fusion-bench 0.2.20__py3-none-any.whl → 0.2.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +22 -2
- fusion_bench/_get_started/__init__.py +3 -0
- fusion_bench/_get_started/greeting_program.py +49 -0
- fusion_bench/compat/method/base_algorithm.py +14 -0
- fusion_bench/constants/__init__.py +6 -0
- fusion_bench/constants/clip_vision.py +26 -2
- fusion_bench/constants/paths.py +4 -0
- fusion_bench/constants/runtime.py +57 -0
- fusion_bench/dataset/clip_dataset.py +2 -1
- fusion_bench/dataset/gpt2_glue.py +9 -9
- fusion_bench/dataset/image_corruption/__init__.py +0 -0
- fusion_bench/dataset/image_corruption/make_corruption.py +179 -0
- fusion_bench/dataset/image_dataset.py +1 -1
- fusion_bench/dataset/nyuv2.py +2 -2
- fusion_bench/method/__init__.py +24 -5
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +1 -1
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +11 -7
- fusion_bench/method/adamerging/layer_wise_adamerging.py +11 -5
- fusion_bench/method/base_algorithm.py +195 -12
- fusion_bench/method/bitdelta/__init__.py +5 -0
- fusion_bench/method/bitdelta/bitdelta.py +156 -0
- fusion_bench/method/bitdelta/bitdelta_utils/__init__.py +0 -0
- fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py +462 -0
- fusion_bench/method/bitdelta/bitdelta_utils/data.py +35 -0
- fusion_bench/method/bitdelta/bitdelta_utils/diff.py +129 -0
- fusion_bench/method/classification/clip_finetune.py +1 -1
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +0 -1
- fusion_bench/method/depth_upscaling/depth_upscaling.py +4 -9
- fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py +4 -5
- fusion_bench/method/doge_ta/doge_ta.py +1 -1
- fusion_bench/method/ensemble.py +12 -12
- fusion_bench/method/expert_sparsity/utils/calibration_data.py +1 -1
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +2 -6
- fusion_bench/method/fisher_merging/fisher_merging.py +6 -15
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +3 -10
- fusion_bench/method/fw_merging/fw_hard.py +1 -1
- fusion_bench/method/fw_merging/fw_soft.py +1 -1
- fusion_bench/method/gossip/clip_layer_wise_gossip.py +4 -5
- fusion_bench/method/linear/expo.py +2 -1
- fusion_bench/method/linear/linear_interpolation.py +6 -4
- fusion_bench/method/linear/simple_average_for_llama.py +17 -13
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +2 -2
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +9 -26
- fusion_bench/method/model_recombination.py +2 -5
- fusion_bench/method/moe_pruner/hooks/__init__.py +1 -2
- fusion_bench/method/moe_pruner/utils/data.py +2 -1
- fusion_bench/method/moe_pruner/utils/prune.py +6 -1
- fusion_bench/method/pruning/llama_magnitude_prune.py +1 -1
- fusion_bench/method/pruning/wanda_utils/data.py +1 -2
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +12 -34
- fusion_bench/method/randes/modelsoup.py +1 -3
- fusion_bench/method/regmean/clip_regmean.py +2 -2
- fusion_bench/method/regmean/gpt2_regmean.py +3 -10
- fusion_bench/method/regmean/regmean.py +2 -11
- fusion_bench/method/regmean_plusplus/__init__.py +1 -1
- fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py +24 -17
- fusion_bench/method/regmean_plusplus/regmean_plusplus.py +56 -38
- fusion_bench/method/simple_average.py +12 -16
- fusion_bench/method/slerp/slerp.py +5 -2
- fusion_bench/method/smile_upscaling/causal_lm_upscaling.py +371 -0
- fusion_bench/method/smile_upscaling/error_accumulation.py +177 -0
- fusion_bench/method/smile_upscaling/projected_energy.py +144 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +5 -1
- fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +71 -51
- fusion_bench/method/smile_upscaling/smile_upscaling.py +12 -5
- fusion_bench/method/tall_mask/task_arithmetic.py +3 -11
- fusion_bench/method/task_arithmetic/task_arithmetic.py +6 -10
- fusion_bench/method/ties_merging/ties_merging.py +13 -26
- fusion_bench/method/we_moe/__init__.py +1 -0
- fusion_bench/method/we_moe/clip_we_moe.py +5 -4
- fusion_bench/method/we_moe/entropy_loss.py +25 -0
- fusion_bench/method/we_moe/flan_t5_we_moe.py +331 -0
- fusion_bench/method/we_moe/utils.py +15 -0
- fusion_bench/method/we_moe/we_moe.py +6 -6
- fusion_bench/method/weighted_average/llama.py +4 -16
- fusion_bench/metrics/continual_learning/__init__.py +1 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +1 -1
- fusion_bench/metrics/nyuv2/__init__.py +2 -2
- fusion_bench/metrics/nyuv2/segmentation.py +1 -1
- fusion_bench/mixins/__init__.py +10 -2
- fusion_bench/mixins/clip_classification.py +15 -45
- fusion_bench/mixins/hydra_config.py +105 -7
- fusion_bench/mixins/lightning_fabric.py +2 -0
- fusion_bench/mixins/serialization.py +275 -48
- fusion_bench/modelpool/__init__.py +2 -2
- fusion_bench/modelpool/base_pool.py +29 -9
- fusion_bench/modelpool/causal_lm/causal_lm.py +41 -33
- fusion_bench/modelpool/clip_vision/modelpool.py +1 -3
- fusion_bench/modelpool/seq_classification_lm/__init__.py +1 -1
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +1 -1
- fusion_bench/models/__init__.py +7 -1
- fusion_bench/models/expert_sparsity/mixtral/__init__.py +1 -1
- fusion_bench/models/hf_utils.py +160 -0
- fusion_bench/models/linearized/linearized_model_utils.py +4 -4
- fusion_bench/models/linearized/vision_model.py +1 -1
- fusion_bench/models/model_card_templates/default.md +46 -0
- fusion_bench/models/modeling_deepseek_v2/__init__.py +1 -1
- fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +4 -4
- fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +0 -1
- fusion_bench/models/modeling_smile_gemma2/__init__.py +9 -0
- fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py +20 -0
- fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py +986 -0
- fusion_bench/models/modeling_smile_gemma2/register.py +26 -0
- fusion_bench/models/modeling_smile_llama/__init__.py +7 -0
- fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py +20 -0
- fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +698 -0
- fusion_bench/models/modeling_smile_llama/register.py +8 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +5 -47
- fusion_bench/models/modeling_smile_qwen2/__init__.py +1 -1
- fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +7 -12
- fusion_bench/models/modeling_smile_qwen2/register.py +1 -4
- fusion_bench/models/parameter_dict.py +1 -1
- fusion_bench/models/sparse_we_moe.py +1 -53
- fusion_bench/models/utils.py +26 -0
- fusion_bench/models/we_moe.py +1 -53
- fusion_bench/models/wrappers/ensemble.py +6 -4
- fusion_bench/models/wrappers/layer_wise_fusion.py +1 -1
- fusion_bench/models/wrappers/task_wise_fusion.py +250 -72
- fusion_bench/programs/base_program.py +81 -2
- fusion_bench/programs/fabric_fusion_program.py +46 -61
- fusion_bench/scripts/cli.py +38 -5
- fusion_bench/taskpool/base_pool.py +4 -3
- fusion_bench/taskpool/clip_vision/taskpool.py +43 -22
- fusion_bench/taskpool/dummy.py +1 -1
- fusion_bench/taskpool/lm_eval_harness/taskpool.py +1 -2
- fusion_bench/tasks/clip_classification/__init__.py +6 -4
- fusion_bench/utils/__init__.py +7 -1
- fusion_bench/utils/cache_utils.py +101 -1
- fusion_bench/utils/devices.py +14 -4
- fusion_bench/utils/fabric.py +2 -2
- fusion_bench/utils/instantiate_utils.py +3 -1
- fusion_bench/utils/lazy_imports.py +23 -0
- fusion_bench/utils/lazy_state_dict.py +38 -3
- fusion_bench/utils/modelscope.py +127 -8
- fusion_bench/utils/parameters.py +2 -2
- fusion_bench/utils/path.py +56 -0
- fusion_bench/utils/pylogger.py +1 -1
- fusion_bench/utils/rich_utils.py +3 -0
- fusion_bench/utils/state_dict_arithmetic.py +25 -23
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/METADATA +24 -47
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/RECORD +184 -145
- fusion_bench_config/_get_started/clip_evaluate_single_model.yaml +21 -0
- fusion_bench_config/_get_started/clip_simple_average.yaml +23 -0
- fusion_bench_config/_get_started/clip_task_arithmetic.yaml +24 -0
- fusion_bench_config/_get_started/greeting_program.yaml +4 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +3 -3
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +3 -3
- fusion_bench_config/fabric_model_fusion.yaml +45 -17
- fusion_bench_config/hydra/default.yaml +6 -2
- fusion_bench_config/llama_full_finetune.yaml +1 -0
- fusion_bench_config/method/adamerging/clip.yaml +1 -1
- fusion_bench_config/method/bitdelta/bitdelta.yaml +12 -0
- fusion_bench_config/method/depth_upscaling.yaml +4 -1
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -1
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +3 -2
- fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +21 -0
- fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/projected_energy.yaml +2 -0
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +2 -1
- fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +1 -4
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +4 -9
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +1 -1
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -6
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +1 -1
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +1 -1
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +3 -3
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml +9 -0
- fusion_bench_config/modelpool/CausalLMPool/mistral-7b.yaml +6 -0
- fusion_bench_config/modelpool/CausalLMPool/mixtral_moe_merging.yaml +10 -0
- fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml +4 -12
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +6 -16
- fusion_bench_config/modelpool/CausalLMPool/vicuna-7b-v1.5.yaml +8 -0
- fusion_bench_config/modelpool/{SeqenceClassificationModelPool → SequenceClassificationModelPool}/llama_preference700k.yaml +1 -1
- fusion_bench_config/modelpool/{SeqenceClassificationModelPool → SequenceClassificationModelPool}/single_reward_model.yaml +1 -1
- fusion_bench_config/nyuv2_config.yaml +3 -1
- fusion_bench_config/nyuv2_mtl_train.yaml +1 -0
- fusion_bench_config/path/default.yaml +28 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_svhn_and_mnist.yaml +24 -0
- fusion_bench_config/method/adamerging.yaml +0 -23
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +0 -14
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +0 -6
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +0 -22
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.20.dist-info → fusion_bench-0.2.22.dist-info}/top_level.txt +0 -0
- /fusion_bench_config/modelpool/{SeqenceClassificationModelPool → SequenceClassificationModelPool}/roberta-base_glue.yaml +0 -0
|
@@ -0,0 +1,986 @@
|
|
|
1
|
+
from functools import partial
|
|
2
|
+
from typing import Callable, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
from transformers.activations import ACT2FN
|
|
7
|
+
from transformers.cache_utils import Cache, HybridCache, StaticCache
|
|
8
|
+
from transformers.generation import GenerationMixin
|
|
9
|
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
|
10
|
+
from transformers.modeling_outputs import (
|
|
11
|
+
BaseModelOutputWithPast,
|
|
12
|
+
CausalLMOutputWithPast,
|
|
13
|
+
SequenceClassifierOutputWithPast,
|
|
14
|
+
TokenClassifierOutput,
|
|
15
|
+
)
|
|
16
|
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
17
|
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
18
|
+
from transformers.models.gemma2.modeling_gemma2 import (
|
|
19
|
+
_CHECKPOINT_FOR_DOC,
|
|
20
|
+
GEMMA2_INPUTS_DOCSTRING,
|
|
21
|
+
Gemma2RMSNorm,
|
|
22
|
+
Gemma2RotaryEmbedding,
|
|
23
|
+
apply_rotary_pos_emb,
|
|
24
|
+
eager_attention_forward,
|
|
25
|
+
)
|
|
26
|
+
from transformers.processing_utils import Unpack
|
|
27
|
+
from transformers.utils import (
|
|
28
|
+
add_code_sample_docstrings,
|
|
29
|
+
add_start_docstrings,
|
|
30
|
+
add_start_docstrings_to_model_forward,
|
|
31
|
+
can_return_tuple,
|
|
32
|
+
logging,
|
|
33
|
+
replace_return_docstrings,
|
|
34
|
+
)
|
|
35
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
36
|
+
|
|
37
|
+
from fusion_bench.models.smile_moe.linear_from_hf_config import SmileLinear
|
|
38
|
+
|
|
39
|
+
from .configuration_smile_gemma2 import SmileGemma2Config
|
|
40
|
+
|
|
41
|
+
logger = logging.get_logger(__name__)
|
|
42
|
+
|
|
43
|
+
_CONFIG_FOR_DOC = "SmileGemma2Config"
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class SmileGemma2MLP(nn.Module):
|
|
47
|
+
def __init__(self, config: SmileGemma2Config):
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.config = config
|
|
50
|
+
self.hidden_size = config.hidden_size
|
|
51
|
+
self.intermediate_size = config.intermediate_size
|
|
52
|
+
# * --- replace nn.Linear with SmileLinear ---
|
|
53
|
+
self.gate_proj = SmileLinear(config, self.hidden_size, self.intermediate_size)
|
|
54
|
+
self.up_proj = SmileLinear(config, self.hidden_size, self.intermediate_size)
|
|
55
|
+
self.down_proj = SmileLinear(config, self.intermediate_size, self.hidden_size)
|
|
56
|
+
# * --- end of replacement ---
|
|
57
|
+
self.act_fn = ACT2FN[config.hidden_activation]
|
|
58
|
+
|
|
59
|
+
def forward(self, x):
|
|
60
|
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
61
|
+
return down_proj
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class SmileGemma2Attention(nn.Module):
|
|
65
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
66
|
+
|
|
67
|
+
def __init__(self, config: SmileGemma2Config, layer_idx: int):
|
|
68
|
+
super().__init__()
|
|
69
|
+
self.config = config
|
|
70
|
+
self.layer_idx = layer_idx
|
|
71
|
+
self.head_dim = getattr(
|
|
72
|
+
config, "head_dim", config.hidden_size // config.num_attention_heads
|
|
73
|
+
)
|
|
74
|
+
self.num_key_value_groups = (
|
|
75
|
+
config.num_attention_heads // config.num_key_value_heads
|
|
76
|
+
)
|
|
77
|
+
self.scaling = config.query_pre_attn_scalar**-0.5
|
|
78
|
+
self.attention_dropout = self.config.attention_dropout
|
|
79
|
+
self.is_causal = True
|
|
80
|
+
|
|
81
|
+
# * --- replace nn.Linear with SmileLinear ---
|
|
82
|
+
self.q_proj = SmileLinear(
|
|
83
|
+
config,
|
|
84
|
+
config.hidden_size,
|
|
85
|
+
config.num_attention_heads * self.head_dim,
|
|
86
|
+
bias=config.attention_bias,
|
|
87
|
+
)
|
|
88
|
+
self.k_proj = SmileLinear(
|
|
89
|
+
config,
|
|
90
|
+
config.hidden_size,
|
|
91
|
+
config.num_key_value_heads * self.head_dim,
|
|
92
|
+
bias=config.attention_bias,
|
|
93
|
+
)
|
|
94
|
+
self.v_proj = SmileLinear(
|
|
95
|
+
config,
|
|
96
|
+
config.hidden_size,
|
|
97
|
+
config.num_key_value_heads * self.head_dim,
|
|
98
|
+
bias=config.attention_bias,
|
|
99
|
+
)
|
|
100
|
+
self.o_proj = SmileLinear(
|
|
101
|
+
config,
|
|
102
|
+
config.num_attention_heads * self.head_dim,
|
|
103
|
+
config.hidden_size,
|
|
104
|
+
bias=config.attention_bias,
|
|
105
|
+
)
|
|
106
|
+
# * --- end of replacement ---
|
|
107
|
+
self.attn_logit_softcapping = self.config.attn_logit_softcapping
|
|
108
|
+
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
|
109
|
+
|
|
110
|
+
def forward(
|
|
111
|
+
self,
|
|
112
|
+
hidden_states: torch.Tensor,
|
|
113
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
114
|
+
attention_mask: Optional[torch.Tensor],
|
|
115
|
+
past_key_value: Optional[Cache] = None,
|
|
116
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
117
|
+
**kwargs: Unpack[FlashAttentionKwargs],
|
|
118
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
119
|
+
input_shape = hidden_states.shape[:-1]
|
|
120
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
121
|
+
|
|
122
|
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
123
|
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
124
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
125
|
+
|
|
126
|
+
cos, sin = position_embeddings
|
|
127
|
+
query_states, key_states = apply_rotary_pos_emb(
|
|
128
|
+
query_states, key_states, cos, sin
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
if past_key_value is not None:
|
|
132
|
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
133
|
+
cache_kwargs = {
|
|
134
|
+
"sin": sin,
|
|
135
|
+
"cos": cos,
|
|
136
|
+
"cache_position": cache_position,
|
|
137
|
+
"sliding_window": self.sliding_window,
|
|
138
|
+
}
|
|
139
|
+
key_states, value_states = past_key_value.update(
|
|
140
|
+
key_states, value_states, self.layer_idx, cache_kwargs
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
# Here we need to slice as we use a static cache by default, but FA2 does not support it
|
|
144
|
+
if (
|
|
145
|
+
attention_mask is not None
|
|
146
|
+
and self.config._attn_implementation == "flash_attention_2"
|
|
147
|
+
):
|
|
148
|
+
seq_len = attention_mask.shape[-1]
|
|
149
|
+
key_states, value_states = (
|
|
150
|
+
key_states[:, :, :seq_len, :],
|
|
151
|
+
value_states[:, :, :seq_len, :],
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
attention_interface: Callable = eager_attention_forward
|
|
155
|
+
if self.config._attn_implementation != "eager":
|
|
156
|
+
if self.config._attn_implementation == "sdpa" and kwargs.get(
|
|
157
|
+
"output_attentions", False
|
|
158
|
+
):
|
|
159
|
+
logger.warning_once(
|
|
160
|
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
161
|
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
162
|
+
)
|
|
163
|
+
else:
|
|
164
|
+
attention_interface = ALL_ATTENTION_FUNCTIONS[
|
|
165
|
+
self.config._attn_implementation
|
|
166
|
+
]
|
|
167
|
+
|
|
168
|
+
attn_output, attn_weights = attention_interface(
|
|
169
|
+
self,
|
|
170
|
+
query_states,
|
|
171
|
+
key_states,
|
|
172
|
+
value_states,
|
|
173
|
+
attention_mask,
|
|
174
|
+
dropout=self.attention_dropout if self.training else 0.0,
|
|
175
|
+
scaling=self.scaling,
|
|
176
|
+
sliding_window=self.sliding_window,
|
|
177
|
+
softcap=self.attn_logit_softcapping,
|
|
178
|
+
**kwargs,
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
182
|
+
attn_output = self.o_proj(attn_output)
|
|
183
|
+
return attn_output, attn_weights
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
class SmileGemma2DecoderLayer(nn.Module):
|
|
187
|
+
|
|
188
|
+
def __init__(self, config: SmileGemma2Config, layer_idx: int):
|
|
189
|
+
super().__init__()
|
|
190
|
+
self.hidden_size = config.hidden_size
|
|
191
|
+
self.config = config
|
|
192
|
+
self.is_sliding = not bool(layer_idx % 2)
|
|
193
|
+
self.self_attn = SmileGemma2Attention(config=config, layer_idx=layer_idx)
|
|
194
|
+
self.mlp = SmileGemma2MLP(config)
|
|
195
|
+
self.input_layernorm = Gemma2RMSNorm(
|
|
196
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
197
|
+
)
|
|
198
|
+
self.post_attention_layernorm = Gemma2RMSNorm(
|
|
199
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
self.pre_feedforward_layernorm = Gemma2RMSNorm(
|
|
203
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
204
|
+
)
|
|
205
|
+
self.post_feedforward_layernorm = Gemma2RMSNorm(
|
|
206
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
207
|
+
)
|
|
208
|
+
self.sliding_window = config.sliding_window
|
|
209
|
+
|
|
210
|
+
def forward(
|
|
211
|
+
self,
|
|
212
|
+
hidden_states: torch.Tensor,
|
|
213
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
214
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
215
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
216
|
+
past_key_value: Optional[Cache] = None,
|
|
217
|
+
output_attentions: Optional[bool] = False,
|
|
218
|
+
use_cache: Optional[bool] = False,
|
|
219
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
220
|
+
last_cache_position: int = 0,
|
|
221
|
+
**kwargs,
|
|
222
|
+
) -> Tuple[
|
|
223
|
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
|
224
|
+
]:
|
|
225
|
+
if (
|
|
226
|
+
self.is_sliding and attention_mask is not None
|
|
227
|
+
): # efficient SDPA and no padding
|
|
228
|
+
# In prefill, we may be larger than sliding window
|
|
229
|
+
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
|
|
230
|
+
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
|
|
231
|
+
# thus we must slice from the right (at most `effective_seq_len` elements)
|
|
232
|
+
if self.config._attn_implementation == "flash_attention_2":
|
|
233
|
+
attention_mask = attention_mask[:, -effective_seq_len:]
|
|
234
|
+
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
|
|
235
|
+
# from the left, with an offset if we are beyond the sliding window
|
|
236
|
+
else:
|
|
237
|
+
min_dtype = torch.finfo(attention_mask.dtype).min
|
|
238
|
+
sliding_window_mask = torch.tril(
|
|
239
|
+
torch.ones_like(attention_mask, dtype=torch.bool),
|
|
240
|
+
diagonal=-self.sliding_window,
|
|
241
|
+
)
|
|
242
|
+
attention_mask = torch.where(
|
|
243
|
+
sliding_window_mask, min_dtype, attention_mask
|
|
244
|
+
)
|
|
245
|
+
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
|
|
246
|
+
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
|
|
247
|
+
offset = last_cache_position - effective_seq_len
|
|
248
|
+
# Should only be used when beyond the sliding window (i.e. offset > 0)
|
|
249
|
+
offset = max(0, offset)
|
|
250
|
+
attention_mask = attention_mask[
|
|
251
|
+
:, :, :, offset : offset + effective_seq_len
|
|
252
|
+
]
|
|
253
|
+
|
|
254
|
+
residual = hidden_states
|
|
255
|
+
|
|
256
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
257
|
+
|
|
258
|
+
# Self Attention
|
|
259
|
+
hidden_states, self_attn_weights = self.self_attn(
|
|
260
|
+
hidden_states=hidden_states,
|
|
261
|
+
position_embeddings=position_embeddings,
|
|
262
|
+
attention_mask=attention_mask,
|
|
263
|
+
position_ids=position_ids,
|
|
264
|
+
past_key_value=past_key_value,
|
|
265
|
+
output_attentions=output_attentions,
|
|
266
|
+
use_cache=use_cache,
|
|
267
|
+
cache_position=cache_position,
|
|
268
|
+
**kwargs,
|
|
269
|
+
)
|
|
270
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
271
|
+
hidden_states = residual + hidden_states
|
|
272
|
+
|
|
273
|
+
residual = hidden_states
|
|
274
|
+
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
|
275
|
+
hidden_states = self.mlp(hidden_states)
|
|
276
|
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
|
277
|
+
hidden_states = residual + hidden_states
|
|
278
|
+
|
|
279
|
+
outputs = (hidden_states,)
|
|
280
|
+
|
|
281
|
+
if output_attentions:
|
|
282
|
+
outputs += (self_attn_weights,)
|
|
283
|
+
|
|
284
|
+
return outputs
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
class SmileGemma2PreTrainedModel(PreTrainedModel):
|
|
288
|
+
config_class = SmileGemma2Config
|
|
289
|
+
base_model_prefix = "model"
|
|
290
|
+
supports_gradient_checkpointing = True
|
|
291
|
+
_no_split_modules = ["SmileGemma2DecoderLayer"]
|
|
292
|
+
_skip_keys_device_placement = ["past_key_values"]
|
|
293
|
+
_supports_flash_attn_2 = True
|
|
294
|
+
_supports_sdpa = True
|
|
295
|
+
_supports_flex_attn = True
|
|
296
|
+
_supports_cache_class = True
|
|
297
|
+
_supports_quantized_cache = True
|
|
298
|
+
_supports_static_cache = True
|
|
299
|
+
_supports_attention_backend = True
|
|
300
|
+
|
|
301
|
+
def _init_weights(self, module):
|
|
302
|
+
std = self.config.initializer_range
|
|
303
|
+
if isinstance(module, nn.Linear):
|
|
304
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
|
305
|
+
if module.bias is not None:
|
|
306
|
+
module.bias.data.zero_()
|
|
307
|
+
elif isinstance(module, nn.Embedding):
|
|
308
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
|
309
|
+
if module.padding_idx is not None:
|
|
310
|
+
module.weight.data[module.padding_idx].zero_()
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
class SmileGemma2Model(SmileGemma2PreTrainedModel):
|
|
314
|
+
"""
|
|
315
|
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
|
|
316
|
+
|
|
317
|
+
Args:
|
|
318
|
+
config: Gemma2Config
|
|
319
|
+
"""
|
|
320
|
+
|
|
321
|
+
def __init__(self, config: SmileGemma2Config):
|
|
322
|
+
super().__init__(config)
|
|
323
|
+
self.padding_idx = config.pad_token_id
|
|
324
|
+
self.vocab_size = config.vocab_size
|
|
325
|
+
|
|
326
|
+
self.embed_tokens = nn.Embedding(
|
|
327
|
+
config.vocab_size, config.hidden_size, self.padding_idx
|
|
328
|
+
)
|
|
329
|
+
self.layers = nn.ModuleList(
|
|
330
|
+
[
|
|
331
|
+
SmileGemma2DecoderLayer(config, layer_idx)
|
|
332
|
+
for layer_idx in range(config.num_hidden_layers)
|
|
333
|
+
]
|
|
334
|
+
)
|
|
335
|
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
336
|
+
self.rotary_emb = Gemma2RotaryEmbedding(config=config)
|
|
337
|
+
self.gradient_checkpointing = False
|
|
338
|
+
|
|
339
|
+
# Initialize weights and apply final processing
|
|
340
|
+
self.post_init()
|
|
341
|
+
|
|
342
|
+
def get_input_embeddings(self):
|
|
343
|
+
return self.embed_tokens
|
|
344
|
+
|
|
345
|
+
def set_input_embeddings(self, value):
|
|
346
|
+
self.embed_tokens = value
|
|
347
|
+
|
|
348
|
+
@can_return_tuple
|
|
349
|
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
|
350
|
+
def forward(
|
|
351
|
+
self,
|
|
352
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
353
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
354
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
355
|
+
past_key_values: Optional[HybridCache] = None,
|
|
356
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
357
|
+
use_cache: Optional[bool] = None,
|
|
358
|
+
output_attentions: Optional[bool] = None,
|
|
359
|
+
output_hidden_states: Optional[bool] = None,
|
|
360
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
361
|
+
last_cache_position: Optional[int] = None,
|
|
362
|
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
|
363
|
+
) -> BaseModelOutputWithPast:
|
|
364
|
+
output_attentions = (
|
|
365
|
+
output_attentions
|
|
366
|
+
if output_attentions is not None
|
|
367
|
+
else self.config.output_attentions
|
|
368
|
+
)
|
|
369
|
+
output_hidden_states = (
|
|
370
|
+
output_hidden_states
|
|
371
|
+
if output_hidden_states is not None
|
|
372
|
+
else self.config.output_hidden_states
|
|
373
|
+
)
|
|
374
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
375
|
+
|
|
376
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
377
|
+
raise ValueError(
|
|
378
|
+
"You must specify exactly one of input_ids or inputs_embeds"
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
if self.gradient_checkpointing and self.training and use_cache:
|
|
382
|
+
logger.warning_once(
|
|
383
|
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
384
|
+
)
|
|
385
|
+
use_cache = False
|
|
386
|
+
|
|
387
|
+
if inputs_embeds is None:
|
|
388
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
389
|
+
|
|
390
|
+
if use_cache and past_key_values is None and not self.training:
|
|
391
|
+
batch_size, seq_len, _ = inputs_embeds.shape
|
|
392
|
+
# NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
|
|
393
|
+
past_key_values = HybridCache(
|
|
394
|
+
self.config,
|
|
395
|
+
max_batch_size=batch_size,
|
|
396
|
+
max_cache_len=seq_len,
|
|
397
|
+
dtype=inputs_embeds.dtype,
|
|
398
|
+
device=self.device,
|
|
399
|
+
)
|
|
400
|
+
|
|
401
|
+
if cache_position is None:
|
|
402
|
+
past_seen_tokens = (
|
|
403
|
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
404
|
+
)
|
|
405
|
+
cache_position = torch.arange(
|
|
406
|
+
past_seen_tokens,
|
|
407
|
+
past_seen_tokens + inputs_embeds.shape[1],
|
|
408
|
+
device=inputs_embeds.device,
|
|
409
|
+
)
|
|
410
|
+
|
|
411
|
+
if position_ids is None:
|
|
412
|
+
position_ids = cache_position.unsqueeze(0)
|
|
413
|
+
|
|
414
|
+
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
|
|
415
|
+
# (retrieving the same value from `cache_position` later on would crash dynamo)
|
|
416
|
+
if last_cache_position is None:
|
|
417
|
+
last_cache_position = 0
|
|
418
|
+
if attention_mask is not None:
|
|
419
|
+
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
|
|
420
|
+
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
|
|
421
|
+
last_cache_position = (
|
|
422
|
+
attention_mask.shape[-1]
|
|
423
|
+
if attention_mask.dim() == 2
|
|
424
|
+
else cache_position[-1].item()
|
|
425
|
+
)
|
|
426
|
+
causal_mask = self._update_causal_mask(
|
|
427
|
+
attention_mask,
|
|
428
|
+
inputs_embeds,
|
|
429
|
+
cache_position,
|
|
430
|
+
past_key_values,
|
|
431
|
+
output_attentions,
|
|
432
|
+
)
|
|
433
|
+
|
|
434
|
+
# embed positions
|
|
435
|
+
hidden_states = inputs_embeds
|
|
436
|
+
|
|
437
|
+
# create position embeddings to be shared across the decoder layers
|
|
438
|
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
439
|
+
|
|
440
|
+
# normalized
|
|
441
|
+
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
|
442
|
+
# See https://github.com/huggingface/transformers/pull/29402
|
|
443
|
+
normalizer = torch.tensor(
|
|
444
|
+
self.config.hidden_size**0.5, dtype=hidden_states.dtype
|
|
445
|
+
)
|
|
446
|
+
hidden_states = hidden_states * normalizer
|
|
447
|
+
|
|
448
|
+
# decoder layers
|
|
449
|
+
all_hidden_states = () if output_hidden_states else None
|
|
450
|
+
all_self_attns = () if output_attentions else None
|
|
451
|
+
|
|
452
|
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
|
453
|
+
if output_hidden_states:
|
|
454
|
+
all_hidden_states += (hidden_states,)
|
|
455
|
+
|
|
456
|
+
if self.gradient_checkpointing and self.training:
|
|
457
|
+
layer_outputs = self._gradient_checkpointing_func(
|
|
458
|
+
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
|
459
|
+
hidden_states,
|
|
460
|
+
position_embeddings,
|
|
461
|
+
causal_mask,
|
|
462
|
+
position_ids,
|
|
463
|
+
past_key_values,
|
|
464
|
+
output_attentions,
|
|
465
|
+
use_cache,
|
|
466
|
+
cache_position,
|
|
467
|
+
last_cache_position,
|
|
468
|
+
)
|
|
469
|
+
else:
|
|
470
|
+
layer_outputs = decoder_layer(
|
|
471
|
+
hidden_states,
|
|
472
|
+
position_embeddings=position_embeddings,
|
|
473
|
+
attention_mask=causal_mask,
|
|
474
|
+
position_ids=position_ids,
|
|
475
|
+
past_key_value=past_key_values,
|
|
476
|
+
output_attentions=output_attentions,
|
|
477
|
+
use_cache=use_cache,
|
|
478
|
+
cache_position=cache_position,
|
|
479
|
+
last_cache_position=last_cache_position,
|
|
480
|
+
**flash_attn_kwargs,
|
|
481
|
+
)
|
|
482
|
+
|
|
483
|
+
hidden_states = layer_outputs[0]
|
|
484
|
+
|
|
485
|
+
if output_attentions:
|
|
486
|
+
all_self_attns += (layer_outputs[1],)
|
|
487
|
+
|
|
488
|
+
hidden_states = self.norm(hidden_states)
|
|
489
|
+
|
|
490
|
+
if output_hidden_states:
|
|
491
|
+
all_hidden_states += (hidden_states,)
|
|
492
|
+
|
|
493
|
+
return BaseModelOutputWithPast(
|
|
494
|
+
last_hidden_state=hidden_states,
|
|
495
|
+
past_key_values=past_key_values,
|
|
496
|
+
hidden_states=all_hidden_states,
|
|
497
|
+
attentions=all_self_attns,
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
@torch.no_grad()
|
|
501
|
+
def _update_causal_mask(
|
|
502
|
+
self,
|
|
503
|
+
attention_mask: torch.Tensor,
|
|
504
|
+
input_tensor: torch.Tensor,
|
|
505
|
+
cache_position: torch.Tensor,
|
|
506
|
+
past_key_values: HybridCache,
|
|
507
|
+
output_attentions: bool,
|
|
508
|
+
):
|
|
509
|
+
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
|
|
510
|
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
|
511
|
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
|
512
|
+
# as it doesn't cause dynamic control issues.
|
|
513
|
+
if self.config._attn_implementation == "flash_attention_2":
|
|
514
|
+
return attention_mask
|
|
515
|
+
|
|
516
|
+
dtype, device = input_tensor.dtype, input_tensor.device
|
|
517
|
+
sequence_length = input_tensor.shape[1]
|
|
518
|
+
if isinstance(past_key_values, (HybridCache, StaticCache)):
|
|
519
|
+
target_length = past_key_values.get_max_cache_shape()
|
|
520
|
+
else:
|
|
521
|
+
target_length = (
|
|
522
|
+
attention_mask.shape[-1]
|
|
523
|
+
if attention_mask is not None
|
|
524
|
+
else input_tensor.shape[1]
|
|
525
|
+
)
|
|
526
|
+
|
|
527
|
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
528
|
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
529
|
+
attention_mask,
|
|
530
|
+
sequence_length=sequence_length,
|
|
531
|
+
target_length=target_length,
|
|
532
|
+
dtype=dtype,
|
|
533
|
+
device=device,
|
|
534
|
+
cache_position=cache_position,
|
|
535
|
+
batch_size=input_tensor.shape[0],
|
|
536
|
+
)
|
|
537
|
+
return causal_mask
|
|
538
|
+
|
|
539
|
+
@staticmethod
|
|
540
|
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
541
|
+
attention_mask: torch.Tensor,
|
|
542
|
+
sequence_length: int,
|
|
543
|
+
target_length: int,
|
|
544
|
+
dtype: torch.dtype,
|
|
545
|
+
device: torch.device,
|
|
546
|
+
cache_position: torch.Tensor,
|
|
547
|
+
batch_size: int,
|
|
548
|
+
**kwargs,
|
|
549
|
+
):
|
|
550
|
+
"""
|
|
551
|
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
552
|
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
553
|
+
|
|
554
|
+
Args:
|
|
555
|
+
attention_mask (`torch.Tensor`):
|
|
556
|
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
557
|
+
`(batch_size, 1, query_length, key_value_length)`.
|
|
558
|
+
sequence_length (`int`):
|
|
559
|
+
The sequence length being processed.
|
|
560
|
+
target_length (`int`):
|
|
561
|
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
562
|
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
|
563
|
+
dtype (`torch.dtype`):
|
|
564
|
+
The dtype to use for the 4D attention mask.
|
|
565
|
+
device (`torch.device`):
|
|
566
|
+
The device to place the 4D attention mask on.
|
|
567
|
+
cache_position (`torch.Tensor`):
|
|
568
|
+
Indices depicting the position of the input sequence tokens in the sequence.
|
|
569
|
+
batch_size (`torch.Tensor`):
|
|
570
|
+
Batch size.
|
|
571
|
+
"""
|
|
572
|
+
if attention_mask is not None and attention_mask.dim() == 4:
|
|
573
|
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
574
|
+
causal_mask = attention_mask
|
|
575
|
+
else:
|
|
576
|
+
min_dtype = torch.finfo(dtype).min
|
|
577
|
+
causal_mask = torch.full(
|
|
578
|
+
(sequence_length, target_length),
|
|
579
|
+
fill_value=min_dtype,
|
|
580
|
+
dtype=dtype,
|
|
581
|
+
device=device,
|
|
582
|
+
)
|
|
583
|
+
if sequence_length != 1:
|
|
584
|
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
585
|
+
causal_mask *= torch.arange(
|
|
586
|
+
target_length, device=device
|
|
587
|
+
) > cache_position.reshape(-1, 1)
|
|
588
|
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
589
|
+
if attention_mask is not None:
|
|
590
|
+
causal_mask = (
|
|
591
|
+
causal_mask.clone()
|
|
592
|
+
) # copy to contiguous memory for in-place edit
|
|
593
|
+
mask_length = attention_mask.shape[-1]
|
|
594
|
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[
|
|
595
|
+
:, None, None, :
|
|
596
|
+
].to(causal_mask.device)
|
|
597
|
+
padding_mask = padding_mask == 0
|
|
598
|
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
|
599
|
+
:, :, :, :mask_length
|
|
600
|
+
].masked_fill(padding_mask, min_dtype)
|
|
601
|
+
|
|
602
|
+
return causal_mask
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
class SmileGemma2ForCausalLM(SmileGemma2PreTrainedModel, GenerationMixin):
|
|
606
|
+
_tied_weights_keys = ["lm_head.weight"]
|
|
607
|
+
_tp_plan = {"lm_head": "colwise_rep"}
|
|
608
|
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
|
609
|
+
|
|
610
|
+
def __init__(self, config):
|
|
611
|
+
super().__init__(config)
|
|
612
|
+
self.model = SmileGemma2Model(config)
|
|
613
|
+
self.vocab_size = config.vocab_size
|
|
614
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
615
|
+
|
|
616
|
+
# Initialize weights and apply final processing
|
|
617
|
+
self.post_init()
|
|
618
|
+
|
|
619
|
+
def get_input_embeddings(self):
|
|
620
|
+
return self.model.embed_tokens
|
|
621
|
+
|
|
622
|
+
def set_input_embeddings(self, value):
|
|
623
|
+
self.model.embed_tokens = value
|
|
624
|
+
|
|
625
|
+
def get_output_embeddings(self):
|
|
626
|
+
return self.lm_head
|
|
627
|
+
|
|
628
|
+
def set_output_embeddings(self, new_embeddings):
|
|
629
|
+
self.lm_head = new_embeddings
|
|
630
|
+
|
|
631
|
+
def set_decoder(self, decoder):
|
|
632
|
+
self.model = decoder
|
|
633
|
+
|
|
634
|
+
def get_decoder(self):
|
|
635
|
+
return self.model
|
|
636
|
+
|
|
637
|
+
@can_return_tuple
|
|
638
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
639
|
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
|
640
|
+
@replace_return_docstrings(
|
|
641
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
642
|
+
)
|
|
643
|
+
def forward(
|
|
644
|
+
self,
|
|
645
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
646
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
647
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
648
|
+
past_key_values: Optional[HybridCache] = None,
|
|
649
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
650
|
+
labels: Optional[torch.LongTensor] = None,
|
|
651
|
+
use_cache: Optional[bool] = None,
|
|
652
|
+
output_attentions: Optional[bool] = None,
|
|
653
|
+
output_hidden_states: Optional[bool] = None,
|
|
654
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
655
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
656
|
+
**loss_kwargs,
|
|
657
|
+
) -> CausalLMOutputWithPast:
|
|
658
|
+
r"""
|
|
659
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
660
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
661
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
662
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
663
|
+
|
|
664
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
665
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
666
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
667
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
668
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
669
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
670
|
+
|
|
671
|
+
Returns:
|
|
672
|
+
|
|
673
|
+
Example:
|
|
674
|
+
|
|
675
|
+
```python
|
|
676
|
+
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
|
|
677
|
+
|
|
678
|
+
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
|
|
679
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
|
680
|
+
|
|
681
|
+
>>> prompt = "What is your favorite condiment?"
|
|
682
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
683
|
+
|
|
684
|
+
>>> # Generate
|
|
685
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
686
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
687
|
+
"What is your favorite condiment?"
|
|
688
|
+
```"""
|
|
689
|
+
|
|
690
|
+
if self.training and self.config._attn_implementation != "eager":
|
|
691
|
+
logger.warning_once(
|
|
692
|
+
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
|
693
|
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
|
694
|
+
)
|
|
695
|
+
output_attentions = (
|
|
696
|
+
output_attentions
|
|
697
|
+
if output_attentions is not None
|
|
698
|
+
else self.config.output_attentions
|
|
699
|
+
)
|
|
700
|
+
output_hidden_states = (
|
|
701
|
+
output_hidden_states
|
|
702
|
+
if output_hidden_states is not None
|
|
703
|
+
else self.config.output_hidden_states
|
|
704
|
+
)
|
|
705
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
706
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
707
|
+
input_ids=input_ids,
|
|
708
|
+
attention_mask=attention_mask,
|
|
709
|
+
position_ids=position_ids,
|
|
710
|
+
past_key_values=past_key_values,
|
|
711
|
+
inputs_embeds=inputs_embeds,
|
|
712
|
+
use_cache=use_cache,
|
|
713
|
+
output_attentions=output_attentions,
|
|
714
|
+
output_hidden_states=output_hidden_states,
|
|
715
|
+
cache_position=cache_position,
|
|
716
|
+
**loss_kwargs,
|
|
717
|
+
)
|
|
718
|
+
|
|
719
|
+
hidden_states = outputs.last_hidden_state
|
|
720
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
721
|
+
slice_indices = (
|
|
722
|
+
slice(-logits_to_keep, None)
|
|
723
|
+
if isinstance(logits_to_keep, int)
|
|
724
|
+
else logits_to_keep
|
|
725
|
+
)
|
|
726
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
727
|
+
if self.config.final_logit_softcapping is not None:
|
|
728
|
+
logits = logits / self.config.final_logit_softcapping
|
|
729
|
+
logits = torch.tanh(logits)
|
|
730
|
+
logits = logits * self.config.final_logit_softcapping
|
|
731
|
+
|
|
732
|
+
loss = None
|
|
733
|
+
if labels is not None:
|
|
734
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
|
735
|
+
|
|
736
|
+
return CausalLMOutputWithPast(
|
|
737
|
+
loss=loss,
|
|
738
|
+
logits=logits,
|
|
739
|
+
past_key_values=outputs.past_key_values,
|
|
740
|
+
hidden_states=outputs.hidden_states,
|
|
741
|
+
attentions=outputs.attentions,
|
|
742
|
+
)
|
|
743
|
+
|
|
744
|
+
def prepare_inputs_for_generation(
|
|
745
|
+
self,
|
|
746
|
+
input_ids,
|
|
747
|
+
past_key_values=None,
|
|
748
|
+
attention_mask=None,
|
|
749
|
+
inputs_embeds=None,
|
|
750
|
+
cache_position=None,
|
|
751
|
+
position_ids=None,
|
|
752
|
+
use_cache=True,
|
|
753
|
+
logits_to_keep=None,
|
|
754
|
+
**kwargs,
|
|
755
|
+
):
|
|
756
|
+
# Overwritten: has a special cache type, `HybridCache`
|
|
757
|
+
|
|
758
|
+
model_inputs = super().prepare_inputs_for_generation(
|
|
759
|
+
input_ids,
|
|
760
|
+
past_key_values=past_key_values,
|
|
761
|
+
attention_mask=attention_mask,
|
|
762
|
+
inputs_embeds=inputs_embeds,
|
|
763
|
+
cache_position=cache_position,
|
|
764
|
+
position_ids=position_ids,
|
|
765
|
+
use_cache=use_cache,
|
|
766
|
+
logits_to_keep=logits_to_keep,
|
|
767
|
+
**kwargs,
|
|
768
|
+
)
|
|
769
|
+
|
|
770
|
+
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
|
|
771
|
+
# (retrieving the same value from `cache_position` later on would crash dynamo)
|
|
772
|
+
model_inputs["last_cache_position"] = (
|
|
773
|
+
attention_mask.shape[-1] if attention_mask is not None else 0
|
|
774
|
+
)
|
|
775
|
+
if logits_to_keep is None:
|
|
776
|
+
_ = model_inputs.pop("logits_to_keep", None)
|
|
777
|
+
|
|
778
|
+
if (
|
|
779
|
+
isinstance(past_key_values, HybridCache)
|
|
780
|
+
and attention_mask.ndim == 2
|
|
781
|
+
and not self.config._attn_implementation == "flash_attention_2"
|
|
782
|
+
):
|
|
783
|
+
if model_inputs["inputs_embeds"] is not None:
|
|
784
|
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
|
785
|
+
device = model_inputs["inputs_embeds"].device
|
|
786
|
+
else:
|
|
787
|
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
|
788
|
+
device = model_inputs["input_ids"].device
|
|
789
|
+
|
|
790
|
+
attention_mask = (
|
|
791
|
+
self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
|
792
|
+
attention_mask,
|
|
793
|
+
sequence_length=sequence_length,
|
|
794
|
+
target_length=past_key_values.get_max_cache_shape(),
|
|
795
|
+
dtype=self.lm_head.weight.dtype,
|
|
796
|
+
device=device,
|
|
797
|
+
cache_position=cache_position,
|
|
798
|
+
batch_size=batch_size,
|
|
799
|
+
)
|
|
800
|
+
)
|
|
801
|
+
model_inputs["attention_mask"] = attention_mask
|
|
802
|
+
|
|
803
|
+
return model_inputs
|
|
804
|
+
|
|
805
|
+
|
|
806
|
+
class SmileGemma2ForSequenceClassification(SmileGemma2PreTrainedModel):
|
|
807
|
+
def __init__(self, config):
|
|
808
|
+
super().__init__(config)
|
|
809
|
+
self.num_labels = config.num_labels
|
|
810
|
+
self.model = SmileGemma2Model(config)
|
|
811
|
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
812
|
+
|
|
813
|
+
# Initialize weights and apply final processing
|
|
814
|
+
self.post_init()
|
|
815
|
+
|
|
816
|
+
def get_input_embeddings(self):
|
|
817
|
+
return self.model.embed_tokens
|
|
818
|
+
|
|
819
|
+
def set_input_embeddings(self, value):
|
|
820
|
+
self.model.embed_tokens = value
|
|
821
|
+
|
|
822
|
+
@can_return_tuple
|
|
823
|
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
|
824
|
+
def forward(
|
|
825
|
+
self,
|
|
826
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
827
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
828
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
829
|
+
past_key_values: Optional[Cache] = None,
|
|
830
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
831
|
+
labels: Optional[torch.LongTensor] = None,
|
|
832
|
+
use_cache: Optional[bool] = None,
|
|
833
|
+
output_attentions: Optional[bool] = None,
|
|
834
|
+
output_hidden_states: Optional[bool] = None,
|
|
835
|
+
) -> SequenceClassifierOutputWithPast:
|
|
836
|
+
r"""
|
|
837
|
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
838
|
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
839
|
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
840
|
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
841
|
+
"""
|
|
842
|
+
|
|
843
|
+
transformer_outputs: BaseModelOutputWithPast = self.model(
|
|
844
|
+
input_ids,
|
|
845
|
+
attention_mask=attention_mask,
|
|
846
|
+
position_ids=position_ids,
|
|
847
|
+
past_key_values=past_key_values,
|
|
848
|
+
inputs_embeds=inputs_embeds,
|
|
849
|
+
use_cache=use_cache,
|
|
850
|
+
output_attentions=output_attentions,
|
|
851
|
+
output_hidden_states=output_hidden_states,
|
|
852
|
+
)
|
|
853
|
+
hidden_states = transformer_outputs.last_hidden_state
|
|
854
|
+
logits = self.score(hidden_states)
|
|
855
|
+
|
|
856
|
+
if input_ids is not None:
|
|
857
|
+
batch_size = input_ids.shape[0]
|
|
858
|
+
else:
|
|
859
|
+
batch_size = inputs_embeds.shape[0]
|
|
860
|
+
|
|
861
|
+
if self.config.pad_token_id is None and batch_size != 1:
|
|
862
|
+
raise ValueError(
|
|
863
|
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
|
864
|
+
)
|
|
865
|
+
if self.config.pad_token_id is None:
|
|
866
|
+
last_non_pad_token = -1
|
|
867
|
+
elif input_ids is not None:
|
|
868
|
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
|
869
|
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(
|
|
870
|
+
logits.device, torch.int32
|
|
871
|
+
)
|
|
872
|
+
token_indices = torch.arange(
|
|
873
|
+
input_ids.shape[-1], device=logits.device, dtype=torch.int32
|
|
874
|
+
)
|
|
875
|
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
|
876
|
+
else:
|
|
877
|
+
last_non_pad_token = -1
|
|
878
|
+
logger.warning_once(
|
|
879
|
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
|
880
|
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
|
881
|
+
)
|
|
882
|
+
|
|
883
|
+
pooled_logits = logits[
|
|
884
|
+
torch.arange(batch_size, device=logits.device), last_non_pad_token
|
|
885
|
+
]
|
|
886
|
+
|
|
887
|
+
loss = None
|
|
888
|
+
if labels is not None:
|
|
889
|
+
loss = self.loss_function(
|
|
890
|
+
logits=logits,
|
|
891
|
+
labels=labels,
|
|
892
|
+
pooled_logits=pooled_logits,
|
|
893
|
+
config=self.config,
|
|
894
|
+
)
|
|
895
|
+
|
|
896
|
+
return SequenceClassifierOutputWithPast(
|
|
897
|
+
loss=loss,
|
|
898
|
+
logits=pooled_logits,
|
|
899
|
+
past_key_values=transformer_outputs.past_key_values,
|
|
900
|
+
hidden_states=transformer_outputs.hidden_states,
|
|
901
|
+
attentions=transformer_outputs.attentions,
|
|
902
|
+
)
|
|
903
|
+
|
|
904
|
+
|
|
905
|
+
class SmileGemma2ForTokenClassification(SmileGemma2PreTrainedModel):
|
|
906
|
+
def __init__(self, config: SmileGemma2Config):
|
|
907
|
+
super().__init__(config)
|
|
908
|
+
self.num_labels = config.num_labels
|
|
909
|
+
self.model = SmileGemma2Model(config)
|
|
910
|
+
if getattr(config, "classifier_dropout", None) is not None:
|
|
911
|
+
classifier_dropout = config.classifier_dropout
|
|
912
|
+
elif getattr(config, "hidden_dropout", None) is not None:
|
|
913
|
+
classifier_dropout = config.hidden_dropout
|
|
914
|
+
else:
|
|
915
|
+
classifier_dropout = 0.1
|
|
916
|
+
self.dropout = nn.Dropout(classifier_dropout)
|
|
917
|
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
|
918
|
+
|
|
919
|
+
# Initialize weights and apply final processing
|
|
920
|
+
self.post_init()
|
|
921
|
+
|
|
922
|
+
def get_input_embeddings(self):
|
|
923
|
+
return self.model.embed_tokens
|
|
924
|
+
|
|
925
|
+
def set_input_embeddings(self, value):
|
|
926
|
+
self.model.embed_tokens = value
|
|
927
|
+
|
|
928
|
+
@can_return_tuple
|
|
929
|
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
|
930
|
+
@add_code_sample_docstrings(
|
|
931
|
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
932
|
+
output_type=TokenClassifierOutput,
|
|
933
|
+
config_class=_CONFIG_FOR_DOC,
|
|
934
|
+
)
|
|
935
|
+
def forward(
|
|
936
|
+
self,
|
|
937
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
938
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
939
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
940
|
+
past_key_values: Optional[Cache] = None,
|
|
941
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
942
|
+
labels: Optional[torch.LongTensor] = None,
|
|
943
|
+
use_cache: Optional[bool] = None,
|
|
944
|
+
output_attentions: Optional[bool] = None,
|
|
945
|
+
output_hidden_states: Optional[bool] = None,
|
|
946
|
+
) -> TokenClassifierOutput:
|
|
947
|
+
r"""
|
|
948
|
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
949
|
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
950
|
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
951
|
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
952
|
+
"""
|
|
953
|
+
|
|
954
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
955
|
+
input_ids,
|
|
956
|
+
attention_mask=attention_mask,
|
|
957
|
+
position_ids=position_ids,
|
|
958
|
+
past_key_values=past_key_values,
|
|
959
|
+
inputs_embeds=inputs_embeds,
|
|
960
|
+
use_cache=use_cache,
|
|
961
|
+
output_attentions=output_attentions,
|
|
962
|
+
output_hidden_states=output_hidden_states,
|
|
963
|
+
)
|
|
964
|
+
sequence_output = outputs.last_hidden_state
|
|
965
|
+
sequence_output = self.dropout(sequence_output)
|
|
966
|
+
logits = self.score(sequence_output)
|
|
967
|
+
|
|
968
|
+
loss = None
|
|
969
|
+
if labels is not None:
|
|
970
|
+
loss = self.loss_function(logits, labels, self.config)
|
|
971
|
+
|
|
972
|
+
return TokenClassifierOutput(
|
|
973
|
+
loss=loss,
|
|
974
|
+
logits=logits,
|
|
975
|
+
hidden_states=outputs.hidden_states,
|
|
976
|
+
attentions=outputs.attentions,
|
|
977
|
+
)
|
|
978
|
+
|
|
979
|
+
|
|
980
|
+
__all__ = [
|
|
981
|
+
"SmileGemma2PreTrainedModel",
|
|
982
|
+
"SmileGemma2Model",
|
|
983
|
+
"SmileGemma2ForCausalLM",
|
|
984
|
+
"SmileGemma2ForSequenceClassification",
|
|
985
|
+
"SmileGemma2ForTokenClassification",
|
|
986
|
+
]
|