fusion-bench 0.2.17__py3-none-any.whl → 0.2.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. fusion_bench/method/__init__.py +11 -0
  2. fusion_bench/method/expert_sparsity/__init__.py +10 -0
  3. fusion_bench/method/expert_sparsity/mixtral/__init__.py +23 -0
  4. fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +175 -0
  5. fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +159 -0
  6. fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +173 -0
  7. fusion_bench/method/expert_sparsity/utils/calibration_data.py +153 -0
  8. fusion_bench/method/knots/__init__.py +0 -0
  9. fusion_bench/method/knots/knots_utils.py +23 -0
  10. fusion_bench/method/task_singular_vector/utils/__init__.py +1 -0
  11. fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +41 -0
  12. fusion_bench/modelpool/causal_lm/causal_lm.py +8 -5
  13. fusion_bench/models/__init__.py +1 -0
  14. fusion_bench/models/expert_sparsity/__init__.py +0 -0
  15. fusion_bench/models/expert_sparsity/mixtral/__init__.py +15 -0
  16. fusion_bench/models/expert_sparsity/mixtral/dataset.py +40 -0
  17. fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +207 -0
  18. fusion_bench/models/expert_sparsity/mixtral/wrapper.py +268 -0
  19. fusion_bench/programs/fabric_fusion_program.py +12 -8
  20. fusion_bench/utils/__init__.py +3 -2
  21. fusion_bench/utils/dtype.py +2 -1
  22. fusion_bench/utils/fabric.py +11 -4
  23. fusion_bench/utils/lazy_state_dict.py +80 -10
  24. fusion_bench/utils/pylogger.py +2 -0
  25. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/METADATA +1 -1
  26. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/RECORD +33 -16
  27. fusion_bench_config/fabric/loggers/mlflow_logger.yaml +2 -0
  28. fusion_bench_config/method/expert_sparsity/README.md +6 -0
  29. fusion_bench_config/method/expert_sparsity/mixtral.yaml +17 -0
  30. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/WHEEL +0 -0
  31. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/entry_points.txt +0 -0
  32. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/licenses/LICENSE +0 -0
  33. {fusion_bench-0.2.17.dist-info → fusion_bench-0.2.18.dist-info}/top_level.txt +0 -0
@@ -42,7 +42,7 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
42
42
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
43
43
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
44
44
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- fusion_bench/method/__init__.py,sha256=xry6_2sAWT_qeNFgcLTE7lBWWWjGhuljrJFeWL1NBXg,7552
45
+ fusion_bench/method/__init__.py,sha256=TMELBu1IdKN86Id1rlNlr-vqsdArti_6mlKLfobHoL4,7888
46
46
  fusion_bench/method/base_algorithm.py,sha256=UuITuGnSskcKEwUVINuPoWJUwqGm9AIgyQIOCu8BMks,1162
47
47
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
48
48
  fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
@@ -88,6 +88,12 @@ fusion_bench/method/doge_ta/__init__.py,sha256=dixO0i5fmhgC_W2_DAQ4PzYnkMCZX5D8t
88
88
  fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=UUSldRPBxHVOfkMM7ZwqZay5Wjc6XQ3Vy9PgyqV_TZo,1311
89
89
  fusion_bench/method/doge_ta/doge_ta.py,sha256=ec0qIq3F72nhbCVlfqdk1PYFM7QIlfMofeVFVvmDKiE,13785
90
90
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
91
+ fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
92
+ fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
93
+ fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=e4fsXKSjCdmK-sThX6REk_d1hf-UolRLssQr7b6jD-M,5597
94
+ fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=GJVIose_Duk4C6Re4LtaxSzGjR8XLGGlhLhsGMECwjw,4960
95
+ fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=-0qWYkvHqKouJynn-kT907JQtiMLChtppOTL4SUYR9M,5090
96
+ fusion_bench/method/expert_sparsity/utils/calibration_data.py,sha256=jEWW60qXrnAyiAPz8gbpvQ4hFeL1P1ykoIzoydAaDAk,5459
91
97
  fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqvesqk2NJw5AY_1ztLVE,225
92
98
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
93
99
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=OiceW0bqvnzGjIyIjd0A55ckXImDfEvi-Nk6td0sFFw,20892
@@ -108,6 +114,8 @@ fusion_bench/method/gossip/utils.py,sha256=ggMPRdxs--U2sV670oimX7jo8NGBX5Oq8Mlpr
108
114
  fusion_bench/method/isotropic_merging/__init__.py,sha256=yyx1Exfrf_4CtTjml1CIplFeeEDsSUk2Zc0AJ98ST9M,584
109
115
  fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4Rd0WcEPsYvQhBSCg,3773
110
116
  fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
117
+ fusion_bench/method/knots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
118
+ fusion_bench/method/knots/knots_utils.py,sha256=NWlzo4nhQypUcNknU832MP3QT42VsLx-6WQ9QXuSigw,795
111
119
  fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
112
120
  fusion_bench/method/linear/expo.py,sha256=LCHTWlsPm1Mjhrq0mfpWLVC7skkI9ZksGduy3TxULoU,3939
113
121
  fusion_bench/method/linear/linear_interpolation.py,sha256=IONw9BPiRJouY8bE9Abfyz7qVI_1B1n8KGZa0f7Pza8,2157
@@ -199,7 +207,8 @@ fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1
199
207
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
200
208
  fusion_bench/method/task_singular_vector/utils/TSVC_utils.py,sha256=FytKbal48EW6iGIA-2zV7QSVbYTVflXr4Mr56q0W75k,2286
201
209
  fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsNVpceHamQytZi-q4wzrCmGGQCYOm67mI,29146
202
- fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Pgthb9Ld1x0Qis1wKWottwgzlBcyuzByFZCMIoI6Fys,240
210
+ fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
211
+ fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
203
212
  fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
204
213
  fusion_bench/method/ties_merging/ties_merging.py,sha256=GAlomW4oTePXd57TvogQXoliNnEto1_QVXVGVrU1QNc,5807
205
214
  fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
@@ -243,7 +252,7 @@ fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RP
243
252
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
244
253
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
245
254
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
246
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=fO8lF8YWwoe43sVVOqHW9Ike7x-924-I6QQgZqx9EgA,6505
255
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=dkumbKspfEJhp3gtlZC71zUutdfJOKpKZnHy5z97qbc,6727
247
256
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
248
257
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ADgzslXwYd95x42V26XvgS09WEKGfhH_AYuQmWKdT0w,5887
249
258
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
@@ -253,7 +262,7 @@ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgV
253
262
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=k-t4RetcDlbkRkPHNuyeV3pQEcJnFRjd9Wp5tFBb-G8,128
254
263
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
255
264
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=sIKAmGJwfrNSuWtxzJ_-ME0gQksEYY2y-jVt7P82Qs0,3434
256
- fusion_bench/models/__init__.py,sha256=TNOEH_2yAQP51m9mdWepNEf9VGUZgDthtgXbs4rhb4M,100
265
+ fusion_bench/models/__init__.py,sha256=w2QbRl-nIHMHNCl9X46f2CD6oqZfEDAxGRs4G9cw2nw,145
257
266
  fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
258
267
  fusion_bench/models/parameter_dict.py,sha256=RBAXZ-PFLxy3eHxQqWLEvjKIR1uTHBWdKP0XXMNGmQg,3635
259
268
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
@@ -264,6 +273,11 @@ fusion_bench/models/we_moe.py,sha256=0U-m3mhzb4vFLIzn2jd7j_SQOF9lot4ddzq0l_VPp9g
264
273
  fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
265
274
  fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
266
275
  fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
276
+ fusion_bench/models/expert_sparsity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
277
+ fusion_bench/models/expert_sparsity/mixtral/__init__.py,sha256=3L_dcXW3op6ichd3GTlrTEZF_UA57Pyr13SlQRer7lg,439
278
+ fusion_bench/models/expert_sparsity/mixtral/dataset.py,sha256=1-OxRbK-TRaQBJuOfnuzQKSV_55mMRV6iqKWBuX5BIM,1350
279
+ fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py,sha256=uGbn69toZ3ldHZKfwXNBijjcPQXeDdXpwJv3HnVwUbc,8252
280
+ fusion_bench/models/expert_sparsity/mixtral/wrapper.py,sha256=1zACEwXDNbi9uwI96oD84YrCsh6b8yh25ZjP3q37muo,10167
267
281
  fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
268
282
  fusion_bench/models/linearized/linearized_model_utils.py,sha256=5yKXReQHIwDttzT_oXwY_iIpaG1zIU0Nv93BWmmOqrg,3212
269
283
  fusion_bench/models/linearized/vision_model.py,sha256=HhbhtyoLD1qVvh1Sgl_beYF2W7AvMevmUy4Jx2XlcsY,4636
@@ -326,7 +340,7 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
326
340
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
327
341
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
328
342
  fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
329
- fusion_bench/programs/fabric_fusion_program.py,sha256=r-CuvS_OxADXjQgqNm2E_poSvIx1GCMjcyRCMWrwU1w,13427
343
+ fusion_bench/programs/fabric_fusion_program.py,sha256=978t9Fw9kvw-Il7rJLR2jNI1OfSxkhq1c5-5D4BgnYU,13813
330
344
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
331
345
  fusion_bench/scripts/cli.py,sha256=hw32XtmixFxYXwgAY7iRBMzma_XQjdf_FxPiXKL6dIc,1154
332
346
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
@@ -389,26 +403,26 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
389
403
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
390
404
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
391
405
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
392
- fusion_bench/utils/__init__.py,sha256=E_K0a1V761KJCn623tL23QpqcnngIcLYo_6WK8Y0Xtc,447
406
+ fusion_bench/utils/__init__.py,sha256=XbmQGNmzVKnPLodevlM15iEIXCFx3hled7Vni4fzPYc,504
393
407
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
394
408
  fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
395
409
  fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
396
410
  fusion_bench/utils/devices.py,sha256=MIAxbEGinN-QU4W1g3-YKkJsteHQrwhbLqkmbzX1W3U,8035
397
411
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
398
- fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
412
+ fusion_bench/utils/dtype.py,sha256=qtsDFfm5XTuxsjvVg-orpWvbhebCvyivzzZbLg-xiaA,4327
399
413
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
400
- fusion_bench/utils/fabric.py,sha256=X2B_QPT2kqDPceQo3tp4XYAKbBpIs07w94Je_h2_81w,355
414
+ fusion_bench/utils/fabric.py,sha256=dF0Aj8NmVir30io6WcL5gpWmbQSPlEADvw_yFxFx1sQ,613
401
415
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
402
416
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
403
417
  fusion_bench/utils/instantiate_utils.py,sha256=57D8YP25OO-ArltOSsHDKtnNcA44m1yAq-1wKZc2YVI,17523
404
418
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
405
419
  fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
406
- fusion_bench/utils/lazy_state_dict.py,sha256=0KBd3j6A_T_9-m8t68tSDpQZB_MWk9-cwho3O_8PkXY,10150
420
+ fusion_bench/utils/lazy_state_dict.py,sha256=xb_NM4F653_HiPK8OClG3oTPuPk4SaarfCtLLg87Yi8,13347
407
421
  fusion_bench/utils/misc.py,sha256=Rgec7eKcGIcp9BaFVdm2pzx0J-L8AyX5qWuiYNTGvTc,530
408
422
  fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
409
423
  fusion_bench/utils/parameters.py,sha256=2vs8vo2o-nRA9NOMOYFye-X8-aHQZoYe54tM6n0r0RE,11757
410
424
  fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
411
- fusion_bench/utils/pylogger.py,sha256=05gF2DNtdQG_Ldw029ufj4_IprBpciMVOznwpgaJUpI,3282
425
+ fusion_bench/utils/pylogger.py,sha256=amlRsdqHpOjxmBl6f9TA8y0LaWelEWgQNcGgEGsVOIc,3333
412
426
  fusion_bench/utils/rich_utils.py,sha256=B8DhAYuVp23pG6ZnnYrUhcL-ikHZoQeTNqlM7u4pwwU,5786
413
427
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
414
428
  fusion_bench/utils/state_dict_arithmetic.py,sha256=iz5YYhMJpg2-lBLBY8E1onV4i_GkRhJOGn2DjhLBbYE,11390
@@ -422,7 +436,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
422
436
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
423
437
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
424
438
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
425
- fusion_bench-0.2.17.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
439
+ fusion_bench-0.2.18.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
426
440
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
427
441
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
428
442
  fusion_bench_config/fabric_model_fusion.yaml,sha256=YwJx_aUXm4ca4_mVItKVUOesMvmBBRGudQIOqgc1EP8,974
@@ -525,6 +539,7 @@ fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sR
525
539
  fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
526
540
  fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
527
541
  fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=Pv8I-xbxrpTb_fwtDiUtCAEoCZ8QYCLu2GeJNzb3Z3c,373
542
+ fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
528
543
  fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=w9ZP1i8lRYQFslzEM98PmbcFhhn5dXReSJhLOdEi-do,381
529
544
  fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
530
545
  fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
@@ -567,6 +582,8 @@ fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKl
567
582
  fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
568
583
  fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJqp8Q8S8W1k7VZG9ulyPxkcuaWsw,54
569
584
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
585
+ fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
586
+ fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
570
587
  fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
571
588
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
572
589
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
@@ -858,8 +875,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
858
875
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
859
876
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
860
877
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
861
- fusion_bench-0.2.17.dist-info/METADATA,sha256=cBTM1-Dfm6gdMfQ6vqrxpg7o5abvCwn3b1zb4KUSgHY,21966
862
- fusion_bench-0.2.17.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
863
- fusion_bench-0.2.17.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
864
- fusion_bench-0.2.17.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
865
- fusion_bench-0.2.17.dist-info/RECORD,,
878
+ fusion_bench-0.2.18.dist-info/METADATA,sha256=igyW5oJQzJfuEagCgyNbi0MvXp-Rz56u3FPtIHJFG5Y,21966
879
+ fusion_bench-0.2.18.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
880
+ fusion_bench-0.2.18.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
881
+ fusion_bench-0.2.18.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
882
+ fusion_bench-0.2.18.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ # https://mlflow.org/
2
+ _target_: lightning.pytorch.loggers.MLFlowLogger
@@ -0,0 +1,6 @@
1
+ Original repo: https://github.com/Lucky-Lance/Expert_Sparsity
2
+
3
+ Reference:
4
+ Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models.
5
+ ACL 2024.
6
+ http://arxiv.org/abs/2402.14800
@@ -0,0 +1,17 @@
1
+ _target_: fusion_bench.method.LayerWisePruningForMixtral
2
+ num_preserved_experts: 4
3
+ # c4 or math
4
+ # corresponding to the keys of `fusion_bench.method.expert_sparsity.utils.calibration_data.DATASETS`
5
+ calib_set: c4
6
+ # Maximal sequence length of each sample in calibration set
7
+ max_block_size: 2048
8
+ # Number of sequences in calibration set. If set to 0 or negative, the whole dataset will be used
9
+ n_blocks_for_stat: 128
10
+ # Batch size for model inference
11
+ batch_size: 8
12
+ # Number of workers in dataloader
13
+ num_workers: 8
14
+ # Random seed
15
+ seed: 42
16
+ # Path to save the pruned model
17
+ model_save_path: "{log_dir}/pruned_model"