|
|
547
|
+
)
|
|
548
|
+
|
|
549
|
+
if not isinstance(curr_tensor, type(ref_tensor)):
|
|
550
|
+
raise TypeError(
|
|
551
|
+
f"Tensor type mismatch for key '{key}' at index {i}: "
|
|
552
|
+
f"expected {type(ref_tensor).__name__}, got {type(curr_tensor).__name__}"
|
|
553
|
+
)
|
|
554
|
+
|
|
555
|
+
if hasattr(ref_tensor, "shape") and hasattr(curr_tensor, "shape"):
|
|
556
|
+
if ref_tensor.shape != curr_tensor.shape:
|
|
557
|
+
raise ValueError(
|
|
558
|
+
f"Shape mismatch for key '{key}' at index {i}: "
|
|
559
|
+
f"expected {ref_tensor.shape}, got {curr_tensor.shape}"
|
|
560
|
+
)
|
|
561
|
+
|
|
562
|
+
if hasattr(ref_tensor, "dtype") and hasattr(curr_tensor, "dtype"):
|
|
563
|
+
if ref_tensor.dtype != curr_tensor.dtype:
|
|
564
|
+
raise ValueError(
|
|
565
|
+
f"Dtype mismatch for key '{key}' at index {i}: "
|
|
566
|
+
f"expected {ref_tensor.dtype}, got {curr_tensor.dtype}"
|
|
567
|
+
)
|
|
568
|
+
|
|
569
|
+
# Check device compatibility (warn but don't fail)
|
|
570
|
+
if (
|
|
571
|
+
hasattr(ref_tensor, "device")
|
|
572
|
+
and hasattr(curr_tensor, "device")
|
|
573
|
+
and ref_tensor.device != curr_tensor.device
|
|
574
|
+
):
|
|
575
|
+
import warnings
|
|
576
|
+
|
|
577
|
+
warnings.warn(
|
|
578
|
+
f"Device mismatch for key '{key}' at index {i}: "
|
|
579
|
+
f"reference on {ref_tensor.device}, current on {curr_tensor.device}. "
|
|
580
|
+
f"This may cause issues during arithmetic operations."
|
|
581
|
+
)
|
|
582
|
+
|
|
583
|
+
|
|
584
|
+
def _validate_list_lengths_equal(
|
|
585
|
+
list1: List,
|
|
586
|
+
list2: List,
|
|
587
|
+
name1: str = "the first list",
|
|
588
|
+
name2: str = "the second list",
|
|
589
|
+
) -> None:
|
|
590
|
+
"""
|
|
591
|
+
Validate that two lists have the same length and are valid.
|
|
592
|
+
|
|
593
|
+
Args:
|
|
594
|
+
list1: First list to compare.
|
|
595
|
+
list2: Second list to compare.
|
|
596
|
+
name1: Descriptive name for the first list.
|
|
597
|
+
name2: Descriptive name for the second list.
|
|
598
|
+
|
|
599
|
+
Raises:
|
|
600
|
+
TypeError: If either argument is not a list or names are not strings.
|
|
601
|
+
ValueError: If the lists have different lengths or are empty.
|
|
602
|
+
"""
|
|
603
|
+
# Validate input types
|
|
604
|
+
if not isinstance(name1, str) or not isinstance(name2, str):
|
|
605
|
+
raise TypeError("List names must be strings")
|
|
606
|
+
|
|
607
|
+
if list1 is None or list2 is None:
|
|
608
|
+
raise TypeError("Lists cannot be None")
|
|
609
|
+
|
|
610
|
+
if not isinstance(list1, (list, tuple)):
|
|
611
|
+
raise TypeError(f"{name1} must be a list or tuple, got {type(list1).__name__}")
|
|
612
|
+
if not isinstance(list2, (list, tuple)):
|
|
613
|
+
raise TypeError(f"{name2} must be a list or tuple, got {type(list2).__name__}")
|
|
614
|
+
|
|
615
|
+
if not list1 and not list2:
|
|
616
|
+
raise ValueError(f"Both {name1} and {name2} are empty")
|
|
617
|
+
|
|
618
|
+
len1, len2 = len(list1), len(list2)
|
|
619
|
+
if len1 != len2:
|
|
620
|
+
raise ValueError(
|
|
621
|
+
f"Length mismatch: {name1} has {len1} items, " f"{name2} has {len2} items"
|
|
622
|
+
)
|
|
623
|
+
|
|
624
|
+
# Additional validation for numeric lists (common use case)
|
|
625
|
+
if list1 and hasattr(list1[0], "__float__"): # Likely numeric
|
|
626
|
+
try:
|
|
627
|
+
# Check for NaN or infinite values in numeric lists
|
|
628
|
+
import math
|
|
629
|
+
|
|
630
|
+
for i, val in enumerate(list1):
|
|
631
|
+
if isinstance(val, (int, float)) and (
|
|
632
|
+
math.isnan(val) or math.isinf(val)
|
|
633
|
+
):
|
|
634
|
+
raise ValueError(
|
|
635
|
+
f"{name1} contains invalid numeric value at index {i}: {val}"
|
|
636
|
+
)
|
|
637
|
+
for i, val in enumerate(list2):
|
|
638
|
+
if isinstance(val, (int, float)) and (
|
|
639
|
+
math.isnan(val) or math.isinf(val)
|
|
640
|
+
):
|
|
641
|
+
raise ValueError(
|
|
642
|
+
f"{name2} contains invalid numeric value at index {i}: {val}"
|
|
643
|
+
)
|
|
644
|
+
except (TypeError, AttributeError):
|
|
645
|
+
# If we can't check numeric values, skip this validation
|
|
646
|
+
pass
|
|
647
|
+
|
|
648
|
+
|
|
649
|
+
def state_dict_to_device(
|
|
14
650
|
state_dict: StateDictType,
|
|
15
651
|
device: Union[torch.device, str],
|
|
16
652
|
copy: bool = False,
|
|
17
653
|
inplace: bool = False,
|
|
18
|
-
):
|
|
654
|
+
) -> StateDictType:
|
|
655
|
+
"""
|
|
656
|
+
Move state dict tensors to the specified device.
|
|
657
|
+
|
|
658
|
+
Args:
|
|
659
|
+
state_dict: The state dictionary to move.
|
|
660
|
+
device: Target device for the tensors.
|
|
661
|
+
copy: Whether to force a copy even when the tensor is already on the target device.
|
|
662
|
+
inplace: Whether to modify the input state dict in place.
|
|
663
|
+
|
|
664
|
+
Returns:
|
|
665
|
+
State dict with tensors moved to the specified device.
|
|
666
|
+
"""
|
|
19
667
|
if inplace:
|
|
20
668
|
ret_state_dict = state_dict
|
|
21
669
|
else:
|
|
22
670
|
ret_state_dict = OrderedDict()
|
|
23
|
-
|
|
24
|
-
|
|
671
|
+
|
|
672
|
+
for key, tensor in state_dict.items():
|
|
673
|
+
ret_state_dict[key] = cast(Tensor, tensor).to(
|
|
25
674
|
device, non_blocking=True, copy=copy
|
|
26
675
|
)
|
|
27
676
|
return ret_state_dict
|
|
28
677
|
|
|
29
678
|
|
|
30
|
-
def state_dicts_check_keys(state_dicts: List[StateDictType]):
|
|
679
|
+
def state_dicts_check_keys(state_dicts: List[StateDictType]) -> None:
|
|
31
680
|
"""
|
|
32
|
-
|
|
681
|
+
Check that all state dictionaries have the same keys.
|
|
33
682
|
|
|
34
683
|
Args:
|
|
35
|
-
state_dicts
|
|
684
|
+
state_dicts: A list of state dictionaries to check.
|
|
36
685
|
|
|
37
686
|
Raises:
|
|
38
|
-
ValueError: If the state dictionaries have different keys.
|
|
687
|
+
ValueError: If the state dictionaries have different keys or the list is empty.
|
|
39
688
|
"""
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
# Check that all the state dictionaries have the same keys
|
|
43
|
-
for state_dict in state_dicts:
|
|
44
|
-
assert keys == set(state_dict.keys()), "keys of state_dicts are not equal"
|
|
689
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
690
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
45
691
|
|
|
46
692
|
|
|
47
693
|
def num_params_of_state_dict(state_dict: StateDictType) -> int:
|
|
48
694
|
"""
|
|
49
|
-
|
|
695
|
+
Calculate the total number of parameters in a state dict.
|
|
50
696
|
|
|
51
697
|
Args:
|
|
52
|
-
state_dict
|
|
698
|
+
state_dict: The state dict to count parameters in.
|
|
53
699
|
|
|
54
700
|
Returns:
|
|
55
|
-
|
|
701
|
+
The total number of parameters in the state dict.
|
|
56
702
|
"""
|
|
57
|
-
return sum(
|
|
703
|
+
return sum(tensor.numel() for tensor in state_dict.values())
|
|
58
704
|
|
|
59
705
|
|
|
60
|
-
def state_dict_flatten(state_dict:
|
|
706
|
+
def state_dict_flatten(state_dict: StateDictType) -> Tensor:
|
|
61
707
|
"""
|
|
62
|
-
|
|
708
|
+
Flatten all tensors in a state dict into a single 1D tensor.
|
|
63
709
|
|
|
64
710
|
Args:
|
|
65
|
-
state_dict
|
|
711
|
+
state_dict: The state dict to flatten.
|
|
66
712
|
|
|
67
713
|
Returns:
|
|
68
|
-
|
|
714
|
+
A single flattened tensor containing all parameters.
|
|
69
715
|
"""
|
|
70
|
-
|
|
71
|
-
for key in state_dict:
|
|
72
|
-
flattened_state_dict.append(state_dict[key].flatten())
|
|
73
|
-
return torch.cat(flattened_state_dict)
|
|
716
|
+
return torch.cat([tensor.flatten() for tensor in state_dict.values()])
|
|
74
717
|
|
|
75
718
|
|
|
76
719
|
def state_dict_avg(state_dicts: List[StateDictType]) -> StateDictType:
|
|
77
720
|
"""
|
|
78
|
-
|
|
721
|
+
Calculate the element-wise average of a list of state dicts.
|
|
79
722
|
|
|
80
723
|
Args:
|
|
81
|
-
state_dicts
|
|
724
|
+
state_dicts: List of state dicts to average.
|
|
82
725
|
|
|
83
726
|
Returns:
|
|
84
|
-
|
|
727
|
+
A state dict containing the averaged parameters.
|
|
728
|
+
|
|
729
|
+
Raises:
|
|
730
|
+
ValueError: If the list is empty or state dicts have different keys.
|
|
85
731
|
"""
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
[len(state_dicts[0]) == len(state_dict) for state_dict in state_dicts]
|
|
89
|
-
), "All state_dicts must have the same number of keys"
|
|
732
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
733
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
90
734
|
|
|
91
735
|
num_state_dicts = len(state_dicts)
|
|
92
736
|
avg_state_dict = OrderedDict()
|
|
737
|
+
|
|
738
|
+
# Initialize with zeros_like for better performance
|
|
93
739
|
for key in state_dicts[0]:
|
|
94
740
|
avg_state_dict[key] = torch.zeros_like(state_dicts[0][key])
|
|
95
|
-
|
|
741
|
+
|
|
742
|
+
# Accumulate all state dicts
|
|
743
|
+
for state_dict in state_dicts:
|
|
744
|
+
for key in avg_state_dict:
|
|
96
745
|
avg_state_dict[key] += state_dict[key]
|
|
746
|
+
|
|
747
|
+
# Divide by number of state dicts
|
|
748
|
+
for key in avg_state_dict:
|
|
97
749
|
avg_state_dict[key] /= num_state_dicts
|
|
750
|
+
|
|
98
751
|
return avg_state_dict
|
|
99
752
|
|
|
100
753
|
|
|
101
754
|
def state_dict_sub(
|
|
102
|
-
a: StateDictType,
|
|
755
|
+
a: StateDictType,
|
|
756
|
+
b: StateDictType,
|
|
757
|
+
strict: bool = True,
|
|
758
|
+
device: Optional[Union[torch.device, str]] = None,
|
|
103
759
|
) -> StateDictType:
|
|
104
760
|
"""
|
|
105
|
-
|
|
761
|
+
Compute the element-wise difference between two state dicts (a - b).
|
|
106
762
|
|
|
107
763
|
Args:
|
|
108
|
-
a
|
|
109
|
-
b
|
|
110
|
-
strict
|
|
764
|
+
a: The first state dict (minuend).
|
|
765
|
+
b: The second state dict (subtrahend).
|
|
766
|
+
strict: Whether to require exact key matching between state dicts.
|
|
767
|
+
device: Optional device to move the result tensors to.
|
|
111
768
|
|
|
112
769
|
Returns:
|
|
113
|
-
|
|
770
|
+
A state dict containing the element-wise differences.
|
|
771
|
+
|
|
772
|
+
Raises:
|
|
773
|
+
ValueError: If strict=True and the state dicts have different keys or incompatible tensor shapes.
|
|
774
|
+
TypeError: If tensors have incompatible types.
|
|
114
775
|
"""
|
|
776
|
+
result = OrderedDict()
|
|
777
|
+
|
|
115
778
|
if strict:
|
|
116
|
-
|
|
779
|
+
_validate_state_dict_same_keys([a, b])
|
|
780
|
+
keys_to_process = a.keys()
|
|
781
|
+
else:
|
|
782
|
+
keys_to_process = set(a.keys()) & set(b.keys())
|
|
117
783
|
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
if
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
return
|
|
784
|
+
for key in keys_to_process:
|
|
785
|
+
result_tensor = a[key] - b[key]
|
|
786
|
+
if device is not None:
|
|
787
|
+
result_tensor = result_tensor.to(device, non_blocking=True)
|
|
788
|
+
result[key] = result_tensor
|
|
789
|
+
|
|
790
|
+
return result
|
|
125
791
|
|
|
126
792
|
|
|
127
793
|
def state_dict_add(
|
|
128
794
|
a: StateDictType,
|
|
129
795
|
b: StateDictType,
|
|
130
796
|
strict: bool = True,
|
|
131
|
-
device=None,
|
|
797
|
+
device: Optional[Union[torch.device, str]] = None,
|
|
132
798
|
show_pbar: bool = False,
|
|
133
799
|
) -> StateDictType:
|
|
134
800
|
"""
|
|
135
|
-
|
|
801
|
+
Compute the element-wise sum of two state dicts.
|
|
136
802
|
|
|
137
803
|
Args:
|
|
138
|
-
a
|
|
139
|
-
b
|
|
140
|
-
strict
|
|
804
|
+
a: The first state dict.
|
|
805
|
+
b: The second state dict.
|
|
806
|
+
strict: Whether to require exact key matching between state dicts.
|
|
807
|
+
device: Optional device to move the result tensors to.
|
|
808
|
+
show_pbar: Whether to show a progress bar during computation.
|
|
141
809
|
|
|
142
810
|
Returns:
|
|
143
|
-
|
|
811
|
+
A state dict containing the element-wise sums.
|
|
812
|
+
|
|
813
|
+
Raises:
|
|
814
|
+
ValueError: If strict=True and the state dicts have different parameters.
|
|
144
815
|
"""
|
|
145
|
-
|
|
816
|
+
result = OrderedDict()
|
|
817
|
+
|
|
146
818
|
if strict:
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
ans[key] = a[key] + b[key]
|
|
819
|
+
_validate_state_dict_same_keys([a, b])
|
|
820
|
+
keys_to_process = a.keys()
|
|
150
821
|
else:
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
822
|
+
keys_to_process = set(a.keys()) & set(b.keys())
|
|
823
|
+
|
|
824
|
+
keys_iter = (
|
|
825
|
+
tqdm(keys_to_process, desc="Adding state dicts")
|
|
826
|
+
if show_pbar
|
|
827
|
+
else keys_to_process
|
|
828
|
+
)
|
|
829
|
+
|
|
830
|
+
for key in keys_iter:
|
|
831
|
+
if key in b: # This check is redundant when strict=True but harmless
|
|
832
|
+
result[key] = a[key] + b[key]
|
|
833
|
+
|
|
154
834
|
if device is not None:
|
|
155
|
-
|
|
156
|
-
return ans
|
|
835
|
+
result = state_dict_to_device(result, device)
|
|
157
836
|
|
|
837
|
+
return result
|
|
158
838
|
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
839
|
+
|
|
840
|
+
def state_dict_add_scalar(state_dict: StateDictType, scalar: Number) -> StateDictType:
|
|
841
|
+
"""
|
|
842
|
+
Add a scalar value to all parameters in a state dict.
|
|
843
|
+
|
|
844
|
+
Args:
|
|
845
|
+
state_dict: The state dict to modify.
|
|
846
|
+
scalar: The scalar value to add to each parameter.
|
|
847
|
+
|
|
848
|
+
Returns:
|
|
849
|
+
A new state dict with the scalar added to each parameter.
|
|
850
|
+
"""
|
|
851
|
+
return OrderedDict((key, tensor + scalar) for key, tensor in state_dict.items())
|
|
164
852
|
|
|
165
853
|
|
|
166
854
|
def state_dict_mul(state_dict: StateDictType, scalar: float) -> StateDictType:
|
|
167
855
|
"""
|
|
168
|
-
|
|
856
|
+
Multiply all parameters in a state dict by a scalar.
|
|
169
857
|
|
|
170
858
|
Args:
|
|
171
|
-
state_dict
|
|
172
|
-
scalar
|
|
859
|
+
state_dict: The state dict to multiply.
|
|
860
|
+
scalar: The scalar value to multiply each parameter by.
|
|
173
861
|
|
|
174
862
|
Returns:
|
|
175
|
-
|
|
863
|
+
A new state dict with each parameter multiplied by the scalar.
|
|
176
864
|
"""
|
|
177
|
-
|
|
178
|
-
for k in state_dict:
|
|
179
|
-
diff[k] = scalar * state_dict[k]
|
|
180
|
-
return diff
|
|
865
|
+
return OrderedDict((key, scalar * tensor) for key, tensor in state_dict.items())
|
|
181
866
|
|
|
182
867
|
|
|
183
868
|
def state_dict_div(
|
|
184
869
|
state_dict: StateDictType, scalar: float, show_pbar: bool = False
|
|
185
870
|
) -> StateDictType:
|
|
186
871
|
"""
|
|
187
|
-
|
|
872
|
+
Divide all parameters in a state dict by a scalar.
|
|
188
873
|
|
|
189
874
|
Args:
|
|
190
|
-
state_dict
|
|
191
|
-
scalar
|
|
875
|
+
state_dict: The state dict to divide.
|
|
876
|
+
scalar: The scalar value to divide each parameter by.
|
|
877
|
+
show_pbar: Whether to show a progress bar during computation.
|
|
192
878
|
|
|
193
879
|
Returns:
|
|
194
|
-
|
|
880
|
+
A new state dict with each parameter divided by the scalar.
|
|
881
|
+
|
|
882
|
+
Raises:
|
|
883
|
+
ZeroDivisionError: If scalar is zero.
|
|
195
884
|
"""
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
885
|
+
if scalar == 0:
|
|
886
|
+
raise ZeroDivisionError("Cannot divide state dict by zero")
|
|
887
|
+
|
|
888
|
+
keys_iter = (
|
|
889
|
+
tqdm(state_dict.keys(), desc="Dividing state dict")
|
|
890
|
+
if show_pbar
|
|
891
|
+
else state_dict.keys()
|
|
892
|
+
)
|
|
893
|
+
return OrderedDict((key, state_dict[key] / scalar) for key in keys_iter)
|
|
200
894
|
|
|
201
895
|
|
|
202
896
|
def state_dict_power(state_dict: StateDictType, p: float) -> StateDictType:
|
|
203
897
|
"""
|
|
204
|
-
|
|
898
|
+
Raise all parameters in a state dict to a power.
|
|
205
899
|
|
|
206
900
|
Args:
|
|
207
|
-
state_dict
|
|
208
|
-
p
|
|
901
|
+
state_dict: The state dict to raise to a power.
|
|
902
|
+
p: The exponent to raise each parameter to.
|
|
209
903
|
|
|
210
904
|
Returns:
|
|
211
|
-
|
|
905
|
+
A new state dict with each parameter raised to the power p.
|
|
212
906
|
"""
|
|
213
|
-
|
|
214
|
-
for key in state_dict:
|
|
215
|
-
powered_state_dict[key] = state_dict[key] ** p
|
|
216
|
-
return powered_state_dict
|
|
907
|
+
return OrderedDict((key, tensor**p) for key, tensor in state_dict.items())
|
|
217
908
|
|
|
218
909
|
|
|
219
910
|
def state_dict_interpolation(
|
|
220
911
|
state_dicts: List[StateDictType], scalars: List[float]
|
|
221
912
|
) -> StateDictType:
|
|
222
913
|
"""
|
|
223
|
-
|
|
914
|
+
Interpolate between multiple state dicts using specified scalar weights.
|
|
224
915
|
|
|
225
916
|
Args:
|
|
226
|
-
state_dicts
|
|
227
|
-
scalars
|
|
917
|
+
state_dicts: List of state dicts to interpolate between.
|
|
918
|
+
scalars: List of scalar weights for interpolation.
|
|
228
919
|
|
|
229
920
|
Returns:
|
|
230
|
-
|
|
921
|
+
A state dict containing the interpolated parameters.
|
|
922
|
+
|
|
923
|
+
Raises:
|
|
924
|
+
ValueError: If the lists have different lengths or are empty, or if state dicts have different keys.
|
|
231
925
|
"""
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
)
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
[len(state_dicts[0]) == len(state_dict) for state_dict in state_dicts]
|
|
238
|
-
), "All state_dicts must have the same number of keys"
|
|
926
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
927
|
+
_validate_list_lengths_equal(state_dicts, scalars, "state_dicts", "scalars")
|
|
928
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
929
|
+
|
|
930
|
+
interpolated_state_dict = OrderedDict()
|
|
239
931
|
|
|
240
|
-
|
|
932
|
+
# Initialize with zeros
|
|
241
933
|
for key in state_dicts[0]:
|
|
242
934
|
interpolated_state_dict[key] = torch.zeros_like(state_dicts[0][key])
|
|
243
|
-
|
|
935
|
+
|
|
936
|
+
# Accumulate weighted contributions
|
|
937
|
+
for state_dict, scalar in zip(state_dicts, scalars):
|
|
938
|
+
for key in interpolated_state_dict:
|
|
244
939
|
interpolated_state_dict[key] += scalar * state_dict[key]
|
|
940
|
+
|
|
245
941
|
return interpolated_state_dict
|
|
246
942
|
|
|
247
943
|
|
|
248
944
|
def state_dict_sum(state_dicts: List[StateDictType]) -> StateDictType:
|
|
249
945
|
"""
|
|
250
|
-
|
|
946
|
+
Compute the element-wise sum of multiple state dicts.
|
|
251
947
|
|
|
252
948
|
Args:
|
|
253
|
-
state_dicts
|
|
949
|
+
state_dicts: List of state dicts to sum.
|
|
254
950
|
|
|
255
951
|
Returns:
|
|
256
|
-
|
|
952
|
+
A state dict containing the element-wise sums.
|
|
953
|
+
|
|
954
|
+
Raises:
|
|
955
|
+
ValueError: If the list is empty or state dicts have different keys.
|
|
257
956
|
"""
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
[len(state_dicts[0]) == len(state_dict) for state_dict in state_dicts]
|
|
261
|
-
), "All state_dicts must have the same number of keys"
|
|
957
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
958
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
262
959
|
|
|
263
960
|
sum_state_dict = OrderedDict()
|
|
961
|
+
|
|
962
|
+
# Initialize with zeros
|
|
264
963
|
for key in state_dicts[0]:
|
|
265
|
-
sum_state_dict[key] = 0
|
|
266
|
-
|
|
267
|
-
|
|
964
|
+
sum_state_dict[key] = torch.zeros_like(state_dicts[0][key])
|
|
965
|
+
|
|
966
|
+
# Accumulate all state dicts
|
|
967
|
+
for state_dict in state_dicts:
|
|
968
|
+
for key in sum_state_dict:
|
|
969
|
+
sum_state_dict[key] += state_dict[key]
|
|
970
|
+
|
|
268
971
|
return sum_state_dict
|
|
269
972
|
|
|
270
973
|
|
|
271
974
|
def state_dict_weighted_sum(
|
|
272
|
-
state_dicts: List[StateDictType],
|
|
975
|
+
state_dicts: List[StateDictType],
|
|
976
|
+
weights: List[float],
|
|
977
|
+
device: Optional[Union[torch.device, str]] = None,
|
|
273
978
|
) -> StateDictType:
|
|
274
979
|
"""
|
|
275
|
-
|
|
980
|
+
Compute the weighted sum of multiple state dicts.
|
|
276
981
|
|
|
277
982
|
Args:
|
|
278
|
-
state_dicts
|
|
279
|
-
weights
|
|
983
|
+
state_dicts: List of state dicts to combine.
|
|
984
|
+
weights: List of weights for the weighted sum.
|
|
985
|
+
device: Optional device to move the result tensors to.
|
|
280
986
|
|
|
281
987
|
Returns:
|
|
282
|
-
|
|
988
|
+
A state dict containing the weighted sum of parameters.
|
|
989
|
+
|
|
990
|
+
Raises:
|
|
991
|
+
ValueError: If the lists have different lengths or are empty, or if state dicts have different keys.
|
|
283
992
|
"""
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
)
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
[len(state_dicts[0]) == len(state_dict) for state_dict in state_dicts]
|
|
290
|
-
), "All state_dicts must have the same number of keys"
|
|
993
|
+
_validate_state_dict_list_not_empty(state_dicts)
|
|
994
|
+
_validate_list_lengths_equal(state_dicts, weights, "state_dicts", "weights")
|
|
995
|
+
_validate_state_dict_same_keys(state_dicts)
|
|
996
|
+
|
|
997
|
+
weighted_sum_state_dict = OrderedDict()
|
|
291
998
|
|
|
292
|
-
|
|
999
|
+
# Single pass initialization and computation for better performance
|
|
293
1000
|
for key in state_dicts[0]:
|
|
294
|
-
#
|
|
295
|
-
|
|
1001
|
+
# Get reference tensor and handle sparse tensors
|
|
1002
|
+
ref_tensor = state_dicts[0][key]
|
|
1003
|
+
is_sparse = ref_tensor.is_sparse if hasattr(ref_tensor, "is_sparse") else False
|
|
1004
|
+
|
|
1005
|
+
# Initialize result tensor
|
|
1006
|
+
if is_sparse:
|
|
1007
|
+
# For sparse tensors, start with zeros in dense format for efficient accumulation
|
|
1008
|
+
result_tensor = torch.zeros_like(ref_tensor).to_dense()
|
|
1009
|
+
else:
|
|
1010
|
+
result_tensor = torch.zeros_like(ref_tensor)
|
|
1011
|
+
|
|
1012
|
+
# Accumulate weighted contributions in a single loop
|
|
296
1013
|
for state_dict, weight in zip(state_dicts, weights):
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
1014
|
+
tensor = state_dict[key]
|
|
1015
|
+
|
|
1016
|
+
# Optimize for common cases
|
|
1017
|
+
if weight == 0.0:
|
|
1018
|
+
continue # Skip zero weights
|
|
1019
|
+
elif weight == 1.0:
|
|
1020
|
+
result_tensor += tensor # Avoid multiplication for unit weights
|
|
1021
|
+
else:
|
|
1022
|
+
# Use in-place operations when possible for memory efficiency
|
|
1023
|
+
if is_sparse and hasattr(tensor, "is_sparse") and tensor.is_sparse:
|
|
1024
|
+
result_tensor += weight * tensor.to_dense()
|
|
1025
|
+
else:
|
|
1026
|
+
result_tensor += weight * tensor
|
|
1027
|
+
|
|
1028
|
+
# Move to target device if specified (do this once per tensor, not per operation)
|
|
300
1029
|
if device is not None:
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
1030
|
+
result_tensor = result_tensor.to(device, non_blocking=True)
|
|
1031
|
+
|
|
1032
|
+
# Convert back to sparse if original was sparse and result is suitable
|
|
1033
|
+
if is_sparse and hasattr(result_tensor, "to_sparse"):
|
|
1034
|
+
try:
|
|
1035
|
+
# Only convert back to sparse if it would be memory efficient
|
|
1036
|
+
# (i.e., if the result has sufficient sparsity)
|
|
1037
|
+
if result_tensor.numel() > 0:
|
|
1038
|
+
sparsity_ratio = (result_tensor == 0).float().mean().item()
|
|
1039
|
+
if sparsity_ratio > 0.5: # Convert back if >50% zeros
|
|
1040
|
+
result_tensor = result_tensor.to_sparse()
|
|
1041
|
+
except (RuntimeError, AttributeError):
|
|
1042
|
+
# If conversion fails, keep as dense
|
|
1043
|
+
pass
|
|
1044
|
+
|
|
1045
|
+
weighted_sum_state_dict[key] = result_tensor
|
|
1046
|
+
|
|
304
1047
|
return weighted_sum_state_dict
|
|
305
1048
|
|
|
306
1049
|
|
|
307
1050
|
def state_dict_diff_abs(a: StateDictType, b: StateDictType) -> StateDictType:
|
|
308
1051
|
"""
|
|
309
|
-
|
|
1052
|
+
Compute the element-wise absolute difference between two state dicts.
|
|
310
1053
|
|
|
311
1054
|
Args:
|
|
312
|
-
a
|
|
313
|
-
b
|
|
1055
|
+
a: The first state dict.
|
|
1056
|
+
b: The second state dict.
|
|
314
1057
|
|
|
315
1058
|
Returns:
|
|
316
|
-
|
|
1059
|
+
A state dict containing the absolute differences.
|
|
317
1060
|
"""
|
|
318
1061
|
diff = state_dict_sub(a, b)
|
|
319
|
-
|
|
320
|
-
return abs_diff
|
|
1062
|
+
return OrderedDict((key, tensor.abs()) for key, tensor in diff.items())
|
|
321
1063
|
|
|
322
1064
|
|
|
323
1065
|
def state_dict_binary_mask(
|
|
@@ -327,18 +1069,28 @@ def state_dict_binary_mask(
|
|
|
327
1069
|
Literal["greater", "less", "equal", "not_equal"],
|
|
328
1070
|
Callable[[Tensor, Tensor], torch.BoolTensor],
|
|
329
1071
|
] = "greater",
|
|
1072
|
+
strict: bool = True,
|
|
1073
|
+
show_pbar: bool = False,
|
|
330
1074
|
) -> BoolStateDictType:
|
|
331
1075
|
"""
|
|
332
|
-
|
|
1076
|
+
Create binary masks by comparing elements in two state dicts.
|
|
333
1077
|
|
|
334
1078
|
Args:
|
|
335
|
-
a
|
|
336
|
-
b
|
|
337
|
-
compare_fn
|
|
338
|
-
|
|
1079
|
+
a: The first state dict.
|
|
1080
|
+
b: The second state dict.
|
|
1081
|
+
compare_fn: Comparison function to use. Can be a string literal
|
|
1082
|
+
("greater", "less", "equal", "not_equal") or a callable
|
|
1083
|
+
that takes two tensors and returns a boolean tensor.
|
|
1084
|
+
strict: Whether to require exact key matching between state dicts.
|
|
1085
|
+
show_pbar: Whether to show a progress bar during computation.
|
|
339
1086
|
|
|
340
1087
|
Returns:
|
|
341
|
-
|
|
1088
|
+
A dictionary containing boolean masks based on the comparison.
|
|
1089
|
+
|
|
1090
|
+
Raises:
|
|
1091
|
+
ValueError: If compare_fn is not a valid string or callable, or if strict=True
|
|
1092
|
+
and the state dicts have different keys or incompatible tensor shapes.
|
|
1093
|
+
TypeError: If tensors have incompatible types.
|
|
342
1094
|
"""
|
|
343
1095
|
compare_fn_dict = {
|
|
344
1096
|
"greater": lambda x, y: x > y,
|
|
@@ -346,31 +1098,52 @@ def state_dict_binary_mask(
|
|
|
346
1098
|
"equal": lambda x, y: x == y,
|
|
347
1099
|
"not_equal": lambda x, y: x != y,
|
|
348
1100
|
}
|
|
1101
|
+
|
|
349
1102
|
if isinstance(compare_fn, str):
|
|
1103
|
+
if compare_fn not in compare_fn_dict:
|
|
1104
|
+
raise ValueError(
|
|
1105
|
+
f"Invalid compare_fn string: {compare_fn}. Must be one of {list(compare_fn_dict.keys())}"
|
|
1106
|
+
)
|
|
350
1107
|
compare_fn = compare_fn_dict[compare_fn]
|
|
351
1108
|
elif not callable(compare_fn):
|
|
352
1109
|
raise ValueError(
|
|
353
1110
|
f"compare_fn must be a string or a callable, but got {type(compare_fn)}"
|
|
354
1111
|
)
|
|
355
1112
|
|
|
356
|
-
|
|
357
|
-
for key in a:
|
|
358
|
-
mask[key] = compare_fn(a[key], b[key])
|
|
359
|
-
return mask
|
|
1113
|
+
result = OrderedDict()
|
|
360
1114
|
|
|
1115
|
+
if strict:
|
|
1116
|
+
_validate_state_dict_same_keys([a, b])
|
|
1117
|
+
keys_to_process = a.keys()
|
|
1118
|
+
else:
|
|
1119
|
+
keys_to_process = set(a.keys()) & set(b.keys())
|
|
1120
|
+
|
|
1121
|
+
keys_iter = (
|
|
1122
|
+
tqdm(keys_to_process, desc="Creating binary masks")
|
|
1123
|
+
if show_pbar
|
|
1124
|
+
else keys_to_process
|
|
1125
|
+
)
|
|
1126
|
+
|
|
1127
|
+
for key in keys_iter:
|
|
1128
|
+
result[key] = compare_fn(a[key], b[key])
|
|
361
1129
|
|
|
362
|
-
|
|
1130
|
+
return result
|
|
1131
|
+
|
|
1132
|
+
|
|
1133
|
+
def state_dict_hadamard_product(a: StateDictType, b: StateDictType) -> StateDictType:
|
|
363
1134
|
"""
|
|
364
|
-
|
|
1135
|
+
Compute the Hadamard product (element-wise multiplication) of two state dicts.
|
|
365
1136
|
|
|
366
1137
|
Args:
|
|
367
|
-
a
|
|
368
|
-
b
|
|
1138
|
+
a: The first state dict.
|
|
1139
|
+
b: The second state dict.
|
|
369
1140
|
|
|
370
1141
|
Returns:
|
|
371
|
-
|
|
1142
|
+
A state dict containing the element-wise products.
|
|
1143
|
+
|
|
1144
|
+
Raises:
|
|
1145
|
+
ValueError: If the state dicts have different keys or incompatible tensor shapes.
|
|
1146
|
+
TypeError: If tensors have incompatible types.
|
|
372
1147
|
"""
|
|
373
|
-
|
|
374
|
-
for key in a
|
|
375
|
-
ans[key] = a[key] * b[key]
|
|
376
|
-
return ans
|
|
1148
|
+
_validate_state_dict_same_keys([a, b])
|
|
1149
|
+
return OrderedDict((key, a[key] * b[key]) for key in a)
|