fusion-bench 0.2.23__py3-none-any.whl → 0.2.25__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +152 -42
- fusion_bench/dataset/__init__.py +27 -4
- fusion_bench/dataset/clip_dataset.py +2 -2
- fusion_bench/method/__init__.py +18 -1
- fusion_bench/method/classification/__init__.py +27 -2
- fusion_bench/method/classification/image_classification_finetune.py +214 -0
- fusion_bench/method/ensemble.py +17 -2
- fusion_bench/method/linear/__init__.py +6 -2
- fusion_bench/method/linear/{simple_average_for_llama.py → simple_average_for_causallm.py} +8 -4
- fusion_bench/method/linear/{task_arithmetic_for_llama.py → task_arithmetic_for_causallm.py} +22 -12
- fusion_bench/method/linear/ties_merging_for_causallm.py +70 -0
- fusion_bench/method/opcm/opcm.py +1 -0
- fusion_bench/method/pwe_moe/module.py +0 -2
- fusion_bench/method/simple_average.py +2 -2
- fusion_bench/method/tall_mask/task_arithmetic.py +2 -2
- fusion_bench/method/task_arithmetic/task_arithmetic.py +35 -10
- fusion_bench/method/ties_merging/ties_merging.py +22 -6
- fusion_bench/method/wudi/__init__.py +1 -0
- fusion_bench/method/wudi/wudi.py +105 -0
- fusion_bench/mixins/__init__.py +2 -0
- fusion_bench/mixins/lightning_fabric.py +4 -0
- fusion_bench/mixins/pyinstrument.py +174 -0
- fusion_bench/mixins/serialization.py +25 -78
- fusion_bench/mixins/simple_profiler.py +106 -23
- fusion_bench/modelpool/__init__.py +2 -0
- fusion_bench/modelpool/base_pool.py +77 -14
- fusion_bench/modelpool/causal_lm/causal_lm.py +32 -10
- fusion_bench/modelpool/clip_vision/modelpool.py +56 -19
- fusion_bench/modelpool/resnet_for_image_classification.py +208 -0
- fusion_bench/models/__init__.py +35 -9
- fusion_bench/models/hf_clip.py +4 -0
- fusion_bench/models/hf_utils.py +2 -1
- fusion_bench/models/model_card_templates/default.md +8 -1
- fusion_bench/models/wrappers/ensemble.py +136 -7
- fusion_bench/optim/__init__.py +40 -2
- fusion_bench/optim/lr_scheduler/__init__.py +27 -1
- fusion_bench/optim/muon.py +339 -0
- fusion_bench/programs/__init__.py +2 -0
- fusion_bench/programs/fabric_fusion_program.py +2 -2
- fusion_bench/programs/fusion_program.py +271 -0
- fusion_bench/scripts/cli.py +2 -2
- fusion_bench/taskpool/clip_vision/taskpool.py +11 -4
- fusion_bench/tasks/clip_classification/__init__.py +15 -0
- fusion_bench/utils/__init__.py +167 -21
- fusion_bench/utils/devices.py +30 -8
- fusion_bench/utils/lazy_imports.py +91 -12
- fusion_bench/utils/lazy_state_dict.py +58 -5
- fusion_bench/utils/misc.py +104 -13
- fusion_bench/utils/packages.py +4 -0
- fusion_bench/utils/path.py +7 -0
- fusion_bench/utils/pylogger.py +6 -0
- fusion_bench/utils/rich_utils.py +8 -3
- fusion_bench/utils/state_dict_arithmetic.py +935 -162
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/METADATA +10 -3
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/RECORD +76 -55
- fusion_bench_config/method/classification/image_classification_finetune.yaml +16 -0
- fusion_bench_config/method/classification/image_classification_finetune_test.yaml +6 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +1 -0
- fusion_bench_config/method/linear/{simple_average_for_llama.yaml → simple_average_for_causallm.yaml} +1 -1
- fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +4 -0
- fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +13 -0
- fusion_bench_config/method/wudi/wudi.yaml +4 -0
- fusion_bench_config/model_fusion.yaml +45 -0
- fusion_bench_config/modelpool/CausalLMPool/{Qwen2.5-1.5B_math_and_coder.yaml → Qwen2.5-1.5B_math_and_code.yaml} +1 -2
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml +11 -0
- fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml +11 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml +14 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -4
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fusion_bench
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.25
|
|
4
4
|
Summary: A Comprehensive Benchmark of Deep Model Fusion
|
|
5
5
|
Author-email: Anke Tang <tang.anke@foxmail.com>
|
|
6
6
|
Project-URL: Repository, https://github.com/tanganke/fusion_bench
|
|
@@ -23,12 +23,19 @@ Requires-Dist: rich
|
|
|
23
23
|
Requires-Dist: scipy
|
|
24
24
|
Requires-Dist: h5py
|
|
25
25
|
Requires-Dist: pytest
|
|
26
|
+
Requires-Dist: joblib
|
|
27
|
+
Requires-Dist: bidict
|
|
26
28
|
Requires-Dist: transformers!=4.49
|
|
27
29
|
Requires-Dist: pillow!=11.2.1
|
|
28
30
|
Provides-Extra: lm-eval-harness
|
|
29
31
|
Requires-Dist: lm-eval; extra == "lm-eval-harness"
|
|
30
32
|
Requires-Dist: immutabledict; extra == "lm-eval-harness"
|
|
31
33
|
Requires-Dist: langdetect; extra == "lm-eval-harness"
|
|
34
|
+
Requires-Dist: rich-run; extra == "lm-eval-harness"
|
|
35
|
+
Provides-Extra: docs
|
|
36
|
+
Requires-Dist: mkdocs; extra == "docs"
|
|
37
|
+
Requires-Dist: mkdocs-material; extra == "docs"
|
|
38
|
+
Requires-Dist: mkdocstrings[python]; extra == "docs"
|
|
32
39
|
Dynamic: license-file
|
|
33
40
|
|
|
34
41
|
<div align='center'>
|
|
@@ -151,7 +158,7 @@ This will install the latest version of fusion-bench and the dependencies requir
|
|
|
151
158
|
Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
|
|
152
159
|
|
|
153
160
|
> [!TIP]
|
|
154
|
-
> Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/
|
|
161
|
+
> Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/llm) or in the [`docs/modelpool/llm/index.md`](docs/modelpool/llm/index.md) markdown file.
|
|
155
162
|
|
|
156
163
|
## Introduction to Deep Model Fusion
|
|
157
164
|
|
|
@@ -179,7 +186,7 @@ The project is structured as follows:
|
|
|
179
186
|
- `taskpool`: configuration files for the task pool.
|
|
180
187
|
- `model`: configuration files for the models.
|
|
181
188
|
- `dataset`: configuration files for the datasets.
|
|
182
|
-
- `docs/`: documentation for the benchmark. We use [mkdocs](https://www.mkdocs.org/) to generate the documentation. Start the documentation server locally with `mkdocs serve`. The required packages can be installed with `pip install -
|
|
189
|
+
- `docs/`: documentation for the benchmark. We use [mkdocs](https://www.mkdocs.org/) to generate the documentation. Start the documentation server locally with `mkdocs serve`. The required packages can be installed with `pip install -e ".[docs]"`.
|
|
183
190
|
- `examples/`: example scripts for running some of the experiments.
|
|
184
191
|
> **naming convention**: `examples/{method_name}/` contains the files such as bash scripts and jupyter notebooks for the specific method.
|
|
185
192
|
- `tests/`: unit tests for the benchmark.
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
fusion_bench/__init__.py,sha256=
|
|
1
|
+
fusion_bench/__init__.py,sha256=Rw9sT2ZegKMxZAG7FBDgqVOqBGlJ-43C5p_EarRHd1M,5816
|
|
2
2
|
fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
|
|
3
3
|
fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
|
|
4
4
|
fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
|
|
@@ -18,8 +18,8 @@ fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal
|
|
|
18
18
|
fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
|
|
19
19
|
fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
|
|
20
20
|
fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
|
|
21
|
-
fusion_bench/dataset/__init__.py,sha256=
|
|
22
|
-
fusion_bench/dataset/clip_dataset.py,sha256=
|
|
21
|
+
fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
|
|
22
|
+
fusion_bench/dataset/clip_dataset.py,sha256=Y27odUQWiUOb-WdJnorhcxccDvzrHISxisxFbiRrQHs,3185
|
|
23
23
|
fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
|
|
24
24
|
fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
|
|
25
25
|
fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
|
|
@@ -48,12 +48,12 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
|
|
|
48
48
|
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
49
49
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
50
50
|
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
|
-
fusion_bench/method/__init__.py,sha256=
|
|
51
|
+
fusion_bench/method/__init__.py,sha256=QOcRQ3AmUpSiDikH1tq-EcxakX7akFPOizcynTLmUwQ,9377
|
|
52
52
|
fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
|
|
53
53
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
54
|
-
fusion_bench/method/ensemble.py,sha256=
|
|
54
|
+
fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
|
|
55
55
|
fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
|
|
56
|
-
fusion_bench/method/simple_average.py,sha256=
|
|
56
|
+
fusion_bench/method/simple_average.py,sha256=FuIwHCUNK5CoToBzVt-lo8SK7wjj8CdRpiNLRnAflH4,5519
|
|
57
57
|
fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
|
|
58
58
|
fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
|
|
59
59
|
fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
|
|
@@ -76,9 +76,10 @@ fusion_bench/method/bitdelta/bitdelta_utils/__init__.py,sha256=47DEQpj8HBSa-_TIm
|
|
|
76
76
|
fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cwr-o8cE63kpBzHUA3S0FeJPX-Xf3mIS5ziIos,15546
|
|
77
77
|
fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
|
|
78
78
|
fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
|
|
79
|
-
fusion_bench/method/classification/__init__.py,sha256=
|
|
79
|
+
fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
|
|
80
80
|
fusion_bench/method/classification/clip_finetune.py,sha256=QNOw9O-BTOVOsW7lzRu8L-UfbiBpsT_8tS6i6BpbVyA,15726
|
|
81
81
|
fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
|
|
82
|
+
fusion_bench/method/classification/image_classification_finetune.py,sha256=CPMpZvaULWaim01EvJJHlU4C6HQ16OCqZGoMvPBEWtY,8157
|
|
82
83
|
fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
|
|
83
84
|
fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
|
|
84
85
|
fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
|
|
@@ -128,12 +129,13 @@ fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4R
|
|
|
128
129
|
fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
|
|
129
130
|
fusion_bench/method/knots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
130
131
|
fusion_bench/method/knots/knots_utils.py,sha256=NWlzo4nhQypUcNknU832MP3QT42VsLx-6WQ9QXuSigw,795
|
|
131
|
-
fusion_bench/method/linear/__init__.py,sha256=
|
|
132
|
+
fusion_bench/method/linear/__init__.py,sha256=0U7JqlX8JuMECKlvLNM16Lxc1lCBN2bVqH8FtNoD-Fw,417
|
|
132
133
|
fusion_bench/method/linear/expo.py,sha256=N7XnBTC0Nz_4gRs1f9TL9g-j-Lku5TF0lAjGKhZHwOw,3990
|
|
133
134
|
fusion_bench/method/linear/linear_interpolation.py,sha256=Y01HPMBb7TaCjEBsbC6gqQyHvY1SRpwPyPPLxvYrL0s,2223
|
|
134
135
|
fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
|
|
135
|
-
fusion_bench/method/linear/
|
|
136
|
-
fusion_bench/method/linear/
|
|
136
|
+
fusion_bench/method/linear/simple_average_for_causallm.py,sha256=qc-JiPLu19442DcP0xCl4EDGzVnIbq3WGiAiWkNzv6E,3448
|
|
137
|
+
fusion_bench/method/linear/task_arithmetic_for_causallm.py,sha256=7cewnrjX47omokAdhNvDIQV8zz06_ZNKPWM7CZx30R0,2247
|
|
138
|
+
fusion_bench/method/linear/ties_merging_for_causallm.py,sha256=yi0RCC6eRwXMKUC_cBdFLvejia4nmjPh9Pd0MpaUrVg,2392
|
|
137
139
|
fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
|
|
138
140
|
fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=1nvjOMABuEISyYaTRrFiwHLWvSTgHT8pEzTYBTLBRUg,18779
|
|
139
141
|
fusion_bench/method/lm_finetune/causal_lm_pretrain.py,sha256=4CL9KGFsUzrt-edMfTooo4G4apzTH_57rso3DGGvKL0,219
|
|
@@ -156,7 +158,7 @@ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11Yq
|
|
|
156
158
|
fusion_bench/method/moe_pruner/utils/prune.py,sha256=U0cX5RgyAezS7C4jnlfGwjZhMSLKhDvq3hZZGrzJVfM,10609
|
|
157
159
|
fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
|
|
158
160
|
fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
|
|
159
|
-
fusion_bench/method/opcm/opcm.py,sha256=
|
|
161
|
+
fusion_bench/method/opcm/opcm.py,sha256=m12JanlpfL4udUVhRnYt5RRchGdq1e8L91r1mNVNVqw,11733
|
|
160
162
|
fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
|
|
161
163
|
fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
|
|
162
164
|
fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
|
|
@@ -180,7 +182,7 @@ fusion_bench/method/pruning/wanda_utils/prune_opt.py,sha256=onfIRAF0yFi9b1GNDS9D
|
|
|
180
182
|
fusion_bench/method/pruning/wanda_utils/sparsegpt.py,sha256=V1FEIGgSFbPT5YPrYXCWhz1lLXaor6RwfNund7EEIWM,5434
|
|
181
183
|
fusion_bench/method/pwe_moe/__init__.py,sha256=gZUhbqCtCeVSip3nyt5rNSrEDqtByl2ILcWrD4Z3jx4,124
|
|
182
184
|
fusion_bench/method/pwe_moe/clip_pwe_moe.py,sha256=aIKWwVRIvFm0_-6nTUMBuJA5ptUSFDBpcujvOOwKVD0,10253
|
|
183
|
-
fusion_bench/method/pwe_moe/module.py,sha256=
|
|
185
|
+
fusion_bench/method/pwe_moe/module.py,sha256=KJ1biDPPLYq5eOaF-XGtW_ZcaB8G7vs9ZMo1Hig6L-4,12209
|
|
184
186
|
fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o5XaLCsHohjWOEd7lJc,18354
|
|
185
187
|
fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
|
|
186
188
|
fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
|
|
@@ -219,10 +221,10 @@ fusion_bench/method/sparselo/sparselo.py,sha256=U3eIjLcz484Tq7kbQry_U7YFiTx3ECOe
|
|
|
219
221
|
fusion_bench/method/surgery/__init__.py,sha256=6sRKWeL8cx6Jy2aC9tRL78irNTJnp9w75K2dAxBxhho,88
|
|
220
222
|
fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=Cc8LiAqkQzJwQJsyuazG5wgq6kghVcyL8rGkhPcBVoU,5936
|
|
221
223
|
fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuYwIzvwkrr0ILY,61
|
|
222
|
-
fusion_bench/method/tall_mask/task_arithmetic.py,sha256=
|
|
224
|
+
fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
|
|
223
225
|
fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
|
|
224
226
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
225
|
-
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=
|
|
227
|
+
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=KsSBshf04MUwIjoc0HAAmY6cWMqjZwZOYXbUuU4EaL0,6320
|
|
226
228
|
fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
|
|
227
229
|
fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
|
|
228
230
|
fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
|
|
@@ -231,7 +233,7 @@ fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsN
|
|
|
231
233
|
fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
|
|
232
234
|
fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
|
|
233
235
|
fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
|
|
234
|
-
fusion_bench/method/ties_merging/ties_merging.py,sha256=
|
|
236
|
+
fusion_bench/method/ties_merging/ties_merging.py,sha256=u2o7Wo2SJJsxxhBeAhsmY7k4bdZkUtwAwGePGI4Sggc,5916
|
|
235
237
|
fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
|
|
236
238
|
fusion_bench/method/trust_region/__init__.py,sha256=4ao0E-jTlmTQPArbFWD_dFn_4yve3urNIuSMT8JtRIM,91
|
|
237
239
|
fusion_bench/method/trust_region/clip_task_arithmetic.py,sha256=SWP7sRMiXzkDZ3KdNht3zqjaTcAtB4wpnnd8KYbcKZI,7441
|
|
@@ -245,6 +247,8 @@ fusion_bench/method/we_moe/we_moe.py,sha256=_QtmD04oFh7aLhmPq8EYchYB7BIN9ZFWOeys
|
|
|
245
247
|
fusion_bench/method/weighted_average/__init__.py,sha256=bLxIuuB72hH05J_Spz4MZbiLpYL39iwgVIQa_QeQpIk,118
|
|
246
248
|
fusion_bench/method/weighted_average/llama.py,sha256=vvxXp8v98kvXfHi7fYupnIrOVoA3tp08lmV2jDri_BY,3731
|
|
247
249
|
fusion_bench/method/weighted_average/weighted_average.py,sha256=E4byEA2VfXozu7S_gnYVvwI3qg8AFWaSeNRHGbs2Tno,3340
|
|
250
|
+
fusion_bench/method/wudi/__init__.py,sha256=08qPzOlhjw-Ab8TwyY9MGOGx_TLrUTueJc1WgRIvuxU,44
|
|
251
|
+
fusion_bench/method/wudi/wudi.py,sha256=HL3Y0MPjozp7NML_UNjIWWPbQDQxYH_WG_BuyripeBQ,3602
|
|
248
252
|
fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
249
253
|
fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
|
|
250
254
|
fusion_bench/metrics/continual_learning/backward_transfer.py,sha256=LCMWFFmBgWv7UIAJqiTaSvVvanx4qjnXIGuCMYvzmtc,559
|
|
@@ -258,28 +262,30 @@ fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWy
|
|
|
258
262
|
fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
|
|
259
263
|
fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
|
|
260
264
|
fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
|
|
261
|
-
fusion_bench/mixins/__init__.py,sha256=
|
|
265
|
+
fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fgyY,1320
|
|
262
266
|
fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
|
|
263
267
|
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
264
268
|
fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
|
|
265
|
-
fusion_bench/mixins/lightning_fabric.py,sha256=
|
|
269
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=5iamAL7YV6lEm_-8NuzFjfIy1vslwKthSpCSWLLhlCM,7506
|
|
266
270
|
fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
|
|
271
|
+
fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
|
|
267
272
|
fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
|
|
268
|
-
fusion_bench/mixins/serialization.py,sha256=
|
|
269
|
-
fusion_bench/mixins/simple_profiler.py,sha256=
|
|
273
|
+
fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
|
|
274
|
+
fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
|
|
270
275
|
fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
271
276
|
fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
|
|
272
277
|
fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
|
|
273
|
-
fusion_bench/modelpool/__init__.py,sha256=
|
|
274
|
-
fusion_bench/modelpool/base_pool.py,sha256=
|
|
278
|
+
fusion_bench/modelpool/__init__.py,sha256=wKAkEgit_1ZtDAOKOntzrUKdCjOFIxnPMYN02B970Wg,1671
|
|
279
|
+
fusion_bench/modelpool/base_pool.py,sha256=5snzTmqn1Xs_dy0Ws5QWxs9uCAXMwIuclrwfikKPh9o,12298
|
|
275
280
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
276
281
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
277
282
|
fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
|
|
278
283
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
284
|
+
fusion_bench/modelpool/resnet_for_image_classification.py,sha256=G72gRG6LzVWZcf_AvH5TKDVB2zyRrVG3RUe3WlU9_wE,7398
|
|
279
285
|
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
280
|
-
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=
|
|
286
|
+
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=gpUQqxZIuKoaQ-gvdPsLVxI7UifueR6k3YzbUV1i0lk,19902
|
|
281
287
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
282
|
-
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=
|
|
288
|
+
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
|
|
283
289
|
fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
|
|
284
290
|
fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
|
|
285
291
|
fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
|
|
@@ -287,9 +293,9 @@ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=yfa_B5TUIkuC1fTn4xD3HHnFPd
|
|
|
287
293
|
fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
|
|
288
294
|
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
289
295
|
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
|
|
290
|
-
fusion_bench/models/__init__.py,sha256=
|
|
291
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
292
|
-
fusion_bench/models/hf_utils.py,sha256=
|
|
296
|
+
fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
|
|
297
|
+
fusion_bench/models/hf_clip.py,sha256=lL4LxbdwC_rDWRozdEJmRlzKaNcQMpWwCSMDE0tfZRM,7525
|
|
298
|
+
fusion_bench/models/hf_utils.py,sha256=bfB3QAUqsG-TyUeOWrZt8V7GeWDhp-fKg3P0J3D_TbQ,5497
|
|
293
299
|
fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
|
|
294
300
|
fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
|
|
295
301
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
@@ -318,7 +324,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
|
|
|
318
324
|
fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
|
|
319
325
|
fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
|
|
320
326
|
fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
|
|
321
|
-
fusion_bench/models/model_card_templates/default.md,sha256=
|
|
327
|
+
fusion_bench/models/model_card_templates/default.md,sha256=DJXwDODCsqIOhkgP57-iCShxLYK_jnsDsJYH1GfbBY8,1028
|
|
322
328
|
fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
|
|
323
329
|
fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
|
|
324
330
|
fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
|
|
@@ -362,22 +368,24 @@ fusion_bench/models/smile_moe/utils/svd_utils.py,sha256=A2u7lH5Bo2qhgwplHPAz56pd
|
|
|
362
368
|
fusion_bench/models/surgery/__init__.py,sha256=tcUSi2m9GzGWfvRDQScIbdEbFBS_35gm9zGKN7VpE70,53
|
|
363
369
|
fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=F8jX88K5zVWC6HsfN-nGNkEiPwNrN11ydyQQ1EZHehM,5133
|
|
364
370
|
fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
365
|
-
fusion_bench/models/wrappers/ensemble.py,sha256=
|
|
371
|
+
fusion_bench/models/wrappers/ensemble.py,sha256=T-DAKrAm-ciZwV6Hbt8uASbjtoQpHTlvVyan3rhk_8k,11632
|
|
366
372
|
fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=A7LjG0inL5oeEVOkJwEUDM15v4dpQnsCq2y9zA78R3k,11198
|
|
367
373
|
fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=q5Hc4BtLpAawMbxsWJRL-8OR-x7994Jhr9IyN7vKZ9o,16930
|
|
368
374
|
fusion_bench/models/wrappers/task_wise_fusion.py,sha256=ROLANdDq0bZ3sIROqIv3udPN8lzDdEwxD0Jonx-5ycw,17465
|
|
369
|
-
fusion_bench/optim/__init__.py,sha256=
|
|
375
|
+
fusion_bench/optim/__init__.py,sha256=JS7J2VjrM2LdkiFCxuQnIuFwBsWiPyFb7QuEU6V2bPY,845
|
|
370
376
|
fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
|
|
371
377
|
fusion_bench/optim/mezo.py,sha256=Vm4vMGh10Fhe28_9L1MK8r_U7DrurA8Liprh2_gn4_U,3646
|
|
372
|
-
fusion_bench/optim/
|
|
378
|
+
fusion_bench/optim/muon.py,sha256=ABrX-05EeIw-JPWaYqVKU9-ary8dhaKhLOykePF7Cxw,14178
|
|
379
|
+
fusion_bench/optim/lr_scheduler/__init__.py,sha256=yhRN3ZylT5rx3b8-_KYt_aOBIlrscpa4eh-K5H8B-WY,613
|
|
373
380
|
fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502Ae4JWXGrtZL3gwA_H6ZI,6566
|
|
374
381
|
fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
|
|
375
382
|
fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
|
|
376
|
-
fusion_bench/programs/__init__.py,sha256=
|
|
383
|
+
fusion_bench/programs/__init__.py,sha256=YFlvpDC6y2Vm66VSlHKD1vu5nRDQRYNR_Nkn_61xqiI,605
|
|
377
384
|
fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
|
|
378
|
-
fusion_bench/programs/fabric_fusion_program.py,sha256=
|
|
385
|
+
fusion_bench/programs/fabric_fusion_program.py,sha256=wIHNpLUw6uAXpAasJRAMWut55hF_EGFShxn70zRRvfk,12449
|
|
386
|
+
fusion_bench/programs/fusion_program.py,sha256=qLyA3FHJUMM1L3mlYn4jlnZzv9OKguWM5aGGIoLts2I,11309
|
|
379
387
|
fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
380
|
-
fusion_bench/scripts/cli.py,sha256=
|
|
388
|
+
fusion_bench/scripts/cli.py,sha256=kEWLEkZEBqUr1_-XTePzNC5NM8lwWvgUBf0Lcuk_FI8,2739
|
|
381
389
|
fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
|
|
382
390
|
fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
|
|
383
391
|
fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
|
|
@@ -392,7 +400,7 @@ fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBig
|
|
|
392
400
|
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
|
|
393
401
|
fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
|
|
394
402
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
|
|
395
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=
|
|
403
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=99F8w_e4-UnoeDkSjo0z_8Wstx6e635h0IqSdtfT7ms,16460
|
|
396
404
|
fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
397
405
|
fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
|
|
398
406
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
@@ -405,7 +413,7 @@ fusion_bench/taskpool/openclip_vision/openclip_taskpool.py,sha256=PtD_Y9CWzPI3WE
|
|
|
405
413
|
fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
|
|
406
414
|
fusion_bench/tasks/base_task.py,sha256=Fg_pdZhld-2KPKX0C1WrxaTz0EYWrvJerAHO-hA03GI,412
|
|
407
415
|
fusion_bench/tasks/classification.py,sha256=i5sXVr2twzxzvRx4U4EmbJIYg-QbM-Kll5Ol0rsf4XU,2253
|
|
408
|
-
fusion_bench/tasks/clip_classification/__init__.py,sha256=
|
|
416
|
+
fusion_bench/tasks/clip_classification/__init__.py,sha256=EltfO9NCVKPmvayop2fZtjPtGMM6Eajz5wGuPkVFRzE,8970
|
|
409
417
|
fusion_bench/tasks/clip_classification/cifar10.py,sha256=Slx-A7I3CiEg0c4pIgy4OkoMD8MAHL8qCRtSQhYoYpE,968
|
|
410
418
|
fusion_bench/tasks/clip_classification/cifar100.py,sha256=mzmdMxTuuAczJR10DX5FarJl3QRfgVee6cLJ3_faO1U,2750
|
|
411
419
|
fusion_bench/tasks/clip_classification/clip_dataset.py,sha256=KVREQCAxAFnMeFgZzQbWaeLGhTB-XV4p1EuSsam3rMU,58
|
|
@@ -438,11 +446,11 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
|
|
|
438
446
|
fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
|
|
439
447
|
fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
|
|
440
448
|
fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
|
|
441
|
-
fusion_bench/utils/__init__.py,sha256=
|
|
449
|
+
fusion_bench/utils/__init__.py,sha256=b61bfpNY2FOm3QWdexEOMMv1Tcp8zz2pR6644r18RSM,4778
|
|
442
450
|
fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
|
|
443
451
|
fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
|
|
444
452
|
fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
|
|
445
|
-
fusion_bench/utils/devices.py,sha256=
|
|
453
|
+
fusion_bench/utils/devices.py,sha256=6AkGcs3flt0FSo9yfEREuehoTrgcc65gkwpTWQy8XsI,9546
|
|
446
454
|
fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
|
|
447
455
|
fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
|
|
448
456
|
fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
|
|
@@ -451,17 +459,17 @@ fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLt
|
|
|
451
459
|
fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
|
|
452
460
|
fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
|
|
453
461
|
fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
|
|
454
|
-
fusion_bench/utils/lazy_imports.py,sha256=
|
|
455
|
-
fusion_bench/utils/lazy_state_dict.py,sha256=
|
|
456
|
-
fusion_bench/utils/misc.py,sha256=
|
|
462
|
+
fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
|
|
463
|
+
fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
|
|
464
|
+
fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
|
|
457
465
|
fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
|
|
458
|
-
fusion_bench/utils/packages.py,sha256=
|
|
466
|
+
fusion_bench/utils/packages.py,sha256=m2E0ryIMI0NwWR9vUHkK9FtZEwA1G-A4dYOf87olli4,2217
|
|
459
467
|
fusion_bench/utils/parameters.py,sha256=ufEDOYJwcQQxLfveK8hBAGwpu5J3LA_cTWiDgZ2zkJ0,11788
|
|
460
|
-
fusion_bench/utils/path.py,sha256=
|
|
461
|
-
fusion_bench/utils/pylogger.py,sha256=
|
|
462
|
-
fusion_bench/utils/rich_utils.py,sha256=
|
|
468
|
+
fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,2643
|
|
469
|
+
fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
|
|
470
|
+
fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
|
|
463
471
|
fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
|
|
464
|
-
fusion_bench/utils/state_dict_arithmetic.py,sha256=
|
|
472
|
+
fusion_bench/utils/state_dict_arithmetic.py,sha256=kETybQPAcmupmTuKYKFThBDU2WBlhFPdj_Qzv500cFg,38385
|
|
465
473
|
fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
|
|
466
474
|
fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
|
|
467
475
|
fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
|
|
@@ -472,13 +480,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
|
|
|
472
480
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
473
481
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
474
482
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
475
|
-
fusion_bench-0.2.
|
|
483
|
+
fusion_bench-0.2.25.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
476
484
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
477
485
|
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
|
|
478
486
|
fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
|
|
479
487
|
fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
|
|
480
488
|
fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
|
|
481
489
|
fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
|
|
490
|
+
fusion_bench_config/model_fusion.yaml,sha256=hODoFHcSl4hla0X8lt2oXwUKwYS4V6aw-Sxhyv6j70M,2467
|
|
482
491
|
fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
|
|
483
492
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
|
|
484
493
|
fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
|
|
@@ -608,6 +617,8 @@ fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib
|
|
|
608
617
|
fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=b92xQpufqrSHAiU0QFE8g0nQ7RGSowOubGrEz_KugsQ,231
|
|
609
618
|
fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
|
|
610
619
|
fusion_bench_config/method/classification/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
|
|
620
|
+
fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=fl60RFCYwmrwwu3QlaJTFiBLmSmnjHxl-xyq4Gb80iU,401
|
|
621
|
+
fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
|
|
611
622
|
fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
|
|
612
623
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
|
|
613
624
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml,sha256=P3mwQQewFFiqZNYJp8c02Sf8zBuStKInr_Yn74OCOxI,738
|
|
@@ -621,7 +632,7 @@ fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX
|
|
|
621
632
|
fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
|
|
622
633
|
fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
|
|
623
634
|
fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
|
|
624
|
-
fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=
|
|
635
|
+
fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=RKa3IgN3DfFZVmeXVIdTt0NdPVV0jFkpQz6SxLs3Kso,124
|
|
625
636
|
fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
|
|
626
637
|
fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
|
|
627
638
|
fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
|
|
@@ -638,8 +649,9 @@ fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdt
|
|
|
638
649
|
fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
|
|
639
650
|
fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
|
|
640
651
|
fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
|
|
641
|
-
fusion_bench_config/method/linear/
|
|
642
|
-
fusion_bench_config/method/linear/
|
|
652
|
+
fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=qqeIr61PJEcfZclZ5vV64GCzyt-8b1zB0FDZu8DsbXQ,322
|
|
653
|
+
fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=tJA0n0_XVvll4rZYVHQVqFCz8W3Bey6NjPKMIH3-P0U,142
|
|
654
|
+
fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=1oEIdxV0OqWjDQ9V_lmXEPUayp4KbKHE2SvpCLmiKOU,489
|
|
643
655
|
fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
|
|
644
656
|
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
|
|
645
657
|
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
|
|
@@ -686,6 +698,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
|
|
|
686
698
|
fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
|
|
687
699
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
|
|
688
700
|
fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
|
|
701
|
+
fusion_bench_config/method/wudi/wudi.yaml,sha256=3mJ6-XKHwwHALS3d503ybGM7pc1PhEK91YwwMybuzMc,76
|
|
689
702
|
fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
|
|
690
703
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
|
|
691
704
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
|
|
@@ -841,9 +854,11 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
|
|
|
841
854
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=FuPWQbC9xEV5wZjuo835gOMNgbzmpK9RbjFjA_HOzqo,2476
|
|
842
855
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=9PCkbrNnQSKTsm4eoUvVgjGd3IY7wHBC4LWj4kOdY4Y,1406
|
|
843
856
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=bqnyzgwIvDtV3Fb-uLf9mdFv0NW1C392lxGsGUPLsKE,400
|
|
844
|
-
fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.
|
|
857
|
+
fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_code.yaml,sha256=4DoMFlGabtwZXZMGWsWtkP2rlGOx_1eEPp_AyqyVln0,263
|
|
858
|
+
fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml,sha256=ofFFVYKHKtylxd90REMLhhP57Yqwe2AEbGuZ0mBCVz8,305
|
|
845
859
|
fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml,sha256=Nxk72MurqSzEyPJzGoKFbk5T2TGWBwYpH2V9Jzqt648,229
|
|
846
860
|
fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
|
|
861
|
+
fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml,sha256=mm7A3NilcANJBuCZMt3MMLKFm7CjBhMYWAa9TXjM_PQ,326
|
|
847
862
|
fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
|
|
848
863
|
fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
|
|
849
864
|
fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
|
|
@@ -872,6 +887,12 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
|
|
|
872
887
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
|
|
873
888
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
|
|
874
889
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
|
|
890
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml,sha256=CLn-9uSMsQurlUL1uvfiXfPe7huQDTyehkhs4NJ5GOs,375
|
|
891
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml,sha256=_WD401eyMtDXdwse_nb3Y8ELCIG_EL2PpHuY40-y0pU,378
|
|
892
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml,sha256=DPsMtgtczaP8WOqADkjqbJUTnNk3ZOsHiCf6A4_oPu0,374
|
|
893
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml,sha256=VzCKLMbhNXxlqtKUEDpsiL-GVOeoG7iNsu5TZAWK51I,377
|
|
894
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml,sha256=rOOzE5KFamspHgBzAqQg5m0a4B22_uniK6WHhG6-kBA,374
|
|
895
|
+
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml,sha256=8t5OR0yhdnGsLgASVJwUbdUgsl4GHLS4HhDuXyxNERU,377
|
|
875
896
|
fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
|
|
876
897
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
|
|
877
898
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
|
|
@@ -927,8 +948,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
|
|
|
927
948
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
|
|
928
949
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
|
|
929
950
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
|
|
930
|
-
fusion_bench-0.2.
|
|
931
|
-
fusion_bench-0.2.
|
|
932
|
-
fusion_bench-0.2.
|
|
933
|
-
fusion_bench-0.2.
|
|
934
|
-
fusion_bench-0.2.
|
|
951
|
+
fusion_bench-0.2.25.dist-info/METADATA,sha256=hOFNvf8-PM-SP8-58zf4yeOFX27dLWS27Ow1PaPpu30,22621
|
|
952
|
+
fusion_bench-0.2.25.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
953
|
+
fusion_bench-0.2.25.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
954
|
+
fusion_bench-0.2.25.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
955
|
+
fusion_bench-0.2.25.dist-info/RECORD,,
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
_target_: fusion_bench.method.classification.ImageClassificationFineTuning
|
|
2
|
+
max_epochs: 10
|
|
3
|
+
max_steps: null
|
|
4
|
+
label_smoothing: 0
|
|
5
|
+
optimizer:
|
|
6
|
+
_target_: torch.optim.SGD
|
|
7
|
+
lr: 0.001
|
|
8
|
+
momentum: 0.9
|
|
9
|
+
weight_decay: 1e-4
|
|
10
|
+
lr_scheduler:
|
|
11
|
+
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
|
|
12
|
+
T_max: ${..max_epochs}
|
|
13
|
+
dataloader_kwargs:
|
|
14
|
+
batch_size: 256 # batch size per GPU
|
|
15
|
+
num_workers: 8
|
|
16
|
+
pin_memory: true
|
fusion_bench_config/method/linear/{simple_average_for_llama.yaml → simple_average_for_causallm.yaml}
RENAMED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
_target_: fusion_bench.method.
|
|
1
|
+
_target_: fusion_bench.method.SimpleAverageForCausalLM
|
|
2
2
|
# set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
|
|
3
3
|
# if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
|
|
4
4
|
merge_backbone: false
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
_target_: fusion_bench.method.TiesMergingForCausalLM
|
|
2
|
+
# Scaling factor $\lambda$
|
|
3
|
+
scaling_factor: 0.3
|
|
4
|
+
# Threshold for resetting values in the task vector
|
|
5
|
+
threshold: 20
|
|
6
|
+
# List of keys to remove from the state dict, default is empty
|
|
7
|
+
remove_keys: []
|
|
8
|
+
# Function to merge the models, default is sum. Options are 'sum', 'mean', and 'max'
|
|
9
|
+
merge_func: sum
|
|
10
|
+
# Whether to merge only the backbone layers
|
|
11
|
+
merge_backbone: false
|
|
12
|
+
# Path to save the merged model
|
|
13
|
+
model_save_path: ${path.log_dir}/checkpoint
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Model Fusion Configuration
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# This configuration file defines the settings for running model fusion experiments
|
|
5
|
+
# within FusionBench using standard PyTorch (without Lightning Fabric).
|
|
6
|
+
#
|
|
7
|
+
# The configuration includes:
|
|
8
|
+
#
|
|
9
|
+
# - Hydra framework settings and overrides
|
|
10
|
+
# - Path management for data, outputs, and logs
|
|
11
|
+
# - (core components) Model pool, fusion method, and task pool specifications
|
|
12
|
+
# - Experiment execution parameters and debugging options
|
|
13
|
+
#
|
|
14
|
+
# =============================================================================
|
|
15
|
+
# Hydra Configuration Defaults
|
|
16
|
+
# =============================================================================
|
|
17
|
+
defaults:
|
|
18
|
+
- hydra: default # Hydra framework configuration
|
|
19
|
+
- path: default # Path management configuration
|
|
20
|
+
# --- Core Components ---
|
|
21
|
+
- modelpool: CLIPVisionModelPool/clip-vit-base-patch32_TA8 # Model pool specification
|
|
22
|
+
- method: dummy # Fusion method (placeholder)
|
|
23
|
+
- taskpool: dummy # Task pool specification (placeholder)
|
|
24
|
+
- _self_ # Self-reference for override priority
|
|
25
|
+
# =============================================================================
|
|
26
|
+
# Program Configuration
|
|
27
|
+
# =============================================================================
|
|
28
|
+
_target_: fusion_bench.programs.ModelFusionProgram
|
|
29
|
+
_recursive_: false # Disable recursive instantiation
|
|
30
|
+
# =============================================================================
|
|
31
|
+
# Experiment Execution Settings
|
|
32
|
+
# =============================================================================
|
|
33
|
+
# Development and debugging options
|
|
34
|
+
fast_dev_run: false # This option is for quick testing. For example, run single batch instead of full dataset
|
|
35
|
+
dry_run: false # Show configuration without running experiment
|
|
36
|
+
print_config: true # Display full configuration before execution
|
|
37
|
+
print_function_call: true # Show detailed instantiation calls
|
|
38
|
+
# =============================================================================
|
|
39
|
+
# Output and Logging Configuration
|
|
40
|
+
# =============================================================================
|
|
41
|
+
# Model saving configuration
|
|
42
|
+
merged_model_save_path: null # Path to save merged model.
|
|
43
|
+
merged_model_save_kwargs: null # Additional kwargs for model saving.
|
|
44
|
+
# Report generation
|
|
45
|
+
report_save_path: "{log_dir}/program_report.json" # Experiment results report path
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
_target_: fusion_bench.modelpool.CausalLMPool
|
|
2
|
+
_recursive_: false
|
|
3
|
+
enable_lazy_loading: true
|
|
4
|
+
models:
|
|
5
|
+
_pretrained_: Qwen/Qwen2.5-1.5B
|
|
6
|
+
math: Qwen/Qwen2.5-Math-1.5B
|
|
7
|
+
code: Qwen/Qwen2.5-Coder-1.5B
|
|
8
|
+
instruction: Qwen/Qwen2.5-1.5B-Instruct
|
|
9
|
+
model_kwargs:
|
|
10
|
+
torch_dtype: bfloat16
|
|
11
|
+
tokenizer: Qwen/Qwen2.5-1.5B
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
_target_: fusion_bench.modelpool.CausalLMPool
|
|
2
|
+
_recursive_: false
|
|
3
|
+
enable_lazy_loading: true
|
|
4
|
+
models:
|
|
5
|
+
_pretrained_: meta-llama/Llama-2-7b-hf
|
|
6
|
+
chat: meta-llama/Llama-2-7b-chat-hf
|
|
7
|
+
math: WizardLMTeam/WizardMath-7B-V1.0
|
|
8
|
+
code: codellama/CodeLlama-7b-hf
|
|
9
|
+
model_kwargs:
|
|
10
|
+
torch_dtype: bfloat16
|
|
11
|
+
tokenizer: meta-llama/Llama-2-7b-hf
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- /dataset/image_classification/train@train_datasets:
|
|
3
|
+
- cifar10
|
|
4
|
+
- /dataset/image_classification/test@val_datasets:
|
|
5
|
+
- cifar10
|
|
6
|
+
- _self_
|
|
7
|
+
_target_: fusion_bench.modelpool.ResNetForImageClassificationPool
|
|
8
|
+
_recursive_: False
|
|
9
|
+
type: transformers
|
|
10
|
+
models:
|
|
11
|
+
_pretrained_:
|
|
12
|
+
config_path: microsoft/resnet-152
|
|
13
|
+
pretrained: true
|
|
14
|
+
dataset_name: cifar10
|
fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- /dataset/image_classification/train@train_datasets:
|
|
3
|
+
- cifar100
|
|
4
|
+
- /dataset/image_classification/test@val_datasets:
|
|
5
|
+
- cifar100
|
|
6
|
+
- _self_
|
|
7
|
+
_target_: fusion_bench.modelpool.ResNetForImageClassificationPool
|
|
8
|
+
_recursive_: False
|
|
9
|
+
type: transformers
|
|
10
|
+
models:
|
|
11
|
+
_pretrained_:
|
|
12
|
+
config_path: microsoft/resnet-152
|
|
13
|
+
pretrained: true
|
|
14
|
+
dataset_name: cifar100
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
defaults:
|
|
2
|
+
- /dataset/image_classification/train@train_datasets:
|
|
3
|
+
- cifar10
|
|
4
|
+
- /dataset/image_classification/test@val_datasets:
|
|
5
|
+
- cifar10
|
|
6
|
+
- _self_
|
|
7
|
+
_target_: fusion_bench.modelpool.ResNetForImageClassificationPool
|
|
8
|
+
_recursive_: False
|
|
9
|
+
type: transformers
|
|
10
|
+
models:
|
|
11
|
+
_pretrained_:
|
|
12
|
+
config_path: microsoft/resnet-18
|
|
13
|
+
pretrained: true
|
|
14
|
+
dataset_name: cifar10
|