fusion-bench 0.2.21__py3-none-any.whl → 0.2.23__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (89) hide show
  1. fusion_bench/__init__.py +25 -2
  2. fusion_bench/compat/method/__init__.py +5 -2
  3. fusion_bench/compat/method/base_algorithm.py +3 -2
  4. fusion_bench/compat/modelpool/base_pool.py +3 -3
  5. fusion_bench/compat/taskpool/clip_image_classification.py +1 -1
  6. fusion_bench/constants/__init__.py +1 -0
  7. fusion_bench/constants/runtime.py +57 -0
  8. fusion_bench/dataset/gpt2_glue.py +1 -1
  9. fusion_bench/method/__init__.py +12 -4
  10. fusion_bench/method/analysis/task_vector_cos_similarity.py +95 -12
  11. fusion_bench/method/analysis/task_vector_violin_plot.py +160 -52
  12. fusion_bench/method/bitdelta/__init__.py +1 -0
  13. fusion_bench/method/bitdelta/bitdelta.py +7 -23
  14. fusion_bench/method/classification/clip_finetune.py +1 -1
  15. fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +2 -0
  16. fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +2 -0
  17. fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +2 -0
  18. fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -4
  19. fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +2 -2
  20. fusion_bench/method/linear/simple_average_for_llama.py +16 -11
  21. fusion_bench/method/model_stock/__init__.py +1 -0
  22. fusion_bench/method/model_stock/model_stock.py +309 -0
  23. fusion_bench/method/regmean/clip_regmean.py +3 -6
  24. fusion_bench/method/regmean/regmean.py +27 -56
  25. fusion_bench/method/regmean/utils.py +56 -0
  26. fusion_bench/method/regmean_plusplus/regmean_plusplus.py +21 -60
  27. fusion_bench/method/simple_average.py +7 -7
  28. fusion_bench/method/slerp/__init__.py +1 -1
  29. fusion_bench/method/slerp/slerp.py +110 -14
  30. fusion_bench/method/smile_upscaling/causal_lm_upscaling.py +371 -0
  31. fusion_bench/method/smile_upscaling/projected_energy.py +1 -2
  32. fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +5 -1
  33. fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +40 -31
  34. fusion_bench/method/smile_upscaling/smile_upscaling.py +1 -1
  35. fusion_bench/method/we_moe/__init__.py +1 -0
  36. fusion_bench/method/we_moe/entropy_loss.py +25 -0
  37. fusion_bench/method/we_moe/flan_t5_we_moe.py +320 -0
  38. fusion_bench/method/we_moe/utils.py +15 -0
  39. fusion_bench/method/weighted_average/llama.py +1 -1
  40. fusion_bench/mixins/clip_classification.py +37 -48
  41. fusion_bench/mixins/serialization.py +30 -10
  42. fusion_bench/modelpool/base_pool.py +1 -1
  43. fusion_bench/modelpool/causal_lm/causal_lm.py +293 -75
  44. fusion_bench/modelpool/seq2seq_lm/modelpool.py +146 -0
  45. fusion_bench/models/__init__.py +5 -0
  46. fusion_bench/models/hf_utils.py +69 -86
  47. fusion_bench/models/linearized/vision_model.py +6 -6
  48. fusion_bench/models/model_card_templates/default.md +46 -0
  49. fusion_bench/models/modeling_smile_llama/__init__.py +7 -0
  50. fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +1 -8
  51. fusion_bench/models/modeling_smile_mistral/__init__.py +2 -1
  52. fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +1 -5
  53. fusion_bench/models/we_moe.py +8 -8
  54. fusion_bench/programs/fabric_fusion_program.py +29 -60
  55. fusion_bench/scripts/cli.py +34 -1
  56. fusion_bench/taskpool/base_pool.py +99 -17
  57. fusion_bench/taskpool/clip_vision/taskpool.py +10 -5
  58. fusion_bench/taskpool/dummy.py +101 -13
  59. fusion_bench/taskpool/lm_eval_harness/taskpool.py +80 -0
  60. fusion_bench/taskpool/nyuv2_taskpool.py +28 -0
  61. fusion_bench/utils/__init__.py +2 -0
  62. fusion_bench/utils/cache_utils.py +101 -1
  63. fusion_bench/utils/data.py +6 -4
  64. fusion_bench/utils/devices.py +7 -4
  65. fusion_bench/utils/dtype.py +3 -2
  66. fusion_bench/utils/fabric.py +2 -2
  67. fusion_bench/utils/lazy_imports.py +23 -0
  68. fusion_bench/utils/lazy_state_dict.py +117 -19
  69. fusion_bench/utils/modelscope.py +3 -3
  70. fusion_bench/utils/packages.py +3 -3
  71. fusion_bench/utils/parameters.py +0 -2
  72. fusion_bench/utils/path.py +56 -0
  73. fusion_bench/utils/pylogger.py +1 -1
  74. fusion_bench/utils/timer.py +92 -10
  75. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/METADATA +1 -23
  76. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/RECORD +89 -75
  77. fusion_bench_config/_get_started/llm_slerp.yaml +12 -0
  78. fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -1
  79. fusion_bench_config/method/linear/simple_average_for_llama.yaml +3 -2
  80. fusion_bench_config/method/model_stock/model_stock.yaml +12 -0
  81. fusion_bench_config/method/slerp/slerp_lm.yaml +4 -0
  82. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +21 -0
  83. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +1 -1
  84. fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml +20 -0
  85. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +1 -1
  86. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/WHEEL +0 -0
  87. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/entry_points.txt +0 -0
  88. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/licenses/LICENSE +0 -0
  89. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.23.dist-info}/top_level.txt +0 -0
@@ -1,26 +1,27 @@
1
- fusion_bench/__init__.py,sha256=gCq_Qbn3GPgla5zUCz05tIbTIEE39fymKZu3Y14NuXw,1978
1
+ fusion_bench/__init__.py,sha256=Ha-mkRETS7qxHPdHHgu8bRA3kTvQ64P6tWnx5mGDDA4,2472
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
5
5
  fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- fusion_bench/compat/method/__init__.py,sha256=A9pbskEYB4_ryD6sVrR0qI4eVYsbI7sExbhPeypP3fQ,5757
7
- fusion_bench/compat/method/base_algorithm.py,sha256=HHyDMG0FI-6JqRWm4wewXASWylc1GYFZcgrTLJ_r_V8,2323
6
+ fusion_bench/compat/method/__init__.py,sha256=1zDsUiZYd7a59wt6l71yvP8teHoZ6ceOLQLCBokEVDo,5855
7
+ fusion_bench/compat/method/base_algorithm.py,sha256=39kRFQ7ClOF5lt33ZaHXDBIn0Hb2hHFbgYJLPEyzS5I,2395
8
8
  fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py,sha256=m68BRGy4P-P9lLB10oXOBI-p58a-0FOPcrJ4r4MU32k,1100
9
9
  fusion_bench/compat/modelpool/__init__.py,sha256=KD8Ddr9D7rJ5YdHEQsTuNmQ0bgQfqF4l3WNMtHmRHD8,4687
10
- fusion_bench/compat/modelpool/base_pool.py,sha256=1gxQENvdcOSdHmUbw-x7-X-aXtoSa1Gsys_on1ys8FM,10639
10
+ fusion_bench/compat/modelpool/base_pool.py,sha256=-B00OZVGBsF3exwbR2jKRTiXlYr6W2BW6WeG5MIMEc0,10662
11
11
  fusion_bench/compat/modelpool/huggingface_clip_vision.py,sha256=LyIPgepNOK0qrk_EnBdlTC0ZnEkEZvPUy45cO60TiPU,6918
12
12
  fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZyVwXZxbi1jvQ,3651
13
13
  fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
14
- fusion_bench/compat/taskpool/clip_image_classification.py,sha256=ZYZsbsE-fPzm6yafA0p-6wcDwVGryLmtXXtuEXeQbTY,7425
14
+ fusion_bench/compat/taskpool/clip_image_classification.py,sha256=2L-VzsmKxNg8tglUzGA_qmLZ2oR5zKl352ylCmeY9mI,7426
15
15
  fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=JsdAE72V1C1eDcA1WCa0PIcSDTrGPclNKFDQ9G-hYts,5786
16
- fusion_bench/constants/__init__.py,sha256=pmDUo71iaJBp_E8qgb2qCx1hRN5DKIZfcJILRuWOiz4,157
16
+ fusion_bench/constants/__init__.py,sha256=Kgd1ex7odRVAlWAoKfi5iB4IMahndgJYJXqknH8R3vA,195
17
17
  fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
18
18
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
+ fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
20
21
  fusion_bench/dataset/__init__.py,sha256=OJiYmcqz0Vm5O7mE4PB5QFJeL_KjrsseQTRsQATGTm4,1050
21
22
  fusion_bench/dataset/clip_dataset.py,sha256=hLL7NyzOIt0gNT1kzjrexFISbj-B0KdlgtyGf6K8NjI,3143
22
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
23
- fusion_bench/dataset/gpt2_glue.py,sha256=UHtQWG2TjZPwsOSxmxxXHKmF3EY9WAqWxqsw8yHIbjg,8858
24
+ fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
24
25
  fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
25
26
  fusion_bench/dataset/image_dataset.py,sha256=_N5JJC0lH3EbbrZMeuDatJILrKDK2EKHqtJB-m1pdFs,1879
26
27
  fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
@@ -47,12 +48,12 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
47
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
48
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
49
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- fusion_bench/method/__init__.py,sha256=DjIpEj6lI7JIO0qIPsIBfq77ro34r0d-bSJap1k69Rc,8450
51
+ fusion_bench/method/__init__.py,sha256=MDYyNjJufoOe_iwmlL2ftWoD-72ReVv00mege5MQ6fc,8685
51
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
52
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
53
54
  fusion_bench/method/ensemble.py,sha256=oGiTJUderoPP0Opd7nHwC6h3VBmGTQ5inuG3wb6F4-A,3097
54
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
55
- fusion_bench/method/simple_average.py,sha256=IcdI8b1OpSjJxLlHIAKe9IrG1gU3UtPIOB66yqQA2Lw,5385
56
+ fusion_bench/method/simple_average.py,sha256=fLd14_0218JKyXmwe5M6kgumfD60u2ZVnm3B7PBX-Uc,5508
56
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
57
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
58
59
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
@@ -67,16 +68,16 @@ fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0y
67
68
  fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
68
69
  fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
69
70
  fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
70
- fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=pL-XsWTo258yZTEsER_6KXS7JePneVNEHN_nv8Db0qo,5468
71
- fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=ie8hPl6QsVz9MQ6C2OEpzIBxQnmVKNf1FPc5bThmQGM,7606
72
- fusion_bench/method/bitdelta/__init__.py,sha256=2rGHWIcuP8y22I0pUajEzUDB30UeRueXwX7lSjDIAw4,104
73
- fusion_bench/method/bitdelta/bitdelta.py,sha256=HtzlRS0zCU4-joNyQIUIOkrsXeBtDgZGyfUBMfx4biw,4949
71
+ fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
72
+ fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
73
+ fusion_bench/method/bitdelta/__init__.py,sha256=s4T39gVHShECcJe6mCzQbQzhRkTjDiczW7LTrldbpJo,105
74
+ fusion_bench/method/bitdelta/bitdelta.py,sha256=pujrxg-7GxEMZVEEVlNqc9gR8y8lA0oZ9K25FDxZ3s0,4342
74
75
  fusion_bench/method/bitdelta/bitdelta_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
76
  fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cwr-o8cE63kpBzHUA3S0FeJPX-Xf3mIS5ziIos,15546
76
77
  fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
77
78
  fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
78
79
  fusion_bench/method/classification/__init__.py,sha256=emB06UOMDHK5pfQ1WuvLG9Fm0aEEtZxSjpVw8fVE0fM,167
79
- fusion_bench/method/classification/clip_finetune.py,sha256=DlV1isp8vz6jwXNYQ6zbblAoUfnssL-WBpDeaXI5BVw,15727
80
+ fusion_bench/method/classification/clip_finetune.py,sha256=QNOw9O-BTOVOsW7lzRu8L-UfbiBpsT_8tS6i6BpbVyA,15726
80
81
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
81
82
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
82
83
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
@@ -101,14 +102,14 @@ fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4s
101
102
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
102
103
  fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
103
104
  fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
104
- fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=e4fsXKSjCdmK-sThX6REk_d1hf-UolRLssQr7b6jD-M,5597
105
- fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=GJVIose_Duk4C6Re4LtaxSzGjR8XLGGlhLhsGMECwjw,4960
106
- fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=-0qWYkvHqKouJynn-kT907JQtiMLChtppOTL4SUYR9M,5090
105
+ fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
106
+ fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=v1FQBFSMlbd0p2j5gDrOrK1Il4I0ABuS1IqfpVjacxA,5028
107
+ fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=PGmNBypJ20zKw_FRw9L2VykaxKBBDEYP_zG-XPM44YM,5158
107
108
  fusion_bench/method/expert_sparsity/utils/calibration_data.py,sha256=r2yZtT3ZYC0frwSpNetiyDOSzHiUZS3oaIPRfb4tjaE,5459
108
109
  fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqvesqk2NJw5AY_1ztLVE,225
109
- fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=VRWA0zlHY1bvrJseaNVehExclVlSdH38xkKsXFVIacc,7633
110
+ fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=bWoP3iM2TyY116UcdXNIrvYjHtiOvtIf7kuiFTyfIas,7343
110
111
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=8JIg02aN7KGG7ChEKeZBGYJMy8g6Lpbn0Q9G0uL6DQg,20425
111
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=VobWhFyaPtlMl5RTNtnVA7KCpwMCsw27yBUQ9SkdVoE,7360
112
+ fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=2OdiBAXT3FGzxyeQcDIII29AUMjGZkkxZ_LSqq71t3k,7330
112
113
  fusion_bench/method/fw_merging/__init__.py,sha256=JyF4BIafap83MI8wHJhOX1VRC2J7Olj4ApirPuEkrJI,90
113
114
  fusion_bench/method/fw_merging/fw_hard.py,sha256=uJeVddyUgWMuTKzOTbrXDC2p3Jul5zWPAzcNfvvg8ro,17163
114
115
  fusion_bench/method/fw_merging/fw_soft.py,sha256=rmwwcEtJOqotxDqS9Vs2YVtwxYK--fwkYUk6yp3R528,20729
@@ -131,7 +132,7 @@ fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbn
131
132
  fusion_bench/method/linear/expo.py,sha256=N7XnBTC0Nz_4gRs1f9TL9g-j-Lku5TF0lAjGKhZHwOw,3990
132
133
  fusion_bench/method/linear/linear_interpolation.py,sha256=Y01HPMBb7TaCjEBsbC6gqQyHvY1SRpwPyPPLxvYrL0s,2223
133
134
  fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
134
- fusion_bench/method/linear/simple_average_for_llama.py,sha256=Sow-NOiMz_HSBjKm-BjV7cuL8xbgKXNlb70DSW_XXVI,2951
135
+ fusion_bench/method/linear/simple_average_for_llama.py,sha256=5psacdQiqtUK_lwYZcXp9kgIU3MFGk6G1JatxeMUjE8,3339
135
136
  fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
136
137
  fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
137
138
  fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=1nvjOMABuEISyYaTRrFiwHLWvSTgHT8pEzTYBTLBRUg,18779
@@ -141,6 +142,8 @@ fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9
141
142
  fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
142
143
  fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
143
144
  fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=AHf6CvuJl8cIbSzua5vakkId3EtHoX4vE6BAKujyJz4,10592
145
+ fusion_bench/method/model_stock/__init__.py,sha256=wTcwUJ8GljoacK1zfgs3yctGBP6G2OjeTRtiozabqew,36
146
+ fusion_bench/method/model_stock/model_stock.py,sha256=CKzMrJ1QUmZIu8ze7DaIMM5ViWnRslgErCShZSlWbRs,11432
144
147
  fusion_bench/method/moe_pruner/__init__.py,sha256=UzOxEoA9PwLg7fmJXNeksDv9cO6iE9nV9g1ZhZLnBiQ,165
145
148
  fusion_bench/method/moe_pruner/moe_pruner.py,sha256=DWj1YHSHssc6no0yoTEftozl-YVdxPUsAE9uGcKmaIY,11459
146
149
  fusion_bench/method/moe_pruner/hooks/__init__.py,sha256=QYtT3Ei0-53mcoMirBbv_Z2ac8Uv3cN9b-ziCI2rzyo,136
@@ -190,22 +193,24 @@ fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcf
190
193
  fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
191
194
  fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
192
195
  fusion_bench/method/regmean/__init__.py,sha256=VVqAkdHkb005Sc2XmeiedQYzb3q5aQNI8xzEJnE4thg,158
193
- fusion_bench/method/regmean/clip_regmean.py,sha256=cjIOgViczbK_5YCMHgYwvEpOz190LVkSupPpjZH141w,4929
196
+ fusion_bench/method/regmean/clip_regmean.py,sha256=FiT7-W5Dl5GIeYf6lTmvppqIApGO5HpoRIhOG0EEE_8,4864
194
197
  fusion_bench/method/regmean/gpt2_regmean.py,sha256=s_5Ntgm6CUB7CXEBLplp1a3KrzyNCEY9qOC6xhCvHko,5325
195
- fusion_bench/method/regmean/regmean.py,sha256=XXRaarHqmOtRjFs3uuoYMTezg4xNgOKbkyJvyftnneY,16125
198
+ fusion_bench/method/regmean/regmean.py,sha256=brYPtVZ0qn9oYj6s2knxBnNxkUVjmPggliHmsJoroTo,14852
199
+ fusion_bench/method/regmean/utils.py,sha256=tdrZnvUPUMkS45qeJpKunOqOHhmJgXlUH47cKj0B8Q0,1681
196
200
  fusion_bench/method/regmean_plusplus/__init__.py,sha256=rf_yZ-VJN2YdDjYiBzyikbtTIrwc3ChFFlQNBTnHars,142
197
201
  fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py,sha256=hw8pX_sXFltKXYxivB1uBQomsrPntK_qTOOIx14Z67Y,7412
198
- fusion_bench/method/regmean_plusplus/regmean_plusplus.py,sha256=I02yA0h1EevEH2wl33OF5JfGFVWywR2hfM8t2wAJ3SY,16099
199
- fusion_bench/method/slerp/__init__.py,sha256=Wgl9gg01Xou6jyZeBRD98kRnB_dAADDaPqRTHoONx9o,59
200
- fusion_bench/method/slerp/slerp.py,sha256=cc3JSBLu1DTKIPGxXXobomHntvFLKWsAr-B2YsjhfaI,3536
202
+ fusion_bench/method/regmean_plusplus/regmean_plusplus.py,sha256=VSPa7D7iLXy6vDwnr2ydS81vNU3mvc2lyUJFD3xCtRk,14595
203
+ fusion_bench/method/slerp/__init__.py,sha256=zIsw0NQ1pl1IwtzDihm-Qah063aR1vwwXvhhFm5qMDI,77
204
+ fusion_bench/method/slerp/slerp.py,sha256=cCuhBl6JAJe8ft4FxFL8SphQHHUY5CsTJtg_gd5Hy6E,7886
201
205
  fusion_bench/method/slerp/slerp_utils.py,sha256=vksRo6n7FqY7By9aqbwTL4XV3BjcU_GrUl_r85Kpfjc,3504
202
206
  fusion_bench/method/smile_upscaling/__init__.py,sha256=6ZpUSHUFVsT1U7V3TIDWBFqcHte7SjHW0wp6CAE8NVg,165
207
+ fusion_bench/method/smile_upscaling/causal_lm_upscaling.py,sha256=PN7n3YLptEYtrSItOU0TwNjpmw5c1p4k05ZNA5Tx8XE,13995
203
208
  fusion_bench/method/smile_upscaling/error_accumulation.py,sha256=AubhUl5ZNXqndXkNuU3zIHEFhO6LC5EZFB46pbipcis,6165
204
- fusion_bench/method/smile_upscaling/projected_energy.py,sha256=iPF4iNnqnN3ZV-3In8Fo7fPjdfOjrXCI6nlzy9MTbVU,4646
209
+ fusion_bench/method/smile_upscaling/projected_energy.py,sha256=ZYbWfHCizVG9RCSCs_GEjE8-BkFmP8YYyzEOfBDM6Ac,4645
205
210
  fusion_bench/method/smile_upscaling/singular_projection_merging.py,sha256=0neZS9oZnl64wu1xb9ruGB7lbhYXyy4zj8l3E1QYRGQ,6670
206
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py,sha256=T1M4hTRgIfDhy4zSccREPLajgMcdnohr0NtdWXtPzmA,8802
207
- fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py,sha256=R7zAb7H_AHKVEGf2b7Fmmg_qVorcT9fdBAQXHxuN4pw,8960
208
- fusion_bench/method/smile_upscaling/smile_upscaling.py,sha256=sfqIZhz7gO8LvA8cF6Lma9Evu1t9m6pcQaSKpmfeIiI,9312
211
+ fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py,sha256=jcya2jTEU5rzzrK7FjYCAMSY0yEmGIeIPpbUhFimJIE,8866
212
+ fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py,sha256=IbXV5A3Wrlqj1rANKBxzPPbgrtRt9JtiIgGxUfUF-90,9209
213
+ fusion_bench/method/smile_upscaling/smile_upscaling.py,sha256=pGpEBN1FKCsj0PnFfR4IqCWw_qVLj7VOB76iaSaNLFk,9312
209
214
  fusion_bench/method/sparse_we_moe/__init__.py,sha256=V5VOpLwn6ZpsM09TmwFhhlJwMTBFXF7NE1-gW1MlAfc,133
210
215
  fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6FUQACvSmM364QHlVBYMKOCPbHrU,10288
211
216
  fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
@@ -231,11 +236,14 @@ fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjA
231
236
  fusion_bench/method/trust_region/__init__.py,sha256=4ao0E-jTlmTQPArbFWD_dFn_4yve3urNIuSMT8JtRIM,91
232
237
  fusion_bench/method/trust_region/clip_task_arithmetic.py,sha256=SWP7sRMiXzkDZ3KdNht3zqjaTcAtB4wpnnd8KYbcKZI,7441
233
238
  fusion_bench/method/trust_region/utils.py,sha256=iUNEY43mE0WZBsKAmttHwSvNpijzBzVhTpSycWoxvn8,1981
234
- fusion_bench/method/we_moe/__init__.py,sha256=Sb4YIR54-_ppUXDj5jN90PEqBO3kdL6O5-67v71q4Xs,78
239
+ fusion_bench/method/we_moe/__init__.py,sha256=w3HIl1hj1C-o1_iLlOXbSc-BXPMRafeoq3HXl1x9Voc,141
235
240
  fusion_bench/method/we_moe/clip_we_moe.py,sha256=JsDTNOy6fwCctyj5RuP9FKjBkXpOEG_GMfr_6H6oFNk,5667
241
+ fusion_bench/method/we_moe/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
242
+ fusion_bench/method/we_moe/flan_t5_we_moe.py,sha256=LevS5IJbbts9IjLnZ85Br6kCVvxIMprGIP4Ad8xM5MI,11143
243
+ fusion_bench/method/we_moe/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
236
244
  fusion_bench/method/we_moe/we_moe.py,sha256=_QtmD04oFh7aLhmPq8EYchYB7BIN9ZFWOeysSx7kJmo,8372
237
245
  fusion_bench/method/weighted_average/__init__.py,sha256=bLxIuuB72hH05J_Spz4MZbiLpYL39iwgVIQa_QeQpIk,118
238
- fusion_bench/method/weighted_average/llama.py,sha256=wV8jSlOFZ91OftEpTz5WYCYv8Mj25Q6EObE5XsCPYbs,3731
246
+ fusion_bench/method/weighted_average/llama.py,sha256=vvxXp8v98kvXfHi7fYupnIrOVoA3tp08lmV2jDri_BY,3731
239
247
  fusion_bench/method/weighted_average/weighted_average.py,sha256=E4byEA2VfXozu7S_gnYVvwI3qg8AFWaSeNRHGbs2Tno,3340
240
248
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
241
249
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
@@ -251,43 +259,43 @@ fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84E
251
259
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
252
260
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
253
261
  fusion_bench/mixins/__init__.py,sha256=yjRvcB9Mn-c0g8tXmoBf2Dn8gyc-Na6dyhc4r674asM,1213
254
- fusion_bench/mixins/clip_classification.py,sha256=dQta5DBNjbvLnfJz3gMGhvlFqCUeqVErnjtmHVf8dKw,10186
262
+ fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
255
263
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
256
264
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
257
265
  fusion_bench/mixins/lightning_fabric.py,sha256=ns9H_dkSDD8jJ7GL4YcAypewUcy9mzbX3Xy0bBcyGVY,7403
258
266
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
259
267
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
260
- fusion_bench/mixins/serialization.py,sha256=2YjGXvuJBengdgvs7fOhPQ32OMC1VggU2Ysv3o21Bjc,14352
268
+ fusion_bench/mixins/serialization.py,sha256=A2zEe3RIUhj60S8ENvjdMORz9zJ0bRnrAD54x1XIvao,15117
261
269
  fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
262
270
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
263
271
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
264
272
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
265
273
  fusion_bench/modelpool/__init__.py,sha256=WFDdiwPqdkzVsDYguWPPGGX_ZTRZhUCK8WMuhZpjKCg,1512
266
- fusion_bench/modelpool/base_pool.py,sha256=JyqE-HcgNNDWdTvZe21ixomShahVDQz7hiF80LPXja0,9768
274
+ fusion_bench/modelpool/base_pool.py,sha256=u2ahVkurq60yH86LMw1Rw98cpcgDTRiVeICpm9jewNI,9785
267
275
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
268
276
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
269
277
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
270
278
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
271
279
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
272
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=tT8lfQbrHc_j8MYu5NWi_akWBhapt1wkTuJKoqWiMJI,8499
280
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=dSmjAhL4AxD34ckCdE8Rnf1hN5opoPIuz-hducQeK38,18685
273
281
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
274
282
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=e5t9olRMOj_SyGVy-gqn7RwC5FAqxNsJDongWIv2KFY,7108
275
283
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
276
284
  fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
277
285
  fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
278
- fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgVXF_pfTKLPeL9XKP-s,2052
286
+ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=yfa_B5TUIkuC1fTn4xD3HHnFPd6AYE-HWpfB8ZrShB8,8819
279
287
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
280
288
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
281
289
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
282
- fusion_bench/models/__init__.py,sha256=nOFMSaAtSEz5U2IGUFxP6DrOKksA11azSxpRO6AENSs,146
290
+ fusion_bench/models/__init__.py,sha256=LeLQw2Yphu4QKZxjws_7MCM50XvFP1rTrvJ_2SR5zIA,271
283
291
  fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
284
- fusion_bench/models/hf_utils.py,sha256=q13vFDc0l1f0cUvM1kunD3eTRJPJQg0BLMe_vXlbFz0,5677
292
+ fusion_bench/models/hf_utils.py,sha256=ozS56t69BOGy_wvbjX6MKFUuGsfKqy6s_TsinldNetk,5435
285
293
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
286
294
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
287
295
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
288
296
  fusion_bench/models/sparse_we_moe.py,sha256=mFvwYzuwhAfvJ2HhUNRhSu1pbexEP1FsVWXHDxTVUJs,15261
289
297
  fusion_bench/models/utils.py,sha256=RSvk_WCk80L9aH70MsDRyDQUMO9pIOC64FsbT9PBtu0,3110
290
- fusion_bench/models/we_moe.py,sha256=Hkfbazt59cekLR9Xrj044uTcLx3ITXmPWqlWeBWXZW0,7176
298
+ fusion_bench/models/we_moe.py,sha256=KVRz9z-ddk2lhzpLRm0UMOS6L4pw7L4B9oN99gyW78U,7263
291
299
  fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
292
300
  fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
293
301
  fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
@@ -298,7 +306,7 @@ fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py,sha256=uGbn69toZ
298
306
  fusion_bench/models/expert_sparsity/mixtral/wrapper.py,sha256=1zACEwXDNbi9uwI96oD84YrCsh6b8yh25ZjP3q37muo,10167
299
307
  fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
300
308
  fusion_bench/models/linearized/linearized_model_utils.py,sha256=eYdDHoDJMTb7isaFXEtZmWkggNfUyjV4gxOFo95zOl4,3274
301
- fusion_bench/models/linearized/vision_model.py,sha256=x79OiIifAI6GxvUlTc6Vs1oxFAdhnNIwerRX2Zw6CTU,4649
309
+ fusion_bench/models/linearized/vision_model.py,sha256=zqAnto9WpnaCJWFbVhG7wiRvS9eDQb4VqwtkBfQWJuM,4655
302
310
  fusion_bench/models/llama/__init__.py,sha256=fATLhtF7BamECgEhY4-DFQSprlGvbQDdIbdim-zghws,699
303
311
  fusion_bench/models/llama/patcher.py,sha256=5rYhqKzxKyEuKflSL0d6uJYKh4-Z9Gdkg-OTDAqlIdY,2758
304
312
  fusion_bench/models/llama/tokenizer_loader.py,sha256=boUp9xZraJNvzd35oSLE--TXD_Pho7pN4xUGEQ5sHjo,5169
@@ -310,6 +318,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
310
318
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
311
319
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
312
320
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
321
+ fusion_bench/models/model_card_templates/default.md,sha256=Abd8tUhdZU-B5jwc7N6Gm0zLGNkfx6fr7MAL03VtFDg,885
313
322
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
314
323
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
315
324
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -324,17 +333,17 @@ fusion_bench/models/modeling_smile_gemma2/__init__.py,sha256=HJOKetdKzLwXCad3DeP
324
333
  fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py,sha256=TkBT-RCCc2lddJl1mGCe4tL8nxZEXT_1jV5VQ7YUAtI,585
325
334
  fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py,sha256=qmxcyqxrR5eaxXoP2NFG3dMVW-c_2Kyxdv4tqoNF8FI,39774
326
335
  fusion_bench/models/modeling_smile_gemma2/register.py,sha256=fmJv6Tjjsy2Z_Wx2m2zBnY4b3D38tEZwOa32AKvzizQ,817
327
- fusion_bench/models/modeling_smile_llama/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
336
+ fusion_bench/models/modeling_smile_llama/__init__.py,sha256=gnA-KPzl6C6g9a7_retDA5Dzmr4l6apCebv8I90jaxM,193
328
337
  fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py,sha256=9_f8PlvFS0Ex6uCn8siWwiqU3yy5dlXKz0UDgLuQVPY,546
329
- fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py,sha256=6bMvyVZifG67pUEYdd8j8vazguZl9yAkKvIfPbqKgO8,27552
338
+ fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py,sha256=7d6mCHWVli5GR26znbFthamlhmec77iRuYx_3HsD5vs,27282
330
339
  fusion_bench/models/modeling_smile_llama/register.py,sha256=oQ35dFhCmrkZZQt-8SuTi8sg9f2MJno9Om83bMTqYUc,378
331
- fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=-0zXPUF3gfaJ0HdXJlvMZs8E8qy57-BePjEzmPpD560,175
340
+ fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=_r5ggpcusM4K6yPypZd-SC5F_941oBfE8Ef960GuJeE,205
332
341
  fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py,sha256=yt1-JBlkJmlJw7dvB4_V8M0gy5ihD8isDxcmwyW85d4,633
333
342
  fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py,sha256=5cN1M_XhcFCoJb8yvO1KCwHD_UH__hJg_X2D9C85R34,33128
334
343
  fusion_bench/models/modeling_smile_mistral/register.py,sha256=7nSJC4FveUi78rp53Ps6TcPGedHZ79cikYM5GIfEZfw,400
335
344
  fusion_bench/models/modeling_smile_qwen2/__init__.py,sha256=nmoMLVQu8N0EYe85mXGmvjZWDttd8I66O9XocLSwUqo,242
336
345
  fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py,sha256=aekcpLcUGo4e7GkOtaxKClpIU5byyY-LQNDb-sMeyNc,621
337
- fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=G9F9chn-cVtTvW8M4g-cqv2dI37c6cbEdGbaLIOTAQs,36997
346
+ fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=zRkmQP0-dh9A-woFgiT9wOR6nzAtwsiD_QmNSq-NLgE,36889
338
347
  fusion_bench/models/modeling_smile_qwen2/register.py,sha256=wnKrpprP1KCruswOQcrrIJSUWYbaPHKIaduvPjF_SV4,378
339
348
  fusion_bench/models/nyuv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
349
  fusion_bench/models/nyuv2/aspp.py,sha256=Nl-Kx9YmGp0BNpDedo9cYbynOwI4SUyILWN2VgiPDIc,2495
@@ -366,31 +375,31 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
366
375
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
367
376
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
368
377
  fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
369
- fusion_bench/programs/fabric_fusion_program.py,sha256=BzJ64igUjd5w6cJcMqus7dGKGK74DetDIztOoNcjCwc,14306
378
+ fusion_bench/programs/fabric_fusion_program.py,sha256=jt0_tlg37a2jBl2YikaC0N71Gmr4J340wkKAekyT180,12453
370
379
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
371
- fusion_bench/scripts/cli.py,sha256=P_k_iYQD3rw-YOMh2vO7_GwIemQzU-QBDPPm_kZUW6Q,1222
380
+ fusion_bench/scripts/cli.py,sha256=VwcwqY--kGDEGI1RoTQ5X32FaKducdRUKf2CZRXcfCM,2739
372
381
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
373
382
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
374
383
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
375
384
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
376
385
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
377
386
  fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
378
- fusion_bench/taskpool/base_pool.py,sha256=YXib1qOYYJvtwIvGtN9-FhD3h-N63j0a9jWl0KJO-Fw,933
379
- fusion_bench/taskpool/dummy.py,sha256=wG4GWLs38I9hX271oBRmMJxjpCe2YSJfBeIDaL2PJC4,1783
387
+ fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
388
+ fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
380
389
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
381
- fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
390
+ fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
382
391
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
383
392
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
384
393
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
385
394
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
386
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=WkD6qFAsSOk3_gXfG_7o3wyRAGy72Ocg9ANGgxonnCM,15972
395
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=3JPN_1B9ylG0-Q69UELdQgakrgxRRQbj9x6LvTlw_J0,16177
387
396
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
388
397
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
389
398
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
390
399
  fusion_bench/taskpool/llama/reward_model.py,sha256=ZpRSX4esBAuE0MdTjPHjqS2TnvGb6P8arOGxBeXnq6Y,5028
391
400
  fusion_bench/taskpool/llama/test_generation.py,sha256=kJ_5GruG12FsuJHDh_S7pbQgwEojTqhGpA_wVNH5KPc,6675
392
401
  fusion_bench/taskpool/lm_eval_harness/__init__.py,sha256=_usNxe4z9avClSWjwHMxoznnI_UQFMuo7uOEJhP8jMk,81
393
- fusion_bench/taskpool/lm_eval_harness/taskpool.py,sha256=j3zQqI5cD97NLeipu_cXtE3v4aPIpj_UYvf_YCQR_b0,3279
402
+ fusion_bench/taskpool/lm_eval_harness/taskpool.py,sha256=LwCb7IyafUl0GroDYOJ8DgIcRW-oOJ8EoBI9gMeq46s,7413
394
403
  fusion_bench/taskpool/openclip_vision/__init__.py,sha256=02p77Mb1JE7trrv2HtIku5X667WY5LZ2zVuyL3uIcyo,59
395
404
  fusion_bench/taskpool/openclip_vision/openclip_taskpool.py,sha256=PtD_Y9CWzPI3WEil_RuXtCh8ImPKcSHtZTqfybmsGdg,6875
396
405
  fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
@@ -429,32 +438,32 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
429
438
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
430
439
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
431
440
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
432
- fusion_bench/utils/__init__.py,sha256=uNCwx_tEMbj_exQ-vIjWiPtdX62sPOSHZJpOdBffsmM,586
441
+ fusion_bench/utils/__init__.py,sha256=wNAfpP-u_-8HGbLaBoHT_wriU_cNvY4M_UXdBv2kXhc,695
433
442
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
434
- fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
435
- fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
436
- fusion_bench/utils/devices.py,sha256=DeCV7UwvWmaYrvmwcZf6e8lZciXAYJ4qERraDZouiUU,8305
443
+ fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
444
+ fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
445
+ fusion_bench/utils/devices.py,sha256=i5g2FzFs-UWhekcwzxVUZBOw82pOP-RbjIISbfWnuoM,8357
437
446
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
438
- fusion_bench/utils/dtype.py,sha256=qtsDFfm5XTuxsjvVg-orpWvbhebCvyivzzZbLg-xiaA,4327
447
+ fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
439
448
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
440
- fusion_bench/utils/fabric.py,sha256=dF0Aj8NmVir30io6WcL5gpWmbQSPlEADvw_yFxFx1sQ,613
449
+ fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,617
441
450
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
442
451
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
443
452
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
444
453
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
445
- fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
446
- fusion_bench/utils/lazy_state_dict.py,sha256=Hu8PkhbJcUikXJxWUJ7vabu2uDbnUUF6UsRS0k8i71U,16841
454
+ fusion_bench/utils/lazy_imports.py,sha256=dg4Uu8FaoEu0WGVTo5o_PbLZs3Ei_RG75Ta-Us1iPW4,3500
455
+ fusion_bench/utils/lazy_state_dict.py,sha256=9dse7U3QZNvNxBINb02Q9DW2_-voUh2Ri2B6hk9wvNI,20227
447
456
  fusion_bench/utils/misc.py,sha256=93q0m-HYWkPK91Co5lll_J0Dxs6YahW2lD_X8fUAyTk,2420
448
- fusion_bench/utils/modelscope.py,sha256=CHqKpmyF_-J6rKs9sFlmTvbrzz2fLZqdxBblrH38Ess,10702
449
- fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
450
- fusion_bench/utils/parameters.py,sha256=HTlR6nibuBzLafbGktNZNqwkGRIZzKdjqGhyPykZGPo,11790
451
- fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
452
- fusion_bench/utils/pylogger.py,sha256=amlRsdqHpOjxmBl6f9TA8y0LaWelEWgQNcGgEGsVOIc,3333
457
+ fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
458
+ fusion_bench/utils/packages.py,sha256=wKl-qtPjA61LrdgTTusuNyvs8jfUv4mA5IwPTFWyYtA,2139
459
+ fusion_bench/utils/parameters.py,sha256=ufEDOYJwcQQxLfveK8hBAGwpu5J3LA_cTWiDgZ2zkJ0,11788
460
+ fusion_bench/utils/path.py,sha256=qrfgar3b-6_2v032-2hTt97L6qdtG7zc3CFrGFyKSGE,2400
461
+ fusion_bench/utils/pylogger.py,sha256=r2KXTvq-j8uHdjBBoVPOgkjv4c6pyhbX6xf1JbOsF4w,3335
453
462
  fusion_bench/utils/rich_utils.py,sha256=XNPUpa1grna_C0MLQs0nY25-Kfutpj9BOEzvjoH7nR0,5849
454
463
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
455
464
  fusion_bench/utils/state_dict_arithmetic.py,sha256=fczHDEpL2_UmxNIdvQtllXvBWBcmKpw-p6CIS_upjwI,11818
456
465
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
457
- fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
466
+ fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
458
467
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
459
468
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
460
469
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
@@ -463,7 +472,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
463
472
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
464
473
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
465
474
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
466
- fusion_bench-0.2.21.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
475
+ fusion_bench-0.2.23.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
467
476
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
468
477
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
469
478
  fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
@@ -476,6 +485,7 @@ fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_
476
485
  fusion_bench_config/_get_started/clip_simple_average.yaml,sha256=MHaqUyuaLfHKMn5OPeNMpv3jCI1_zIEfsIQjonp3fow,780
477
486
  fusion_bench_config/_get_started/clip_task_arithmetic.yaml,sha256=GQ2FMeaTQ279sXbleh_iG7hop_mO867PLvj8piEWWjo,775
478
487
  fusion_bench_config/_get_started/greeting_program.yaml,sha256=zDLoWlhLsXeACSm6vBK_T1b8U7M4flZ_MpeEWv2OlCQ,137
488
+ fusion_bench_config/_get_started/llm_slerp.yaml,sha256=THtIMJ9ovXFkZe9ZvzsqZjJ962tiNpF_rfFEy378_JI,398
479
489
  fusion_bench_config/dataset/image_classification/README.md,sha256=fgxqviGhqkJ-lPihQNG7I8bn-PhU5EDFBDQnH27xEmQ,321
480
490
  fusion_bench_config/dataset/image_classification/test/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
481
491
  fusion_bench_config/dataset/image_classification/test/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
@@ -615,7 +625,7 @@ fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJ
615
625
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
616
626
  fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
617
627
  fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
618
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
628
+ fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=-m5uDA9hfBg_8vF3s0MnUp0JTl3MqpB4-rlPEg9CHD4,569
619
629
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
620
630
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
621
631
  fusion_bench_config/method/fw_merging/fw_hard.yaml,sha256=G6s5td3x1ZnUaELK9y726Du3XIDryTH3d21k79rbPTI,232
@@ -628,13 +638,14 @@ fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdt
628
638
  fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
629
639
  fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
630
640
  fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
631
- fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=QJR5qx9z4MSY2-SeoKwDSxnQSZR-Rw5dkLv3BICi_zs,280
641
+ fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=r2Zul2GaMEEQ7NEDf8yiAgEiMDPNibU4qsJ0toD2KjQ,319
632
642
  fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
633
643
  fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
634
644
  fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
635
645
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
636
646
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
637
647
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
648
+ fusion_bench_config/method/model_stock/model_stock.yaml,sha256=G92eRhG_Zsgi2R2FRnMViGC9QPvo7ge-o_eI4ZZLxao,321
638
649
  fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
639
650
  fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
640
651
  fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
@@ -657,11 +668,13 @@ fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o
657
668
  fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
658
669
  fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=A034ryEwvosqyQzA3KWs7kdp-3CUnoJtCujVywV-uzA,434
659
670
  fusion_bench_config/method/slerp/slerp.yaml,sha256=xldDUULtfCdwzAkQUb0C8-TmbW7FqcAlIOsPX8p4n6w,116
671
+ fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=c5OQ0zD7e0lXQyec09joHOFNxV1LMT4bHuwgk9GWskc,114
672
+ fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=skLwgu_VHShm4m0oEOkqKzcBS5Cz7J29xEj7pTaSm0k,916
660
673
  fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=6Gui-OuQ3P_4TwO_syh9SWJCNeHiAQzS55aO-ByYKbQ,154
661
674
  fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=M_EBOC3B_pxaBO3tD6mnbXpvy6-EaegSsE-jdJs-HY0,114
662
675
  fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=ZMn_ImRjjc2uozf7ocQIzbgvFDpBV7S-34KptbBXVGo,200
663
676
  fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
664
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=wN22uIam7pycLgh1srG2utw3tOx8AaTyKI1tb4CRccw,406
677
+ fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=MfZ1u1HIJoy_csWiLzR4GLz-eiaVxo2gmNYre224yqo,433
665
678
  fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
666
679
  fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
667
680
  fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
@@ -670,6 +683,7 @@ fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2I
670
683
  fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
671
684
  fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=jgRDs2J3f6628QVMEVeW5ShmyaChvQl8Ng3AiQbNbtE,202
672
685
  fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
686
+ fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
673
687
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
674
688
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
675
689
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
@@ -827,7 +841,7 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
827
841
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=FuPWQbC9xEV5wZjuo835gOMNgbzmpK9RbjFjA_HOzqo,2476
828
842
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=9PCkbrNnQSKTsm4eoUvVgjGd3IY7wHBC4LWj4kOdY4Y,1406
829
843
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=bqnyzgwIvDtV3Fb-uLf9mdFv0NW1C392lxGsGUPLsKE,400
830
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=d1mxaLrBW9qEYiDK3njX8SRyImhw8DfH1wnJSR_gjaM,255
844
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=D8HdBRGUYD-c-c38oSgzcP3fkNhBN-tVdqLnS_B-7zc,265
831
845
  fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml,sha256=Nxk72MurqSzEyPJzGoKFbk5T2TGWBwYpH2V9Jzqt648,229
832
846
  fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
833
847
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
@@ -913,8 +927,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
913
927
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
914
928
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
915
929
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
916
- fusion_bench-0.2.21.dist-info/METADATA,sha256=kjXizuVpX_WeSKyoarT7N12KOV401GNUuxiv2umMQTo,23628
917
- fusion_bench-0.2.21.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
918
- fusion_bench-0.2.21.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
919
- fusion_bench-0.2.21.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
920
- fusion_bench-0.2.21.dist-info/RECORD,,
930
+ fusion_bench-0.2.23.dist-info/METADATA,sha256=HQZ3DxHk-Jtcj2AZT49tx5m7VdVkDEglivhkfQv258Q,22384
931
+ fusion_bench-0.2.23.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
932
+ fusion_bench-0.2.23.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
933
+ fusion_bench-0.2.23.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
934
+ fusion_bench-0.2.23.dist-info/RECORD,,
@@ -0,0 +1,12 @@
1
+ _target_: fusion_bench.programs.FabricModelFusionProgram
2
+ _recursive_: false
3
+ method:
4
+ _target_: fusion_bench.method.SlerpForCausalLM
5
+ t: 0.5
6
+ modelpool:
7
+ _target_: fusion_bench.modelpool.CausalLMPool
8
+ models:
9
+ model_1: ibivibiv/alpaca-dragon-72b-v1
10
+ model_2: moreh/MoMo-72B-lora-1.8.7-DPO
11
+ tokenizer: ibivibiv/alpaca-dragon-72b-v1
12
+ enable_lazy_loading: true # load model as LazyStateDict
@@ -7,7 +7,6 @@ normalize_fisher_weight: true
7
7
  minimal_fisher_weight: 1e-6
8
8
  # common choices: 256, 512, 1024, 2048
9
9
  num_fisher_examples: 256
10
- zeroshot_weights_cache_dir: outputs/cache/clip_zeroshot_weights
11
10
  dataloader_kwargs:
12
11
  batch_size: 32
13
12
  num_workers: 0
@@ -1,5 +1,6 @@
1
1
  _target_: fusion_bench.method.SimpleAverageForLlama
2
2
  # set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
3
3
  # if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
4
- merge_backbone: true
5
- model_save_path: null
4
+ merge_backbone: false
5
+ model_save_path: ${path.log_dir}/checkpoint
6
+ show_pbar: true
@@ -0,0 +1,12 @@
1
+ _target_: fusion_bench.method.model_stock.ModelStock
2
+ ignore_keys:
3
+ [
4
+ "model.positional_embedding",
5
+ "model.text_projection",
6
+ "model.logit_scale",
7
+ "model.token_embedding.weight",
8
+ "model.ln_final.weight",
9
+ "model.ln_final.bias",
10
+ ]
11
+ model_save_path: ${path.log_dir}/checkpoint
12
+ model_save_kwargs: null
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.SlerpForCausalLM
2
+ t: 0.5
3
+ model_save_path: ${path.log_dir}/checkpoint
4
+ show_pbar: True
@@ -0,0 +1,21 @@
1
+ # Generic SMILE Upscaling Configuration for CausalLM models
2
+ # Supports: Qwen2, Llama, Mistral models
3
+ # The model type will be auto-detected from the base model
4
+ _target_: fusion_bench.method.smile_upscaling.causal_lm_upscaling.SmileCausalLMUpscalingAlgorithm
5
+
6
+ # Device and computation settings
7
+ device: cuda # device to put the models on
8
+ accelerator: cuda # device to perform SVD on
9
+
10
+ # Model upscaling parameters
11
+ num_experts_per_tok: 1 # Number of experts to activate per token
12
+ rank_of_router: 8 # Rank for router weights
13
+ rank_of_expert: 64 # Rank for expert weights
14
+
15
+ # Model saving settings
16
+ model_save_path: ${path.log_dir}/checkpoint # Set to save the merged model
17
+ model_dtype: null # Optional: convert to specific dtype after merging
18
+ save_with_remote_code: true
19
+
20
+ # Optional: Explicitly specify model type instead of auto-detection
21
+ model_type: null # Options: "qwen2", "llama", "mistral", or null for auto-detection
@@ -4,7 +4,7 @@ device: cpu
4
4
  # device to perform SVD on
5
5
  accelerator: cuda
6
6
  # path to save/load the model
7
- model_path: null
7
+ model_save_path: ${path.log_dir}/checkpoint
8
8
  model_dtype: null
9
9
  # SmileMoE parameters
10
10
  num_experts_per_tok: 1
@@ -0,0 +1,20 @@
1
+ _target_: fusion_bench.method.we_moe.flan_t5_we_moe.FlanT5WeightEnsemblingMoEAlgorithm
2
+ # the path for loading the model weights, if specified, skip the test-time adaptation training
3
+ checkpoint: False
4
+ # the path for saving the model weights.
5
+ save_checkpoint: False
6
+ router_hidden_layers: 2
7
+ init_lambda: 0.3
8
+ batch_reduce: true
9
+ # learning rate
10
+ lr: 1e-4
11
+ optimizer: adam
12
+ # this is overrided by `fabric.devices` if launched from the `fusion_bench` CLI.
13
+ devices: 1
14
+ batch_size: 4
15
+ num_workers: 0
16
+ max_steps: 200
17
+ # if true, we will use the gradient accumulation across tasks to save memory
18
+ use_grad_accumulate: true
19
+ cache_dir: outputs
20
+ fast_dev_run: ${fast_dev_run}
@@ -1,7 +1,7 @@
1
1
  _target_: fusion_bench.modelpool.CausalLMPool
2
2
  _recursive_: false
3
3
 
4
- load_lazy: false
4
+ enable_lazy_loading: false
5
5
  models:
6
6
  _pretrained_: Qwen/Qwen2.5-1.5B
7
7
  math: Qwen/Qwen2.5-Math-1.5B