fusion-bench 0.2.23__py3-none-any.whl → 0.2.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. fusion_bench/__init__.py +152 -42
  2. fusion_bench/dataset/__init__.py +27 -4
  3. fusion_bench/dataset/clip_dataset.py +2 -2
  4. fusion_bench/method/__init__.py +18 -1
  5. fusion_bench/method/classification/__init__.py +27 -2
  6. fusion_bench/method/classification/image_classification_finetune.py +214 -0
  7. fusion_bench/method/ensemble.py +17 -2
  8. fusion_bench/method/linear/__init__.py +6 -2
  9. fusion_bench/method/linear/{simple_average_for_llama.py → simple_average_for_causallm.py} +8 -4
  10. fusion_bench/method/linear/{task_arithmetic_for_llama.py → task_arithmetic_for_causallm.py} +22 -12
  11. fusion_bench/method/linear/ties_merging_for_causallm.py +70 -0
  12. fusion_bench/method/opcm/opcm.py +1 -0
  13. fusion_bench/method/pwe_moe/module.py +0 -2
  14. fusion_bench/method/simple_average.py +2 -2
  15. fusion_bench/method/tall_mask/task_arithmetic.py +2 -2
  16. fusion_bench/method/task_arithmetic/task_arithmetic.py +35 -10
  17. fusion_bench/method/ties_merging/ties_merging.py +22 -6
  18. fusion_bench/method/wudi/__init__.py +1 -0
  19. fusion_bench/method/wudi/wudi.py +105 -0
  20. fusion_bench/mixins/__init__.py +2 -0
  21. fusion_bench/mixins/lightning_fabric.py +4 -0
  22. fusion_bench/mixins/pyinstrument.py +174 -0
  23. fusion_bench/mixins/serialization.py +25 -78
  24. fusion_bench/mixins/simple_profiler.py +106 -23
  25. fusion_bench/modelpool/__init__.py +2 -0
  26. fusion_bench/modelpool/base_pool.py +77 -14
  27. fusion_bench/modelpool/causal_lm/causal_lm.py +32 -10
  28. fusion_bench/modelpool/clip_vision/modelpool.py +56 -19
  29. fusion_bench/modelpool/resnet_for_image_classification.py +208 -0
  30. fusion_bench/models/__init__.py +35 -9
  31. fusion_bench/models/hf_clip.py +4 -0
  32. fusion_bench/models/hf_utils.py +2 -1
  33. fusion_bench/models/model_card_templates/default.md +8 -1
  34. fusion_bench/models/wrappers/ensemble.py +136 -7
  35. fusion_bench/optim/__init__.py +40 -2
  36. fusion_bench/optim/lr_scheduler/__init__.py +27 -1
  37. fusion_bench/optim/muon.py +339 -0
  38. fusion_bench/programs/__init__.py +2 -0
  39. fusion_bench/programs/fabric_fusion_program.py +2 -2
  40. fusion_bench/programs/fusion_program.py +271 -0
  41. fusion_bench/scripts/cli.py +2 -2
  42. fusion_bench/taskpool/clip_vision/taskpool.py +11 -4
  43. fusion_bench/tasks/clip_classification/__init__.py +15 -0
  44. fusion_bench/utils/__init__.py +167 -21
  45. fusion_bench/utils/devices.py +30 -8
  46. fusion_bench/utils/lazy_imports.py +91 -12
  47. fusion_bench/utils/lazy_state_dict.py +58 -5
  48. fusion_bench/utils/misc.py +104 -13
  49. fusion_bench/utils/packages.py +4 -0
  50. fusion_bench/utils/path.py +7 -0
  51. fusion_bench/utils/pylogger.py +6 -0
  52. fusion_bench/utils/rich_utils.py +8 -3
  53. fusion_bench/utils/state_dict_arithmetic.py +935 -162
  54. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/METADATA +10 -3
  55. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/RECORD +76 -55
  56. fusion_bench_config/method/classification/image_classification_finetune.yaml +16 -0
  57. fusion_bench_config/method/classification/image_classification_finetune_test.yaml +6 -0
  58. fusion_bench_config/method/ensemble/simple_ensemble.yaml +1 -0
  59. fusion_bench_config/method/linear/{simple_average_for_llama.yaml → simple_average_for_causallm.yaml} +1 -1
  60. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +4 -0
  61. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +13 -0
  62. fusion_bench_config/method/wudi/wudi.yaml +4 -0
  63. fusion_bench_config/model_fusion.yaml +45 -0
  64. fusion_bench_config/modelpool/CausalLMPool/{Qwen2.5-1.5B_math_and_coder.yaml → Qwen2.5-1.5B_math_and_code.yaml} +1 -2
  65. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml +11 -0
  66. fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml +11 -0
  67. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml +14 -0
  68. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml +14 -0
  69. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml +14 -0
  70. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml +14 -0
  71. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml +14 -0
  72. fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml +14 -0
  73. fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -4
  74. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/WHEEL +0 -0
  75. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/entry_points.txt +0 -0
  76. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/licenses/LICENSE +0 -0
  77. {fusion_bench-0.2.23.dist-info → fusion_bench-0.2.25.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.23
3
+ Version: 0.2.25
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
6
  Project-URL: Repository, https://github.com/tanganke/fusion_bench
@@ -23,12 +23,19 @@ Requires-Dist: rich
23
23
  Requires-Dist: scipy
24
24
  Requires-Dist: h5py
25
25
  Requires-Dist: pytest
26
+ Requires-Dist: joblib
27
+ Requires-Dist: bidict
26
28
  Requires-Dist: transformers!=4.49
27
29
  Requires-Dist: pillow!=11.2.1
28
30
  Provides-Extra: lm-eval-harness
29
31
  Requires-Dist: lm-eval; extra == "lm-eval-harness"
30
32
  Requires-Dist: immutabledict; extra == "lm-eval-harness"
31
33
  Requires-Dist: langdetect; extra == "lm-eval-harness"
34
+ Requires-Dist: rich-run; extra == "lm-eval-harness"
35
+ Provides-Extra: docs
36
+ Requires-Dist: mkdocs; extra == "docs"
37
+ Requires-Dist: mkdocs-material; extra == "docs"
38
+ Requires-Dist: mkdocstrings[python]; extra == "docs"
32
39
  Dynamic: license-file
33
40
 
34
41
  <div align='center'>
@@ -151,7 +158,7 @@ This will install the latest version of fusion-bench and the dependencies requir
151
158
  Documentation for using LM-Eval Harness within FusionBench framework can be found at [this online documentation](https://tanganke.github.io/fusion_bench/taskpool/lm_eval_harness) or in the [`docs/taskpool/lm_eval_harness.md`](docs/taskpool/lm_eval_harness.md) markdown file.
152
159
 
153
160
  > [!TIP]
154
- > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/causal_lm) or in the [`docs/modelpool/causal_lm.md`](docs/modelpool/causal_lm.md) markdown file.
161
+ > Documentation for merging large language models using FusionBench can be found at [this online documentation](https://tanganke.github.io/fusion_bench/modelpool/llm) or in the [`docs/modelpool/llm/index.md`](docs/modelpool/llm/index.md) markdown file.
155
162
 
156
163
  ## Introduction to Deep Model Fusion
157
164
 
@@ -179,7 +186,7 @@ The project is structured as follows:
179
186
  - `taskpool`: configuration files for the task pool.
180
187
  - `model`: configuration files for the models.
181
188
  - `dataset`: configuration files for the datasets.
182
- - `docs/`: documentation for the benchmark. We use [mkdocs](https://www.mkdocs.org/) to generate the documentation. Start the documentation server locally with `mkdocs serve`. The required packages can be installed with `pip install -r mkdocs-requirements.txt`.
189
+ - `docs/`: documentation for the benchmark. We use [mkdocs](https://www.mkdocs.org/) to generate the documentation. Start the documentation server locally with `mkdocs serve`. The required packages can be installed with `pip install -e ".[docs]"`.
183
190
  - `examples/`: example scripts for running some of the experiments.
184
191
  > **naming convention**: `examples/{method_name}/` contains the files such as bash scripts and jupyter notebooks for the specific method.
185
192
  - `tests/`: unit tests for the benchmark.
@@ -1,4 +1,4 @@
1
- fusion_bench/__init__.py,sha256=Ha-mkRETS7qxHPdHHgu8bRA3kTvQ64P6tWnx5mGDDA4,2472
1
+ fusion_bench/__init__.py,sha256=Rw9sT2ZegKMxZAG7FBDgqVOqBGlJ-43C5p_EarRHd1M,5816
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
@@ -18,8 +18,8 @@ fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal
18
18
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
20
  fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
21
- fusion_bench/dataset/__init__.py,sha256=OJiYmcqz0Vm5O7mE4PB5QFJeL_KjrsseQTRsQATGTm4,1050
22
- fusion_bench/dataset/clip_dataset.py,sha256=hLL7NyzOIt0gNT1kzjrexFISbj-B0KdlgtyGf6K8NjI,3143
21
+ fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
22
+ fusion_bench/dataset/clip_dataset.py,sha256=Y27odUQWiUOb-WdJnorhcxccDvzrHISxisxFbiRrQHs,3185
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
24
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
25
  fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
@@ -48,12 +48,12 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=MDYyNjJufoOe_iwmlL2ftWoD-72ReVv00mege5MQ6fc,8685
51
+ fusion_bench/method/__init__.py,sha256=QOcRQ3AmUpSiDikH1tq-EcxakX7akFPOizcynTLmUwQ,9377
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
- fusion_bench/method/ensemble.py,sha256=oGiTJUderoPP0Opd7nHwC6h3VBmGTQ5inuG3wb6F4-A,3097
54
+ fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
55
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
56
- fusion_bench/method/simple_average.py,sha256=fLd14_0218JKyXmwe5M6kgumfD60u2ZVnm3B7PBX-Uc,5508
56
+ fusion_bench/method/simple_average.py,sha256=FuIwHCUNK5CoToBzVt-lo8SK7wjj8CdRpiNLRnAflH4,5519
57
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
58
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
59
59
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
@@ -76,9 +76,10 @@ fusion_bench/method/bitdelta/bitdelta_utils/__init__.py,sha256=47DEQpj8HBSa-_TIm
76
76
  fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cwr-o8cE63kpBzHUA3S0FeJPX-Xf3mIS5ziIos,15546
77
77
  fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
78
78
  fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
79
- fusion_bench/method/classification/__init__.py,sha256=emB06UOMDHK5pfQ1WuvLG9Fm0aEEtZxSjpVw8fVE0fM,167
79
+ fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
80
80
  fusion_bench/method/classification/clip_finetune.py,sha256=QNOw9O-BTOVOsW7lzRu8L-UfbiBpsT_8tS6i6BpbVyA,15726
81
81
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
82
+ fusion_bench/method/classification/image_classification_finetune.py,sha256=CPMpZvaULWaim01EvJJHlU4C6HQ16OCqZGoMvPBEWtY,8157
82
83
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
83
84
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
84
85
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
@@ -128,12 +129,13 @@ fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4R
128
129
  fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
129
130
  fusion_bench/method/knots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
131
  fusion_bench/method/knots/knots_utils.py,sha256=NWlzo4nhQypUcNknU832MP3QT42VsLx-6WQ9QXuSigw,795
131
- fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
132
+ fusion_bench/method/linear/__init__.py,sha256=0U7JqlX8JuMECKlvLNM16Lxc1lCBN2bVqH8FtNoD-Fw,417
132
133
  fusion_bench/method/linear/expo.py,sha256=N7XnBTC0Nz_4gRs1f9TL9g-j-Lku5TF0lAjGKhZHwOw,3990
133
134
  fusion_bench/method/linear/linear_interpolation.py,sha256=Y01HPMBb7TaCjEBsbC6gqQyHvY1SRpwPyPPLxvYrL0s,2223
134
135
  fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
135
- fusion_bench/method/linear/simple_average_for_llama.py,sha256=5psacdQiqtUK_lwYZcXp9kgIU3MFGk6G1JatxeMUjE8,3339
136
- fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
136
+ fusion_bench/method/linear/simple_average_for_causallm.py,sha256=qc-JiPLu19442DcP0xCl4EDGzVnIbq3WGiAiWkNzv6E,3448
137
+ fusion_bench/method/linear/task_arithmetic_for_causallm.py,sha256=7cewnrjX47omokAdhNvDIQV8zz06_ZNKPWM7CZx30R0,2247
138
+ fusion_bench/method/linear/ties_merging_for_causallm.py,sha256=yi0RCC6eRwXMKUC_cBdFLvejia4nmjPh9Pd0MpaUrVg,2392
137
139
  fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
138
140
  fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=1nvjOMABuEISyYaTRrFiwHLWvSTgHT8pEzTYBTLBRUg,18779
139
141
  fusion_bench/method/lm_finetune/causal_lm_pretrain.py,sha256=4CL9KGFsUzrt-edMfTooo4G4apzTH_57rso3DGGvKL0,219
@@ -156,7 +158,7 @@ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11Yq
156
158
  fusion_bench/method/moe_pruner/utils/prune.py,sha256=U0cX5RgyAezS7C4jnlfGwjZhMSLKhDvq3hZZGrzJVfM,10609
157
159
  fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
158
160
  fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
159
- fusion_bench/method/opcm/opcm.py,sha256=fIZtR8KZCUKTxo5URMZIVmDdb2Y6vugJaUvmg5tswdc,11655
161
+ fusion_bench/method/opcm/opcm.py,sha256=m12JanlpfL4udUVhRnYt5RRchGdq1e8L91r1mNVNVqw,11733
160
162
  fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
161
163
  fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
162
164
  fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
@@ -180,7 +182,7 @@ fusion_bench/method/pruning/wanda_utils/prune_opt.py,sha256=onfIRAF0yFi9b1GNDS9D
180
182
  fusion_bench/method/pruning/wanda_utils/sparsegpt.py,sha256=V1FEIGgSFbPT5YPrYXCWhz1lLXaor6RwfNund7EEIWM,5434
181
183
  fusion_bench/method/pwe_moe/__init__.py,sha256=gZUhbqCtCeVSip3nyt5rNSrEDqtByl2ILcWrD4Z3jx4,124
182
184
  fusion_bench/method/pwe_moe/clip_pwe_moe.py,sha256=aIKWwVRIvFm0_-6nTUMBuJA5ptUSFDBpcujvOOwKVD0,10253
183
- fusion_bench/method/pwe_moe/module.py,sha256=mQbVbE6y-Q2zxifF1_k13UGGx_I725V9aUkRumjIDHI,12251
185
+ fusion_bench/method/pwe_moe/module.py,sha256=KJ1biDPPLYq5eOaF-XGtW_ZcaB8G7vs9ZMo1Hig6L-4,12209
184
186
  fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o5XaLCsHohjWOEd7lJc,18354
185
187
  fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
186
188
  fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
@@ -219,10 +221,10 @@ fusion_bench/method/sparselo/sparselo.py,sha256=U3eIjLcz484Tq7kbQry_U7YFiTx3ECOe
219
221
  fusion_bench/method/surgery/__init__.py,sha256=6sRKWeL8cx6Jy2aC9tRL78irNTJnp9w75K2dAxBxhho,88
220
222
  fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=Cc8LiAqkQzJwQJsyuazG5wgq6kghVcyL8rGkhPcBVoU,5936
221
223
  fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuYwIzvwkrr0ILY,61
222
- fusion_bench/method/tall_mask/task_arithmetic.py,sha256=c-5ehKV_t46ljvKTBDr-eA3-FbSD_UNXlza4cOqK5aI,4371
224
+ fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
223
225
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
224
226
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
225
- fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=k4p8ADupDR5nZGHZjNgNsO8I_8rzqVyAr6Tejh85V0A,5525
227
+ fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=KsSBshf04MUwIjoc0HAAmY6cWMqjZwZOYXbUuU4EaL0,6320
226
228
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
227
229
  fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
228
230
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
@@ -231,7 +233,7 @@ fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsN
231
233
  fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
232
234
  fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
233
235
  fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
234
- fusion_bench/method/ties_merging/ties_merging.py,sha256=eCpGa9F4VoT0zsl7XKK7WsKz45tu_DkFHeffyJospJc,5152
236
+ fusion_bench/method/ties_merging/ties_merging.py,sha256=u2o7Wo2SJJsxxhBeAhsmY7k4bdZkUtwAwGePGI4Sggc,5916
235
237
  fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
236
238
  fusion_bench/method/trust_region/__init__.py,sha256=4ao0E-jTlmTQPArbFWD_dFn_4yve3urNIuSMT8JtRIM,91
237
239
  fusion_bench/method/trust_region/clip_task_arithmetic.py,sha256=SWP7sRMiXzkDZ3KdNht3zqjaTcAtB4wpnnd8KYbcKZI,7441
@@ -245,6 +247,8 @@ fusion_bench/method/we_moe/we_moe.py,sha256=_QtmD04oFh7aLhmPq8EYchYB7BIN9ZFWOeys
245
247
  fusion_bench/method/weighted_average/__init__.py,sha256=bLxIuuB72hH05J_Spz4MZbiLpYL39iwgVIQa_QeQpIk,118
246
248
  fusion_bench/method/weighted_average/llama.py,sha256=vvxXp8v98kvXfHi7fYupnIrOVoA3tp08lmV2jDri_BY,3731
247
249
  fusion_bench/method/weighted_average/weighted_average.py,sha256=E4byEA2VfXozu7S_gnYVvwI3qg8AFWaSeNRHGbs2Tno,3340
250
+ fusion_bench/method/wudi/__init__.py,sha256=08qPzOlhjw-Ab8TwyY9MGOGx_TLrUTueJc1WgRIvuxU,44
251
+ fusion_bench/method/wudi/wudi.py,sha256=HL3Y0MPjozp7NML_UNjIWWPbQDQxYH_WG_BuyripeBQ,3602
248
252
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
249
253
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
250
254
  fusion_bench/metrics/continual_learning/backward_transfer.py,sha256=LCMWFFmBgWv7UIAJqiTaSvVvanx4qjnXIGuCMYvzmtc,559
@@ -258,28 +262,30 @@ fusion_bench/metrics/text_to_image_generation/__init__.py,sha256=OEIxpKmyy6-3iWy
258
262
  fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84ENPITh_K0Fe9OKYYoiGnPhlSE9gTbBqrtnqqA,4487
259
263
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
260
264
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
261
- fusion_bench/mixins/__init__.py,sha256=yjRvcB9Mn-c0g8tXmoBf2Dn8gyc-Na6dyhc4r674asM,1213
265
+ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fgyY,1320
262
266
  fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
263
267
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
264
268
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
265
- fusion_bench/mixins/lightning_fabric.py,sha256=ns9H_dkSDD8jJ7GL4YcAypewUcy9mzbX3Xy0bBcyGVY,7403
269
+ fusion_bench/mixins/lightning_fabric.py,sha256=5iamAL7YV6lEm_-8NuzFjfIy1vslwKthSpCSWLLhlCM,7506
266
270
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
271
+ fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
267
272
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
268
- fusion_bench/mixins/serialization.py,sha256=A2zEe3RIUhj60S8ENvjdMORz9zJ0bRnrAD54x1XIvao,15117
269
- fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
273
+ fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
274
+ fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszFteyznFfUw,5391
270
275
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
271
276
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
272
277
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
273
- fusion_bench/modelpool/__init__.py,sha256=WFDdiwPqdkzVsDYguWPPGGX_ZTRZhUCK8WMuhZpjKCg,1512
274
- fusion_bench/modelpool/base_pool.py,sha256=u2ahVkurq60yH86LMw1Rw98cpcgDTRiVeICpm9jewNI,9785
278
+ fusion_bench/modelpool/__init__.py,sha256=wKAkEgit_1ZtDAOKOntzrUKdCjOFIxnPMYN02B970Wg,1671
279
+ fusion_bench/modelpool/base_pool.py,sha256=5snzTmqn1Xs_dy0Ws5QWxs9uCAXMwIuclrwfikKPh9o,12298
275
280
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
276
281
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
277
282
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
278
283
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
284
+ fusion_bench/modelpool/resnet_for_image_classification.py,sha256=G72gRG6LzVWZcf_AvH5TKDVB2zyRrVG3RUe3WlU9_wE,7398
279
285
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
280
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=dSmjAhL4AxD34ckCdE8Rnf1hN5opoPIuz-hducQeK38,18685
286
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=gpUQqxZIuKoaQ-gvdPsLVxI7UifueR6k3YzbUV1i0lk,19902
281
287
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
282
- fusion_bench/modelpool/clip_vision/modelpool.py,sha256=e5t9olRMOj_SyGVy-gqn7RwC5FAqxNsJDongWIv2KFY,7108
288
+ fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
283
289
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
284
290
  fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
285
291
  fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
@@ -287,9 +293,9 @@ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=yfa_B5TUIkuC1fTn4xD3HHnFPd
287
293
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
288
294
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
289
295
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
290
- fusion_bench/models/__init__.py,sha256=LeLQw2Yphu4QKZxjws_7MCM50XvFP1rTrvJ_2SR5zIA,271
291
- fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
292
- fusion_bench/models/hf_utils.py,sha256=ozS56t69BOGy_wvbjX6MKFUuGsfKqy6s_TsinldNetk,5435
296
+ fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
297
+ fusion_bench/models/hf_clip.py,sha256=lL4LxbdwC_rDWRozdEJmRlzKaNcQMpWwCSMDE0tfZRM,7525
298
+ fusion_bench/models/hf_utils.py,sha256=bfB3QAUqsG-TyUeOWrZt8V7GeWDhp-fKg3P0J3D_TbQ,5497
293
299
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
294
300
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
295
301
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
@@ -318,7 +324,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
318
324
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
319
325
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
320
326
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
321
- fusion_bench/models/model_card_templates/default.md,sha256=Abd8tUhdZU-B5jwc7N6Gm0zLGNkfx6fr7MAL03VtFDg,885
327
+ fusion_bench/models/model_card_templates/default.md,sha256=DJXwDODCsqIOhkgP57-iCShxLYK_jnsDsJYH1GfbBY8,1028
322
328
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
323
329
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
324
330
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -362,22 +368,24 @@ fusion_bench/models/smile_moe/utils/svd_utils.py,sha256=A2u7lH5Bo2qhgwplHPAz56pd
362
368
  fusion_bench/models/surgery/__init__.py,sha256=tcUSi2m9GzGWfvRDQScIbdEbFBS_35gm9zGKN7VpE70,53
363
369
  fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=F8jX88K5zVWC6HsfN-nGNkEiPwNrN11ydyQQ1EZHehM,5133
364
370
  fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
365
- fusion_bench/models/wrappers/ensemble.py,sha256=MQ92yxI_D8AzzA8sbpZE-rp-vWxO0tTICFnF8Y1Gyss,6380
371
+ fusion_bench/models/wrappers/ensemble.py,sha256=T-DAKrAm-ciZwV6Hbt8uASbjtoQpHTlvVyan3rhk_8k,11632
366
372
  fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=A7LjG0inL5oeEVOkJwEUDM15v4dpQnsCq2y9zA78R3k,11198
367
373
  fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=q5Hc4BtLpAawMbxsWJRL-8OR-x7994Jhr9IyN7vKZ9o,16930
368
374
  fusion_bench/models/wrappers/task_wise_fusion.py,sha256=ROLANdDq0bZ3sIROqIv3udPN8lzDdEwxD0Jonx-5ycw,17465
369
- fusion_bench/optim/__init__.py,sha256=lemrcuiA6OLjQkpYm-RP-Ox2MgjngN1ywvCo0NgShlM,61
375
+ fusion_bench/optim/__init__.py,sha256=JS7J2VjrM2LdkiFCxuQnIuFwBsWiPyFb7QuEU6V2bPY,845
370
376
  fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
371
377
  fusion_bench/optim/mezo.py,sha256=Vm4vMGh10Fhe28_9L1MK8r_U7DrurA8Liprh2_gn4_U,3646
372
- fusion_bench/optim/lr_scheduler/__init__.py,sha256=W7CsdW4XKqXbNfzjvv2wmrvNWwfH_sQ-wiBViRPlP3U,29
378
+ fusion_bench/optim/muon.py,sha256=ABrX-05EeIw-JPWaYqVKU9-ary8dhaKhLOykePF7Cxw,14178
379
+ fusion_bench/optim/lr_scheduler/__init__.py,sha256=yhRN3ZylT5rx3b8-_KYt_aOBIlrscpa4eh-K5H8B-WY,613
373
380
  fusion_bench/optim/lr_scheduler/linear_warmup.py,sha256=Dvy_TCUuAQHlbDF2jo2_502Ae4JWXGrtZL3gwA_H6ZI,6566
374
381
  fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1GCgnjySk5-D7EVRZ-C05Q,29
375
382
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
376
- fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
383
+ fusion_bench/programs/__init__.py,sha256=YFlvpDC6y2Vm66VSlHKD1vu5nRDQRYNR_Nkn_61xqiI,605
377
384
  fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
378
- fusion_bench/programs/fabric_fusion_program.py,sha256=jt0_tlg37a2jBl2YikaC0N71Gmr4J340wkKAekyT180,12453
385
+ fusion_bench/programs/fabric_fusion_program.py,sha256=wIHNpLUw6uAXpAasJRAMWut55hF_EGFShxn70zRRvfk,12449
386
+ fusion_bench/programs/fusion_program.py,sha256=qLyA3FHJUMM1L3mlYn4jlnZzv9OKguWM5aGGIoLts2I,11309
379
387
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
380
- fusion_bench/scripts/cli.py,sha256=VwcwqY--kGDEGI1RoTQ5X32FaKducdRUKf2CZRXcfCM,2739
388
+ fusion_bench/scripts/cli.py,sha256=kEWLEkZEBqUr1_-XTePzNC5NM8lwWvgUBf0Lcuk_FI8,2739
381
389
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
382
390
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
383
391
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
@@ -392,7 +400,7 @@ fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBig
392
400
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
393
401
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
394
402
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
395
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=3JPN_1B9ylG0-Q69UELdQgakrgxRRQbj9x6LvTlw_J0,16177
403
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=99F8w_e4-UnoeDkSjo0z_8Wstx6e635h0IqSdtfT7ms,16460
396
404
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
397
405
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
398
406
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -405,7 +413,7 @@ fusion_bench/taskpool/openclip_vision/openclip_taskpool.py,sha256=PtD_Y9CWzPI3WE
405
413
  fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
406
414
  fusion_bench/tasks/base_task.py,sha256=Fg_pdZhld-2KPKX0C1WrxaTz0EYWrvJerAHO-hA03GI,412
407
415
  fusion_bench/tasks/classification.py,sha256=i5sXVr2twzxzvRx4U4EmbJIYg-QbM-Kll5Ol0rsf4XU,2253
408
- fusion_bench/tasks/clip_classification/__init__.py,sha256=KiQlO2pqNdEOQUDO92lyHax8pZBFK6z0I5iClh6q9I0,8551
416
+ fusion_bench/tasks/clip_classification/__init__.py,sha256=EltfO9NCVKPmvayop2fZtjPtGMM6Eajz5wGuPkVFRzE,8970
409
417
  fusion_bench/tasks/clip_classification/cifar10.py,sha256=Slx-A7I3CiEg0c4pIgy4OkoMD8MAHL8qCRtSQhYoYpE,968
410
418
  fusion_bench/tasks/clip_classification/cifar100.py,sha256=mzmdMxTuuAczJR10DX5FarJl3QRfgVee6cLJ3_faO1U,2750
411
419
  fusion_bench/tasks/clip_classification/clip_dataset.py,sha256=KVREQCAxAFnMeFgZzQbWaeLGhTB-XV4p1EuSsam3rMU,58
@@ -438,11 +446,11 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
438
446
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
439
447
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
440
448
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
441
- fusion_bench/utils/__init__.py,sha256=wNAfpP-u_-8HGbLaBoHT_wriU_cNvY4M_UXdBv2kXhc,695
449
+ fusion_bench/utils/__init__.py,sha256=b61bfpNY2FOm3QWdexEOMMv1Tcp8zz2pR6644r18RSM,4778
442
450
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
443
451
  fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
444
452
  fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
445
- fusion_bench/utils/devices.py,sha256=i5g2FzFs-UWhekcwzxVUZBOw82pOP-RbjIISbfWnuoM,8357
453
+ fusion_bench/utils/devices.py,sha256=6AkGcs3flt0FSo9yfEREuehoTrgcc65gkwpTWQy8XsI,9546
446
454
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
447
455
  fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
448
456
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
@@ -451,17 +459,17 @@ fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLt
451
459
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
452
460
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
453
461
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
454
- fusion_bench/utils/lazy_imports.py,sha256=dg4Uu8FaoEu0WGVTo5o_PbLZs3Ei_RG75Ta-Us1iPW4,3500
455
- fusion_bench/utils/lazy_state_dict.py,sha256=9dse7U3QZNvNxBINb02Q9DW2_-voUh2Ri2B6hk9wvNI,20227
456
- fusion_bench/utils/misc.py,sha256=93q0m-HYWkPK91Co5lll_J0Dxs6YahW2lD_X8fUAyTk,2420
462
+ fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
463
+ fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
464
+ fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
457
465
  fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
458
- fusion_bench/utils/packages.py,sha256=wKl-qtPjA61LrdgTTusuNyvs8jfUv4mA5IwPTFWyYtA,2139
466
+ fusion_bench/utils/packages.py,sha256=m2E0ryIMI0NwWR9vUHkK9FtZEwA1G-A4dYOf87olli4,2217
459
467
  fusion_bench/utils/parameters.py,sha256=ufEDOYJwcQQxLfveK8hBAGwpu5J3LA_cTWiDgZ2zkJ0,11788
460
- fusion_bench/utils/path.py,sha256=qrfgar3b-6_2v032-2hTt97L6qdtG7zc3CFrGFyKSGE,2400
461
- fusion_bench/utils/pylogger.py,sha256=r2KXTvq-j8uHdjBBoVPOgkjv4c6pyhbX6xf1JbOsF4w,3335
462
- fusion_bench/utils/rich_utils.py,sha256=XNPUpa1grna_C0MLQs0nY25-Kfutpj9BOEzvjoH7nR0,5849
468
+ fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,2643
469
+ fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
470
+ fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
463
471
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
464
- fusion_bench/utils/state_dict_arithmetic.py,sha256=fczHDEpL2_UmxNIdvQtllXvBWBcmKpw-p6CIS_upjwI,11818
472
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=kETybQPAcmupmTuKYKFThBDU2WBlhFPdj_Qzv500cFg,38385
465
473
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
466
474
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
467
475
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
@@ -472,13 +480,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
472
480
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
473
481
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
474
482
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
475
- fusion_bench-0.2.23.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
483
+ fusion_bench-0.2.25.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
476
484
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
477
485
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
478
486
  fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
479
487
  fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
480
488
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
481
489
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
490
+ fusion_bench_config/model_fusion.yaml,sha256=hODoFHcSl4hla0X8lt2oXwUKwYS4V6aw-Sxhyv6j70M,2467
482
491
  fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
483
492
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
484
493
  fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
@@ -608,6 +617,8 @@ fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib
608
617
  fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=b92xQpufqrSHAiU0QFE8g0nQ7RGSowOubGrEz_KugsQ,231
609
618
  fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
610
619
  fusion_bench_config/method/classification/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
620
+ fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=fl60RFCYwmrwwu3QlaJTFiBLmSmnjHxl-xyq4Gb80iU,401
621
+ fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
611
622
  fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
612
623
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
613
624
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml,sha256=P3mwQQewFFiqZNYJp8c02Sf8zBuStKInr_Yn74OCOxI,738
@@ -621,7 +632,7 @@ fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX
621
632
  fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
622
633
  fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
623
634
  fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
624
- fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJqp8Q8S8W1k7VZG9ulyPxkcuaWsw,54
635
+ fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=RKa3IgN3DfFZVmeXVIdTt0NdPVV0jFkpQz6SxLs3Kso,124
625
636
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
626
637
  fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
627
638
  fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
@@ -638,8 +649,9 @@ fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdt
638
649
  fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
639
650
  fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
640
651
  fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
641
- fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=r2Zul2GaMEEQ7NEDf8yiAgEiMDPNibU4qsJ0toD2KjQ,319
642
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
652
+ fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=qqeIr61PJEcfZclZ5vV64GCzyt-8b1zB0FDZu8DsbXQ,322
653
+ fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=tJA0n0_XVvll4rZYVHQVqFCz8W3Bey6NjPKMIH3-P0U,142
654
+ fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=1oEIdxV0OqWjDQ9V_lmXEPUayp4KbKHE2SvpCLmiKOU,489
643
655
  fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
644
656
  fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
645
657
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
@@ -686,6 +698,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
686
698
  fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
687
699
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
688
700
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
701
+ fusion_bench_config/method/wudi/wudi.yaml,sha256=3mJ6-XKHwwHALS3d503ybGM7pc1PhEK91YwwMybuzMc,76
689
702
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
690
703
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
691
704
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
@@ -841,9 +854,11 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
841
854
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=FuPWQbC9xEV5wZjuo835gOMNgbzmpK9RbjFjA_HOzqo,2476
842
855
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=9PCkbrNnQSKTsm4eoUvVgjGd3IY7wHBC4LWj4kOdY4Y,1406
843
856
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=bqnyzgwIvDtV3Fb-uLf9mdFv0NW1C392lxGsGUPLsKE,400
844
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=D8HdBRGUYD-c-c38oSgzcP3fkNhBN-tVdqLnS_B-7zc,265
857
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_code.yaml,sha256=4DoMFlGabtwZXZMGWsWtkP2rlGOx_1eEPp_AyqyVln0,263
858
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml,sha256=ofFFVYKHKtylxd90REMLhhP57Yqwe2AEbGuZ0mBCVz8,305
845
859
  fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml,sha256=Nxk72MurqSzEyPJzGoKFbk5T2TGWBwYpH2V9Jzqt648,229
846
860
  fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
861
+ fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml,sha256=mm7A3NilcANJBuCZMt3MMLKFm7CjBhMYWAa9TXjM_PQ,326
847
862
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
848
863
  fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
849
864
  fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
@@ -872,6 +887,12 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
872
887
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
873
888
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
874
889
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
890
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml,sha256=CLn-9uSMsQurlUL1uvfiXfPe7huQDTyehkhs4NJ5GOs,375
891
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml,sha256=_WD401eyMtDXdwse_nb3Y8ELCIG_EL2PpHuY40-y0pU,378
892
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml,sha256=DPsMtgtczaP8WOqADkjqbJUTnNk3ZOsHiCf6A4_oPu0,374
893
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml,sha256=VzCKLMbhNXxlqtKUEDpsiL-GVOeoG7iNsu5TZAWK51I,377
894
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml,sha256=rOOzE5KFamspHgBzAqQg5m0a4B22_uniK6WHhG6-kBA,374
895
+ fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml,sha256=8t5OR0yhdnGsLgASVJwUbdUgsl4GHLS4HhDuXyxNERU,377
875
896
  fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
876
897
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
877
898
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
@@ -927,8 +948,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
927
948
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
928
949
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
929
950
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
930
- fusion_bench-0.2.23.dist-info/METADATA,sha256=HQZ3DxHk-Jtcj2AZT49tx5m7VdVkDEglivhkfQv258Q,22384
931
- fusion_bench-0.2.23.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
932
- fusion_bench-0.2.23.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
933
- fusion_bench-0.2.23.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
934
- fusion_bench-0.2.23.dist-info/RECORD,,
951
+ fusion_bench-0.2.25.dist-info/METADATA,sha256=hOFNvf8-PM-SP8-58zf4yeOFX27dLWS27Ow1PaPpu30,22621
952
+ fusion_bench-0.2.25.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
953
+ fusion_bench-0.2.25.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
954
+ fusion_bench-0.2.25.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
955
+ fusion_bench-0.2.25.dist-info/RECORD,,
@@ -0,0 +1,16 @@
1
+ _target_: fusion_bench.method.classification.ImageClassificationFineTuning
2
+ max_epochs: 10
3
+ max_steps: null
4
+ label_smoothing: 0
5
+ optimizer:
6
+ _target_: torch.optim.SGD
7
+ lr: 0.001
8
+ momentum: 0.9
9
+ weight_decay: 1e-4
10
+ lr_scheduler:
11
+ _target_: torch.optim.lr_scheduler.CosineAnnealingLR
12
+ T_max: ${..max_epochs}
13
+ dataloader_kwargs:
14
+ batch_size: 256 # batch size per GPU
15
+ num_workers: 8
16
+ pin_memory: true
@@ -0,0 +1,6 @@
1
+ _target_: fusion_bench.method.classification.ImageClassificationFineTuning_Test
2
+ checkpoint_path: null
3
+ dataloader_kwargs:
4
+ batch_size: 256
5
+ num_workers: 4
6
+ pin_memory: true
@@ -1 +1,2 @@
1
1
  _target_: fusion_bench.method.SimpleEnsembleAlgorithm
2
+ device_map: null # Set to null for single device, or specify mapping
@@ -1,4 +1,4 @@
1
- _target_: fusion_bench.method.SimpleAverageForLlama
1
+ _target_: fusion_bench.method.SimpleAverageForCausalLM
2
2
  # set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
3
3
  # if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
4
4
  merge_backbone: false
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.TaskArithmeticForCausalLM
2
+ scaling_factor: 0.3
3
+ merge_backbone: false
4
+ model_save_path: ${path.log_dir}/checkpoint
@@ -0,0 +1,13 @@
1
+ _target_: fusion_bench.method.TiesMergingForCausalLM
2
+ # Scaling factor $\lambda$
3
+ scaling_factor: 0.3
4
+ # Threshold for resetting values in the task vector
5
+ threshold: 20
6
+ # List of keys to remove from the state dict, default is empty
7
+ remove_keys: []
8
+ # Function to merge the models, default is sum. Options are 'sum', 'mean', and 'max'
9
+ merge_func: sum
10
+ # Whether to merge only the backbone layers
11
+ merge_backbone: false
12
+ # Path to save the merged model
13
+ model_save_path: ${path.log_dir}/checkpoint
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.WUDIMerging
2
+
3
+ iter_num: 400
4
+ exclude_keys: null
@@ -0,0 +1,45 @@
1
+ # =============================================================================
2
+ # FusionBench Model Fusion Configuration
3
+ # =============================================================================
4
+ # This configuration file defines the settings for running model fusion experiments
5
+ # within FusionBench using standard PyTorch (without Lightning Fabric).
6
+ #
7
+ # The configuration includes:
8
+ #
9
+ # - Hydra framework settings and overrides
10
+ # - Path management for data, outputs, and logs
11
+ # - (core components) Model pool, fusion method, and task pool specifications
12
+ # - Experiment execution parameters and debugging options
13
+ #
14
+ # =============================================================================
15
+ # Hydra Configuration Defaults
16
+ # =============================================================================
17
+ defaults:
18
+ - hydra: default # Hydra framework configuration
19
+ - path: default # Path management configuration
20
+ # --- Core Components ---
21
+ - modelpool: CLIPVisionModelPool/clip-vit-base-patch32_TA8 # Model pool specification
22
+ - method: dummy # Fusion method (placeholder)
23
+ - taskpool: dummy # Task pool specification (placeholder)
24
+ - _self_ # Self-reference for override priority
25
+ # =============================================================================
26
+ # Program Configuration
27
+ # =============================================================================
28
+ _target_: fusion_bench.programs.ModelFusionProgram
29
+ _recursive_: false # Disable recursive instantiation
30
+ # =============================================================================
31
+ # Experiment Execution Settings
32
+ # =============================================================================
33
+ # Development and debugging options
34
+ fast_dev_run: false # This option is for quick testing. For example, run single batch instead of full dataset
35
+ dry_run: false # Show configuration without running experiment
36
+ print_config: true # Display full configuration before execution
37
+ print_function_call: true # Show detailed instantiation calls
38
+ # =============================================================================
39
+ # Output and Logging Configuration
40
+ # =============================================================================
41
+ # Model saving configuration
42
+ merged_model_save_path: null # Path to save merged model.
43
+ merged_model_save_kwargs: null # Additional kwargs for model saving.
44
+ # Report generation
45
+ report_save_path: "{log_dir}/program_report.json" # Experiment results report path
@@ -1,7 +1,6 @@
1
1
  _target_: fusion_bench.modelpool.CausalLMPool
2
2
  _recursive_: false
3
-
4
- enable_lazy_loading: false
3
+ enable_lazy_loading: true
5
4
  models:
6
5
  _pretrained_: Qwen/Qwen2.5-1.5B
7
6
  math: Qwen/Qwen2.5-Math-1.5B
@@ -0,0 +1,11 @@
1
+ _target_: fusion_bench.modelpool.CausalLMPool
2
+ _recursive_: false
3
+ enable_lazy_loading: true
4
+ models:
5
+ _pretrained_: Qwen/Qwen2.5-1.5B
6
+ math: Qwen/Qwen2.5-Math-1.5B
7
+ code: Qwen/Qwen2.5-Coder-1.5B
8
+ instruction: Qwen/Qwen2.5-1.5B-Instruct
9
+ model_kwargs:
10
+ torch_dtype: bfloat16
11
+ tokenizer: Qwen/Qwen2.5-1.5B
@@ -0,0 +1,11 @@
1
+ _target_: fusion_bench.modelpool.CausalLMPool
2
+ _recursive_: false
3
+ enable_lazy_loading: true
4
+ models:
5
+ _pretrained_: meta-llama/Llama-2-7b-hf
6
+ chat: meta-llama/Llama-2-7b-chat-hf
7
+ math: WizardLMTeam/WizardMath-7B-V1.0
8
+ code: codellama/CodeLlama-7b-hf
9
+ model_kwargs:
10
+ torch_dtype: bfloat16
11
+ tokenizer: meta-llama/Llama-2-7b-hf
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - cifar10
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - cifar10
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: cifar10
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - cifar100
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - cifar100
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: cifar100
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - cifar10
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - cifar10
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: cifar10