fusion-bench 0.2.22__py3-none-any.whl → 0.2.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +4 -0
- fusion_bench/compat/method/__init__.py +5 -2
- fusion_bench/compat/method/base_algorithm.py +3 -2
- fusion_bench/compat/modelpool/base_pool.py +3 -3
- fusion_bench/compat/taskpool/clip_image_classification.py +1 -1
- fusion_bench/dataset/gpt2_glue.py +1 -1
- fusion_bench/method/__init__.py +4 -2
- fusion_bench/method/analysis/task_vector_cos_similarity.py +95 -12
- fusion_bench/method/analysis/task_vector_violin_plot.py +160 -52
- fusion_bench/method/bitdelta/bitdelta.py +7 -23
- fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +2 -0
- fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +2 -0
- fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +2 -0
- fusion_bench/method/model_stock/__init__.py +1 -0
- fusion_bench/method/model_stock/model_stock.py +309 -0
- fusion_bench/method/regmean/clip_regmean.py +3 -6
- fusion_bench/method/regmean/regmean.py +27 -56
- fusion_bench/method/regmean/utils.py +56 -0
- fusion_bench/method/regmean_plusplus/regmean_plusplus.py +21 -60
- fusion_bench/method/slerp/__init__.py +1 -1
- fusion_bench/method/slerp/slerp.py +110 -14
- fusion_bench/method/we_moe/flan_t5_we_moe.py +9 -20
- fusion_bench/mixins/clip_classification.py +26 -6
- fusion_bench/mixins/serialization.py +25 -15
- fusion_bench/modelpool/base_pool.py +1 -1
- fusion_bench/modelpool/causal_lm/causal_lm.py +262 -43
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +146 -0
- fusion_bench/models/hf_utils.py +9 -4
- fusion_bench/models/linearized/vision_model.py +6 -6
- fusion_bench/models/modeling_smile_mistral/__init__.py +1 -0
- fusion_bench/models/we_moe.py +8 -8
- fusion_bench/taskpool/base_pool.py +99 -17
- fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
- fusion_bench/taskpool/dummy.py +101 -13
- fusion_bench/taskpool/lm_eval_harness/taskpool.py +80 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +28 -0
- fusion_bench/utils/__init__.py +1 -0
- fusion_bench/utils/data.py +6 -4
- fusion_bench/utils/devices.py +7 -4
- fusion_bench/utils/dtype.py +3 -2
- fusion_bench/utils/lazy_state_dict.py +82 -19
- fusion_bench/utils/packages.py +3 -3
- fusion_bench/utils/parameters.py +0 -2
- fusion_bench/utils/timer.py +92 -10
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/METADATA +1 -1
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/RECORD +53 -47
- fusion_bench_config/_get_started/llm_slerp.yaml +12 -0
- fusion_bench_config/method/model_stock/model_stock.yaml +12 -0
- fusion_bench_config/method/slerp/slerp_lm.yaml +4 -0
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.23.dist-info}/top_level.txt +0 -0
fusion_bench/models/we_moe.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import functools
|
|
2
2
|
import logging
|
|
3
|
-
from typing import List
|
|
3
|
+
from typing import Generic, List
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
import torch.func
|
|
@@ -9,7 +9,7 @@ from torch.func import functional_call
|
|
|
9
9
|
from torch.nn import functional as F
|
|
10
10
|
|
|
11
11
|
from fusion_bench.models.utils import del_attr, get_attr, set_attr
|
|
12
|
-
from fusion_bench.utils.type import StateDictType
|
|
12
|
+
from fusion_bench.utils.type import StateDictType, TorchModelType
|
|
13
13
|
|
|
14
14
|
log = logging.getLogger(__name__)
|
|
15
15
|
|
|
@@ -76,15 +76,15 @@ def construct_weight_ensembling_gate(
|
|
|
76
76
|
return gate
|
|
77
77
|
|
|
78
78
|
|
|
79
|
-
class WeightEnsemblingMoE(nn.Module):
|
|
79
|
+
class WeightEnsemblingMoE(nn.Module, Generic[TorchModelType]):
|
|
80
80
|
# variable to store the merged state dict temporarily
|
|
81
81
|
_merged_state_dict: StateDictType = None
|
|
82
82
|
|
|
83
83
|
def __init__(
|
|
84
84
|
self,
|
|
85
85
|
hidden_size: int,
|
|
86
|
-
base_model:
|
|
87
|
-
expert_models: List[
|
|
86
|
+
base_model: TorchModelType,
|
|
87
|
+
expert_models: List[TorchModelType],
|
|
88
88
|
init_lambda: float = 0.2,
|
|
89
89
|
batch_first: bool = False,
|
|
90
90
|
router_hidden_layers: int = 2,
|
|
@@ -101,8 +101,8 @@ class WeightEnsemblingMoE(nn.Module):
|
|
|
101
101
|
Args:
|
|
102
102
|
|
|
103
103
|
hidden_size (int): The size of the hidden layer in the models.
|
|
104
|
-
base_model (
|
|
105
|
-
expert_models (List[
|
|
104
|
+
base_model (TorchModelType): The base model that will be used as a reference for the expert models.
|
|
105
|
+
expert_models (List[TorchModelType]): A list of expert models that will be combined.
|
|
106
106
|
init_lambda (float, optional): The initial lambda value for the weight ensembling gate. Defaults to 0.2.
|
|
107
107
|
batch_first (bool, optional): If True, the input tensors are expected to have the batch size as the first dimension. Defaults to False.
|
|
108
108
|
router_hidden_layers (int, optional): The number of hidden layers in the router. Defaults to 2.
|
|
@@ -145,7 +145,7 @@ class WeightEnsemblingMoE(nn.Module):
|
|
|
145
145
|
self._merged_state_dict,
|
|
146
146
|
)
|
|
147
147
|
|
|
148
|
-
def merge_weights(self, expert_weights):
|
|
148
|
+
def merge_weights(self, expert_weights) -> StateDictType:
|
|
149
149
|
state_dict = self.base_model.state_dict(keep_vars=True)
|
|
150
150
|
for weight, task_vector in zip(expert_weights, self.task_vectors):
|
|
151
151
|
for name, param in task_vector.named_parameters():
|
|
@@ -5,33 +5,115 @@ from fusion_bench.mixins import BaseYAMLSerializable
|
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
class BaseTaskPool(BaseYAMLSerializable):
|
|
8
|
+
"""Abstract base class for task pools in the FusionBench framework.
|
|
9
|
+
|
|
10
|
+
A task pool represents a collection of evaluation tasks that can be used to
|
|
11
|
+
assess model performance across multiple benchmarks or datasets. This base
|
|
12
|
+
class defines the common interface that all task pool implementations must
|
|
13
|
+
follow, ensuring consistency across different task types and evaluation
|
|
14
|
+
scenarios.
|
|
15
|
+
|
|
16
|
+
Task pools are designed to be configurable through YAML files and can be
|
|
17
|
+
used in various model fusion and evaluation workflows. They provide a
|
|
18
|
+
standardized way to evaluate models on multiple tasks and aggregate results.
|
|
19
|
+
|
|
20
|
+
The class inherits from BaseYAMLSerializable to support configuration
|
|
21
|
+
management and serialization capabilities.
|
|
22
|
+
|
|
23
|
+
Attributes:
|
|
24
|
+
_program: Optional program reference for execution context.
|
|
25
|
+
_config_key: Configuration key used for YAML configuration ("taskpool").
|
|
26
|
+
|
|
27
|
+
Abstract Methods:
|
|
28
|
+
evaluate: Must be implemented by subclasses to define task-specific
|
|
29
|
+
evaluation logic.
|
|
30
|
+
|
|
31
|
+
Example:
|
|
32
|
+
Implementing a custom task pool:
|
|
33
|
+
|
|
34
|
+
```python
|
|
35
|
+
class MyTaskPool(BaseTaskPool):
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def evaluate(self, model, **kwargs):
|
|
39
|
+
results = {}
|
|
40
|
+
for task_name in self.tasks:
|
|
41
|
+
# Implement task-specific evaluation
|
|
42
|
+
results[task_name] = self._evaluate_task(model, task_name)
|
|
43
|
+
return results
|
|
44
|
+
```
|
|
45
|
+
"""
|
|
46
|
+
|
|
8
47
|
_program = None
|
|
9
48
|
_config_key = "taskpool"
|
|
10
49
|
|
|
11
50
|
@abstractmethod
|
|
12
51
|
def evaluate(self, model: Any, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
13
|
-
"""
|
|
14
|
-
Evaluate the model on all tasks in the task pool, and return a report.
|
|
52
|
+
"""Evaluate a model on all tasks in the task pool and return aggregated results.
|
|
15
53
|
|
|
16
|
-
|
|
54
|
+
This abstract method defines the core evaluation interface that all task pool
|
|
55
|
+
implementations must provide. It should evaluate the given model on all tasks
|
|
56
|
+
managed by the pool and return a structured report of the results.
|
|
17
57
|
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
},
|
|
24
|
-
<task_name>: {
|
|
25
|
-
<metric_name>: <metric_value>,
|
|
26
|
-
...
|
|
27
|
-
},
|
|
28
|
-
}
|
|
29
|
-
```
|
|
58
|
+
The evaluation process typically involves:
|
|
59
|
+
1. Iterating through all tasks in the pool
|
|
60
|
+
2. Running model inference on each task's dataset
|
|
61
|
+
3. Computing task-specific metrics
|
|
62
|
+
4. Aggregating results into a standardized report format
|
|
30
63
|
|
|
31
64
|
Args:
|
|
32
|
-
model: The model to evaluate.
|
|
65
|
+
model: The model to evaluate. Can be any model type (PyTorch model,
|
|
66
|
+
Hugging Face model, etc.) that is compatible with the specific
|
|
67
|
+
task pool implementation.
|
|
68
|
+
*args: Additional positional arguments that may be needed for
|
|
69
|
+
task-specific evaluation procedures.
|
|
70
|
+
**kwargs: Additional keyword arguments for evaluation configuration,
|
|
71
|
+
such as batch_size, device, evaluation metrics, etc.
|
|
33
72
|
|
|
34
73
|
Returns:
|
|
35
|
-
|
|
74
|
+
Dict[str, Any]: A dictionary containing evaluation results for each task.
|
|
75
|
+
The structure follows the pattern:
|
|
76
|
+
|
|
77
|
+
```python
|
|
78
|
+
{
|
|
79
|
+
"task_name_1": {
|
|
80
|
+
"metric_1": value,
|
|
81
|
+
"metric_2": value,
|
|
82
|
+
...
|
|
83
|
+
},
|
|
84
|
+
"task_name_2": {
|
|
85
|
+
"metric_1": value,
|
|
86
|
+
"metric_2": value,
|
|
87
|
+
...
|
|
88
|
+
},
|
|
89
|
+
...
|
|
90
|
+
}
|
|
91
|
+
```
|
|
92
|
+
|
|
93
|
+
Example:
|
|
94
|
+
For an image classification task pool:
|
|
95
|
+
|
|
96
|
+
```python
|
|
97
|
+
results = task_pool.evaluate(model)
|
|
98
|
+
# Returns:
|
|
99
|
+
# {
|
|
100
|
+
# "mnist": {
|
|
101
|
+
# "accuracy": 0.95,
|
|
102
|
+
# "loss": 0.15,
|
|
103
|
+
# },
|
|
104
|
+
# "cifar10": {
|
|
105
|
+
# "accuracy": 0.87,
|
|
106
|
+
# "loss": 0.42,
|
|
107
|
+
# }
|
|
108
|
+
# }
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
Raises:
|
|
112
|
+
NotImplementedError: This method must be implemented by subclasses.
|
|
113
|
+
|
|
114
|
+
Note:
|
|
115
|
+
Implementations should ensure that the returned dictionary structure
|
|
116
|
+
is consistent and that metric names are standardized across similar
|
|
117
|
+
task types to enable meaningful comparison and aggregation.
|
|
36
118
|
"""
|
|
37
119
|
pass
|
|
@@ -309,7 +309,7 @@ class CLIPVisionModelTaskPool(
|
|
|
309
309
|
self.setup()
|
|
310
310
|
|
|
311
311
|
report = {}
|
|
312
|
-
# CLIPVisionModel works the same with
|
|
312
|
+
# CLIPVisionModel works the same with CLIPVisionTransformer, so we can use it directly
|
|
313
313
|
if hasattr(model, "is_surgery_model") and model.is_surgery_model:
|
|
314
314
|
log.info("running evaluation on a surgery model.")
|
|
315
315
|
model: "SurgeryModelWrapper" = model
|
fusion_bench/taskpool/dummy.py
CHANGED
|
@@ -1,5 +1,10 @@
|
|
|
1
1
|
"""
|
|
2
|
-
|
|
2
|
+
Dummy task pool implementation for debugging and testing purposes.
|
|
3
|
+
|
|
4
|
+
This module provides a minimal task pool implementation that can be used for
|
|
5
|
+
debugging model fusion workflows, testing infrastructure, and validating model
|
|
6
|
+
architectures without running expensive evaluation procedures. It's particularly
|
|
7
|
+
useful during development and prototyping phases.
|
|
3
8
|
"""
|
|
4
9
|
|
|
5
10
|
from typing import Optional
|
|
@@ -14,14 +19,41 @@ from fusion_bench.utils.parameters import count_parameters, print_parameters
|
|
|
14
19
|
|
|
15
20
|
|
|
16
21
|
def get_model_summary(model: nn.Module) -> dict:
|
|
17
|
-
"""
|
|
18
|
-
|
|
22
|
+
"""Generate a comprehensive summary report for a PyTorch model.
|
|
23
|
+
|
|
24
|
+
Analyzes the given model to extract key information about its architecture,
|
|
25
|
+
parameter count, and training characteristics. This function is useful for
|
|
26
|
+
model introspection and comparative analysis during model fusion workflows.
|
|
27
|
+
|
|
28
|
+
The summary includes both trainable and total parameter counts, which helps
|
|
29
|
+
in understanding model complexity and memory requirements. The trainable
|
|
30
|
+
percentage is particularly useful for identifying models with frozen layers
|
|
31
|
+
or parameter-efficient fine-tuning setups.
|
|
19
32
|
|
|
20
33
|
Args:
|
|
21
|
-
model: The model to
|
|
34
|
+
model: The PyTorch model to analyze. Can be any nn.Module instance
|
|
35
|
+
including complex models, fusion models, or pre-trained models.
|
|
22
36
|
|
|
23
37
|
Returns:
|
|
24
|
-
dict:
|
|
38
|
+
dict: A structured report containing model information:
|
|
39
|
+
- model_info: Dictionary with parameter statistics
|
|
40
|
+
- trainable_params: Number of trainable parameters
|
|
41
|
+
- all_params: Total number of parameters (trainable + frozen)
|
|
42
|
+
- trainable_percentage: Ratio of trainable to total parameters
|
|
43
|
+
|
|
44
|
+
Example:
|
|
45
|
+
```python
|
|
46
|
+
>>> model = MyModel()
|
|
47
|
+
>>> summary = get_model_summary(model)
|
|
48
|
+
>>> print(summary)
|
|
49
|
+
{
|
|
50
|
+
"model_info": {
|
|
51
|
+
"trainable_params": 1234567,
|
|
52
|
+
"all_params": 1234567,
|
|
53
|
+
"trainable_percentage": 1.0
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
```
|
|
25
57
|
"""
|
|
26
58
|
report = {}
|
|
27
59
|
training_params, all_params = count_parameters(model)
|
|
@@ -34,21 +66,77 @@ def get_model_summary(model: nn.Module) -> dict:
|
|
|
34
66
|
|
|
35
67
|
|
|
36
68
|
class DummyTaskPool(BaseTaskPool):
|
|
69
|
+
"""A lightweight task pool implementation for debugging and development workflows.
|
|
70
|
+
|
|
71
|
+
This dummy task pool provides a minimal evaluation interface that focuses on
|
|
72
|
+
model introspection rather than task-specific performance evaluation. It's
|
|
73
|
+
designed for development scenarios where you need to test model fusion
|
|
74
|
+
pipelines, validate architectures, or debug workflows without the overhead
|
|
75
|
+
of running actual evaluation tasks.
|
|
76
|
+
|
|
77
|
+
The task pool is particularly useful when:
|
|
78
|
+
- You want to verify model fusion works correctly
|
|
79
|
+
- You need to check parameter counts after fusion
|
|
80
|
+
- You're developing new fusion algorithms
|
|
81
|
+
- You want to test infrastructure without expensive evaluations
|
|
82
|
+
|
|
83
|
+
Example:
|
|
84
|
+
```python
|
|
85
|
+
>>> taskpool = DummyTaskPool(model_save_path="/tmp/fused_model")
|
|
86
|
+
>>> results = taskpool.evaluate(fused_model)
|
|
87
|
+
>>> print(f"Model has {results['model_info']['trainable_params']} parameters")
|
|
88
|
+
```
|
|
37
89
|
"""
|
|
38
|
-
This is a dummy task pool used for debugging purposes. It inherits from the base TaskPool class.
|
|
39
|
-
"""
|
|
40
90
|
|
|
41
|
-
def __init__(self, model_save_path: Optional[str] = None):
|
|
42
|
-
|
|
91
|
+
def __init__(self, model_save_path: Optional[str] = None, **kwargs):
|
|
92
|
+
"""Initialize the dummy task pool with optional model saving capability.
|
|
93
|
+
|
|
94
|
+
Args:
|
|
95
|
+
model_save_path: Optional path where the evaluated model should be saved.
|
|
96
|
+
If provided, the model will be serialized and saved to this location
|
|
97
|
+
after evaluation using the separate_save utility. If None, no model
|
|
98
|
+
saving will be performed.
|
|
99
|
+
|
|
100
|
+
Example:
|
|
101
|
+
```python
|
|
102
|
+
>>> # Create taskpool without saving
|
|
103
|
+
>>> taskpool = DummyTaskPool()
|
|
104
|
+
|
|
105
|
+
>>> # Create taskpool with model saving
|
|
106
|
+
>>> taskpool = DummyTaskPool(model_save_path="/path/to/save/model.pth")
|
|
107
|
+
```
|
|
108
|
+
"""
|
|
109
|
+
super().__init__(**kwargs)
|
|
43
110
|
self.model_save_path = model_save_path
|
|
44
111
|
|
|
45
112
|
def evaluate(self, model):
|
|
46
|
-
"""
|
|
47
|
-
|
|
48
|
-
This method
|
|
113
|
+
"""Perform lightweight evaluation and analysis of the given model.
|
|
114
|
+
|
|
115
|
+
This method provides a minimal evaluation that focuses on model introspection
|
|
116
|
+
rather than task-specific performance metrics. It performs parameter analysis,
|
|
117
|
+
optionally saves the model, and returns a summary report.
|
|
118
|
+
|
|
119
|
+
The evaluation process includes:
|
|
120
|
+
1. Printing human-readable parameter information (rank-zero only)
|
|
121
|
+
2. Optionally saving the model if a save path was configured
|
|
122
|
+
3. Generating and returning a model summary report
|
|
49
123
|
|
|
50
124
|
Args:
|
|
51
|
-
model: The model to evaluate.
|
|
125
|
+
model: The model to evaluate. Can be any PyTorch nn.Module including
|
|
126
|
+
fusion models, pre-trained models, or custom architectures.
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
dict: A model summary report containing parameter statistics and
|
|
130
|
+
architecture information. See get_model_summary() for detailed
|
|
131
|
+
format specification.
|
|
132
|
+
|
|
133
|
+
Example:
|
|
134
|
+
```python
|
|
135
|
+
>>> taskpool = DummyTaskPool(model_save_path="/tmp/model.pth")
|
|
136
|
+
>>> model = torch.nn.Linear(10, 5)
|
|
137
|
+
>>> results = taskpool.evaluate(model)
|
|
138
|
+
>>> print(f"Trainable params: {results['model_info']['trainable_params']}")
|
|
139
|
+
```
|
|
52
140
|
"""
|
|
53
141
|
if rank_zero_only.rank == 0:
|
|
54
142
|
print_parameters(model, is_human_readable=True)
|
|
@@ -16,6 +16,47 @@ log = logging.getLogger(__name__)
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class LMEvalHarnessTaskPool(BaseTaskPool, LightningFabricMixin):
|
|
19
|
+
"""A task pool implementation that interfaces with the LM Evaluation Harness framework.
|
|
20
|
+
|
|
21
|
+
This class provides a wrapper around the LM Evaluation Harness (lm-eval) library,
|
|
22
|
+
enabling evaluation of language models on various standardized benchmarks and tasks.
|
|
23
|
+
It inherits from BaseTaskPool and LightningFabricMixin to provide distributed
|
|
24
|
+
computing capabilities through PyTorch Lightning Fabric.
|
|
25
|
+
|
|
26
|
+
The task pool supports evaluation on multiple tasks simultaneously and provides
|
|
27
|
+
flexible configuration options for batch processing, output formatting, and
|
|
28
|
+
logging. It automatically handles model setup and wrapping for distributed
|
|
29
|
+
evaluation when using Lightning Fabric.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
tasks: A single task name or list of task names to evaluate on.
|
|
33
|
+
Examples: "hellaswag", ["arc_easy", "arc_challenge", "hellaswag"]
|
|
34
|
+
apply_chat_template: Whether to apply chat template formatting to inputs.
|
|
35
|
+
Useful for instruction-tuned or chat models.
|
|
36
|
+
include_path: Path to additional task definitions or custom tasks.
|
|
37
|
+
batch_size: Number of samples to process in each batch. Larger values
|
|
38
|
+
may improve throughput but require more memory.
|
|
39
|
+
metadata: Additional metadata to include in evaluation results.
|
|
40
|
+
verbosity: Logging verbosity level for the evaluation process.
|
|
41
|
+
output_path: Custom path for saving evaluation results. If None,
|
|
42
|
+
results are saved to the default log directory.
|
|
43
|
+
log_samples: Whether to log individual sample predictions and targets.
|
|
44
|
+
Useful for debugging but increases output size significantly.
|
|
45
|
+
_usage_: Internal usage tracking string.
|
|
46
|
+
_version_: Internal version tracking string.
|
|
47
|
+
**kwargs: Additional arguments passed to the LM Evaluation Harness.
|
|
48
|
+
|
|
49
|
+
Example:
|
|
50
|
+
```python
|
|
51
|
+
>>> taskpool = LMEvalHarnessTaskPool(
|
|
52
|
+
... tasks=["arc_easy", "hellaswag"],
|
|
53
|
+
... batch_size=8,
|
|
54
|
+
... verbosity="INFO"
|
|
55
|
+
... )
|
|
56
|
+
>>> results = taskpool.evaluate(model)
|
|
57
|
+
```
|
|
58
|
+
"""
|
|
59
|
+
|
|
19
60
|
def __init__(
|
|
20
61
|
self,
|
|
21
62
|
tasks: Union[str, List[str]],
|
|
@@ -44,6 +85,45 @@ class LMEvalHarnessTaskPool(BaseTaskPool, LightningFabricMixin):
|
|
|
44
85
|
self.log_samples = log_samples
|
|
45
86
|
|
|
46
87
|
def evaluate(self, model, *command_line_args, **kwargs):
|
|
88
|
+
"""Evaluate a language model on the configured tasks using LM Evaluation Harness.
|
|
89
|
+
|
|
90
|
+
This method wraps the model with the LM Evaluation Harness framework and
|
|
91
|
+
executes evaluation on all configured tasks. It automatically handles
|
|
92
|
+
command-line argument construction, model wrapping with Lightning Fabric
|
|
93
|
+
for distributed evaluation, and result logging.
|
|
94
|
+
|
|
95
|
+
The evaluation process includes:
|
|
96
|
+
1. Building command-line arguments from instance configuration
|
|
97
|
+
2. Setting up the LM Evaluation Harness argument parser
|
|
98
|
+
3. Wrapping the model with Lightning Fabric if not already wrapped
|
|
99
|
+
4. Creating an HFLM (Hugging Face Language Model) wrapper
|
|
100
|
+
5. Executing the evaluation through the LM-Eval CLI interface
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
model: The language model to evaluate. Can be a Hugging Face model,
|
|
104
|
+
PyTorch model, or any model compatible with the LM Evaluation Harness.
|
|
105
|
+
The model will be automatically wrapped with Lightning Fabric for
|
|
106
|
+
distributed evaluation if not already wrapped.
|
|
107
|
+
*command_line_args: Additional positional command-line arguments
|
|
108
|
+
(currently unused but preserved for interface compatibility).
|
|
109
|
+
**kwargs: Additional keyword arguments that will be converted to
|
|
110
|
+
command-line flags and passed to the LM Evaluation Harness.
|
|
111
|
+
Keys will be prefixed with '--' and values converted to strings.
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
None: Results are written to the configured output path and logged.
|
|
115
|
+
|
|
116
|
+
Example:
|
|
117
|
+
```python
|
|
118
|
+
>>> taskpool = LMEvalHarnessTaskPool(tasks=["arc_easy"])
|
|
119
|
+
>>> taskpool.evaluate(model, limit=100, device="cuda")
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
Note:
|
|
123
|
+
The method leverages the LM Evaluation Harness's command-line interface
|
|
124
|
+
internally, which provides standardized evaluation procedures and
|
|
125
|
+
ensures compatibility with the broader evaluation ecosystem.
|
|
126
|
+
"""
|
|
47
127
|
command_line_args = []
|
|
48
128
|
if self.include_path is not None:
|
|
49
129
|
command_line_args.extend(["--include_path", self.include_path])
|
|
@@ -15,9 +15,37 @@ log = logging.getLogger(__name__)
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class NYUv2TaskPool(TaskPool):
|
|
18
|
+
"""Task pool for multi-task learning evaluation on the NYUv2 dataset.
|
|
19
|
+
|
|
20
|
+
This task pool provides evaluation capabilities for multi-task learning models
|
|
21
|
+
on the NYU Depth V2 (NYUv2) dataset, which is a popular benchmark for indoor
|
|
22
|
+
scene understanding. The dataset supports multiple computer vision tasks
|
|
23
|
+
including semantic segmentation, depth estimation, and surface normal prediction.
|
|
24
|
+
|
|
25
|
+
The task pool is designed to work with encoder-decoder architectures where
|
|
26
|
+
a shared encoder processes input images and task-specific decoders generate
|
|
27
|
+
predictions for different tasks. It integrates with PyTorch Lightning for
|
|
28
|
+
streamlined training and evaluation workflows.
|
|
29
|
+
|
|
30
|
+
Supported Tasks:
|
|
31
|
+
- Semantic segmentation
|
|
32
|
+
- Depth estimation
|
|
33
|
+
- Surface normal prediction
|
|
34
|
+
"""
|
|
35
|
+
|
|
18
36
|
_trainer: L.Trainer = None
|
|
19
37
|
|
|
20
38
|
def __init__(self, taskpool_config: DictConfig):
|
|
39
|
+
"""Initialize the NYUv2 task pool with configuration settings.
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
taskpool_config: Configuration object containing all necessary
|
|
43
|
+
parameters for the task pool, including:
|
|
44
|
+
- data_dir: Path to the directory containing NYUv2 dataset
|
|
45
|
+
- tasks: List of tasks to evaluate (e.g., ["semantic", "depth"])
|
|
46
|
+
- batch_size: Batch size for evaluation data loader
|
|
47
|
+
- num_workers: Number of worker processes for data loading
|
|
48
|
+
"""
|
|
21
49
|
self.config = taskpool_config
|
|
22
50
|
|
|
23
51
|
def load_datasets(self):
|
fusion_bench/utils/__init__.py
CHANGED
fusion_bench/utils/data.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import pickle
|
|
2
2
|
from pathlib import Path
|
|
3
|
-
from typing import Literal, Optional, Union
|
|
3
|
+
from typing import Any, Literal, Optional, Tuple, Union
|
|
4
4
|
|
|
5
5
|
import numpy as np
|
|
6
6
|
import torch
|
|
@@ -37,7 +37,9 @@ class InfiniteDataLoader:
|
|
|
37
37
|
return data
|
|
38
38
|
|
|
39
39
|
|
|
40
|
-
def load_tensor_from_file(
|
|
40
|
+
def load_tensor_from_file(
|
|
41
|
+
file_path: Union[str, Path], device: Optional[Union[str, torch.device]] = None
|
|
42
|
+
) -> torch.Tensor:
|
|
41
43
|
"""
|
|
42
44
|
Loads a tensor from a file, which can be either a .pt, .pth or .np file.
|
|
43
45
|
If the file is not one of these formats, it will try to load it as a pickle file.
|
|
@@ -72,7 +74,7 @@ def train_validation_split(
|
|
|
72
74
|
validation_size: Optional[int] = None,
|
|
73
75
|
random_seed: Optional[int] = None,
|
|
74
76
|
return_split: Literal["all", "train", "val"] = "both",
|
|
75
|
-
):
|
|
77
|
+
) -> Union[Tuple[Dataset, Dataset], Dataset]:
|
|
76
78
|
"""
|
|
77
79
|
Split a dataset into a training and validation set.
|
|
78
80
|
|
|
@@ -134,7 +136,7 @@ def train_validation_test_split(
|
|
|
134
136
|
test_fraction: float,
|
|
135
137
|
random_seed: Optional[int] = None,
|
|
136
138
|
return_spilt: Literal["all", "train", "val", "test"] = "all",
|
|
137
|
-
):
|
|
139
|
+
) -> Union[Tuple[Dataset, Dataset, Dataset], Dataset]:
|
|
138
140
|
"""
|
|
139
141
|
Split a dataset into a training, validation and test set.
|
|
140
142
|
|
fusion_bench/utils/devices.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import gc
|
|
2
2
|
import logging
|
|
3
3
|
import os
|
|
4
|
-
from typing import List, Optional, Union
|
|
4
|
+
from typing import Any, List, Optional, Union
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
from transformers.utils import (
|
|
@@ -12,6 +12,8 @@ from transformers.utils import (
|
|
|
12
12
|
is_torch_xpu_available,
|
|
13
13
|
)
|
|
14
14
|
|
|
15
|
+
from .type import T
|
|
16
|
+
|
|
15
17
|
__all__ = [
|
|
16
18
|
"clear_cuda_cache",
|
|
17
19
|
"to_device",
|
|
@@ -37,7 +39,7 @@ def clear_cuda_cache():
|
|
|
37
39
|
log.warning("CUDA is not available. No cache to clear.")
|
|
38
40
|
|
|
39
41
|
|
|
40
|
-
def to_device(obj, device: Optional[torch.device], **kwargs):
|
|
42
|
+
def to_device(obj: T, device: Optional[torch.device], **kwargs: Any) -> T:
|
|
41
43
|
"""
|
|
42
44
|
Move a given object to the specified device.
|
|
43
45
|
|
|
@@ -102,7 +104,7 @@ def num_devices(devices: Union[int, List[int], str]) -> int:
|
|
|
102
104
|
)
|
|
103
105
|
|
|
104
106
|
|
|
105
|
-
def get_device(obj) -> torch.device:
|
|
107
|
+
def get_device(obj: Any) -> torch.device:
|
|
106
108
|
"""
|
|
107
109
|
Get the device of a given object.
|
|
108
110
|
|
|
@@ -151,6 +153,7 @@ def get_current_device() -> torch.device:
|
|
|
151
153
|
If not set, it defaults to "0".
|
|
152
154
|
|
|
153
155
|
Example:
|
|
156
|
+
|
|
154
157
|
>>> device = get_current_device()
|
|
155
158
|
>>> print(device)
|
|
156
159
|
xpu:0 # or npu:0, mps:0, cuda:0, cpu depending on availability
|
|
@@ -241,7 +244,7 @@ def cleanup_cuda():
|
|
|
241
244
|
torch.cuda.reset_peak_memory_stats()
|
|
242
245
|
|
|
243
246
|
|
|
244
|
-
def print_memory_usage(print_fn=print):
|
|
247
|
+
def print_memory_usage(print_fn=print) -> str:
|
|
245
248
|
"""
|
|
246
249
|
Print the current GPU memory usage.
|
|
247
250
|
|
fusion_bench/utils/dtype.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
import contextlib
|
|
2
|
-
from typing import Dict, Generator, Iterable, Optional, Tuple
|
|
2
|
+
from typing import Dict, Generator, Iterable, Optional, Tuple, Union
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
5
|
from transformers.utils import (
|
|
@@ -25,7 +25,7 @@ PRECISION_STR_TO_DTYPE: Dict[str, torch.dtype] = {
|
|
|
25
25
|
}
|
|
26
26
|
|
|
27
27
|
|
|
28
|
-
def parse_dtype(dtype: Optional[str]):
|
|
28
|
+
def parse_dtype(dtype: Optional[str]) -> Optional[torch.dtype]:
|
|
29
29
|
"""
|
|
30
30
|
Parses a string representation of a data type and returns the corresponding torch.dtype.
|
|
31
31
|
|
|
@@ -92,6 +92,7 @@ def set_default_dtype(dtype: torch.dtype) -> Generator[None, None, None]:
|
|
|
92
92
|
ContextManager: context manager for setting default dtype.
|
|
93
93
|
|
|
94
94
|
Example:
|
|
95
|
+
|
|
95
96
|
>>> with set_default_dtype(torch.bfloat16):
|
|
96
97
|
>>> x = torch.tensor([1, 2, 3])
|
|
97
98
|
>>> x.dtype
|