fusion-bench 0.2.16__py3-none-any.whl → 0.2.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. fusion_bench/method/__init__.py +11 -0
  2. fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +1 -1
  3. fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +1 -1
  4. fusion_bench/method/base_algorithm.py +1 -0
  5. fusion_bench/method/dawe/dawe_for_clip.py +1 -1
  6. fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +3 -2
  7. fusion_bench/method/expert_sparsity/__init__.py +10 -0
  8. fusion_bench/method/expert_sparsity/mixtral/__init__.py +23 -0
  9. fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +175 -0
  10. fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +159 -0
  11. fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +173 -0
  12. fusion_bench/method/expert_sparsity/utils/calibration_data.py +153 -0
  13. fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +1 -1
  14. fusion_bench/method/knots/__init__.py +0 -0
  15. fusion_bench/method/knots/knots_utils.py +23 -0
  16. fusion_bench/method/pwe_moe/module.py +2 -7
  17. fusion_bench/method/simple_average.py +3 -2
  18. fusion_bench/method/task_singular_vector/TSVM.py +238 -25
  19. fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +52 -20
  20. fusion_bench/method/task_singular_vector/utils/__init__.py +1 -0
  21. fusion_bench/method/task_singular_vector/utils/task_singular_interference.py +41 -0
  22. fusion_bench/mixins/hydra_config.py +1 -1
  23. fusion_bench/mixins/lightning_fabric.py +25 -1
  24. fusion_bench/mixins/serialization.py +18 -2
  25. fusion_bench/modelpool/base_pool.py +1 -0
  26. fusion_bench/modelpool/causal_lm/causal_lm.py +8 -5
  27. fusion_bench/modelpool/clip_vision/modelpool.py +21 -13
  28. fusion_bench/models/__init__.py +1 -0
  29. fusion_bench/models/expert_sparsity/__init__.py +0 -0
  30. fusion_bench/models/expert_sparsity/mixtral/__init__.py +15 -0
  31. fusion_bench/models/expert_sparsity/mixtral/dataset.py +40 -0
  32. fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py +207 -0
  33. fusion_bench/models/expert_sparsity/mixtral/wrapper.py +268 -0
  34. fusion_bench/models/parameter_dict.py +6 -1
  35. fusion_bench/programs/fabric_fusion_program.py +21 -13
  36. fusion_bench/taskpool/base_pool.py +1 -0
  37. fusion_bench/taskpool/dummy.py +6 -4
  38. fusion_bench/utils/__init__.py +4 -3
  39. fusion_bench/utils/dtype.py +2 -1
  40. fusion_bench/utils/fabric.py +11 -4
  41. fusion_bench/utils/{instantiate.py → instantiate_utils.py} +3 -0
  42. fusion_bench/utils/lazy_state_dict.py +80 -10
  43. fusion_bench/utils/pylogger.py +30 -0
  44. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/METADATA +3 -1
  45. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/RECORD +59 -38
  46. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/WHEEL +1 -1
  47. fusion_bench_config/fabric/loggers/mlflow_logger.yaml +2 -0
  48. fusion_bench_config/fabric_model_fusion.yaml +2 -2
  49. fusion_bench_config/method/expert_sparsity/README.md +6 -0
  50. fusion_bench_config/method/expert_sparsity/mixtral.yaml +17 -0
  51. fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -1
  52. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +16 -0
  53. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +16 -0
  54. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +16 -0
  55. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +19 -0
  56. fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -1
  57. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/entry_points.txt +0 -0
  58. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/licenses/LICENSE +0 -0
  59. {fusion_bench-0.2.16.dist-info → fusion_bench-0.2.18.dist-info}/top_level.txt +0 -0
@@ -42,20 +42,20 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
42
42
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
43
43
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
44
44
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- fusion_bench/method/__init__.py,sha256=xry6_2sAWT_qeNFgcLTE7lBWWWjGhuljrJFeWL1NBXg,7552
46
- fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
45
+ fusion_bench/method/__init__.py,sha256=TMELBu1IdKN86Id1rlNlr-vqsdArti_6mlKLfobHoL4,7888
46
+ fusion_bench/method/base_algorithm.py,sha256=UuITuGnSskcKEwUVINuPoWJUwqGm9AIgyQIOCu8BMks,1162
47
47
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
48
48
  fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
49
49
  fusion_bench/method/model_recombination.py,sha256=2tviqmYSPOL0_Ktv8_gt_YzQ4tyCANHxXquUot_3Cgo,5360
50
- fusion_bench/method/simple_average.py,sha256=2ghcL1E-eLbIYDCHYCoR9WtiYSb1GvFAH163OTTTEEI,4481
50
+ fusion_bench/method/simple_average.py,sha256=vVzlfdf0mPHeY3VeOLrcWI4sWoLBW0gaX0lusjePVyQ,4539
51
51
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
52
52
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
53
53
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
54
54
  fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=UUSldRPBxHVOfkMM7ZwqZay5Wjc6XQ3Vy9PgyqV_TZo,1311
55
55
  fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=rREVf8SKlQ9SiWdUWOYo91b1RW9PnNJxsW8MxHs_MUo,6095
56
56
  fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
57
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=osc6ueCgiS4u8KUV_sZkHGFBYC8dThnTSp4NB0wkQIg,12915
58
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=jTGUbhJCV1pcJ5k5jVeAhmtHdbHK5LlEfBhF-86xWjY,13773
57
+ fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=c_19Q5zXlFHM4PNH3XdijO7Mf10TOuyWG0RwjPeuygM,12921
58
+ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z9aQDXzjF42VPmvV-XTVPe4SyopfwYIE,13779
59
59
  fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=6d1vWuyiAQDh_kLLrZixPyTAxovOjfq-2T2hgLGXCWg,9734
60
60
  fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
61
61
  fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
@@ -78,16 +78,22 @@ fusion_bench/method/dare/task_arithmetic.py,sha256=Seno_2BhuogdRxXOni8alnHG-fdW1
78
78
  fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
79
79
  fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
80
80
  fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
81
- fusion_bench/method/dawe/dawe_for_clip.py,sha256=bF4U0_skxyPR-5RCdGQCgudqhC1Hj2x62w_xUibFg1c,9828
81
+ fusion_bench/method/dawe/dawe_for_clip.py,sha256=sbDLQDZtTUup-EL8HXU5X8QHfyAfSdjz2AdR9Gp3HDg,9834
82
82
  fusion_bench/method/dawe/warppers/__init__.py,sha256=pxpWh6S3Trfno00ECJc_hpkz5VxKzL7lkqd07F2Ermk,530
83
83
  fusion_bench/method/dawe/warppers/dawe_model.py,sha256=Z1L91vu3UzEHWrHs9i9UbwZpn6ewjrcstw_fOtQPl1g,9856
84
84
  fusion_bench/method/depth_upscaling/__init__.py,sha256=heVUh4tTzK427A10RFknf9eHwoZ1cpn1_0xyNXRU7YM,135
85
85
  fusion_bench/method/depth_upscaling/depth_upscaling.py,sha256=pf08zEae-WaWM4oUwn6_Dm65K59wf9AbTQ5iZU0ydsc,3256
86
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py,sha256=bSMhnrG-JtR0JBnOFy7aWAhD6A-YBB84qm_YnWjc7pA,2180
86
+ fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py,sha256=WkycELr_Rml_R2COphOnhGYy_Klw7Mr-hGuiPMnh24s,2218
87
87
  fusion_bench/method/doge_ta/__init__.py,sha256=dixO0i5fmhgC_W2_DAQ4PzYnkMCZX5D8tDz84soqQ-Q,59
88
88
  fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=UUSldRPBxHVOfkMM7ZwqZay5Wjc6XQ3Vy9PgyqV_TZo,1311
89
89
  fusion_bench/method/doge_ta/doge_ta.py,sha256=ec0qIq3F72nhbCVlfqdk1PYFM7QIlfMofeVFVvmDKiE,13785
90
90
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
91
+ fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
92
+ fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
93
+ fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=e4fsXKSjCdmK-sThX6REk_d1hf-UolRLssQr7b6jD-M,5597
94
+ fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=GJVIose_Duk4C6Re4LtaxSzGjR8XLGGlhLhsGMECwjw,4960
95
+ fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=-0qWYkvHqKouJynn-kT907JQtiMLChtppOTL4SUYR9M,5090
96
+ fusion_bench/method/expert_sparsity/utils/calibration_data.py,sha256=jEWW60qXrnAyiAPz8gbpvQ4hFeL1P1ykoIzoydAaDAk,5459
91
97
  fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqvesqk2NJw5AY_1ztLVE,225
92
98
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
93
99
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=OiceW0bqvnzGjIyIjd0A55ckXImDfEvi-Nk6td0sFFw,20892
@@ -100,7 +106,7 @@ fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1
100
106
  fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=UPiy6FlCMDZEz7pBOopwr5w9cn_flp8XSAfYbBGpA7g,1207
101
107
  fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
102
108
  fusion_bench/method/gossip/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
103
- fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=q9rCy20ljoTfLz7QJexILUnTHAcZ7AuZMlSJiw58108,15668
109
+ fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=H4KpVkZtcm90GCWodHNJYChxUj3beXn3GajqI4iNiYw,15674
104
110
  fusion_bench/method/gossip/layer_wise_gossip.py,sha256=btcQxAZ6LepJMGPbsUsypAOlmGfUjKu2GfeTg_BfaVw,17173
105
111
  fusion_bench/method/gossip/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
106
112
  fusion_bench/method/gossip/task_wise_gossip.py,sha256=auHdJ-EXAXSHBTw5VA6JlavvShoi-n_HkraZ3JMcLUU,9227
@@ -108,6 +114,8 @@ fusion_bench/method/gossip/utils.py,sha256=ggMPRdxs--U2sV670oimX7jo8NGBX5Oq8Mlpr
108
114
  fusion_bench/method/isotropic_merging/__init__.py,sha256=yyx1Exfrf_4CtTjml1CIplFeeEDsSUk2Zc0AJ98ST9M,584
109
115
  fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4Rd0WcEPsYvQhBSCg,3773
110
116
  fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
117
+ fusion_bench/method/knots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
118
+ fusion_bench/method/knots/knots_utils.py,sha256=NWlzo4nhQypUcNknU832MP3QT42VsLx-6WQ9QXuSigw,795
111
119
  fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
112
120
  fusion_bench/method/linear/expo.py,sha256=LCHTWlsPm1Mjhrq0mfpWLVC7skkI9ZksGduy3TxULoU,3939
113
121
  fusion_bench/method/linear/linear_interpolation.py,sha256=IONw9BPiRJouY8bE9Abfyz7qVI_1B1n8KGZa0f7Pza8,2157
@@ -158,7 +166,7 @@ fusion_bench/method/pruning/wanda_utils/prune_opt.py,sha256=onfIRAF0yFi9b1GNDS9D
158
166
  fusion_bench/method/pruning/wanda_utils/sparsegpt.py,sha256=V1FEIGgSFbPT5YPrYXCWhz1lLXaor6RwfNund7EEIWM,5434
159
167
  fusion_bench/method/pwe_moe/__init__.py,sha256=gZUhbqCtCeVSip3nyt5rNSrEDqtByl2ILcWrD4Z3jx4,124
160
168
  fusion_bench/method/pwe_moe/clip_pwe_moe.py,sha256=eXNeHfukHFwdSQxNGITmKe6DWjPPr58KQrgtZbPgrjo,11274
161
- fusion_bench/method/pwe_moe/module.py,sha256=l7heyHbdbFh0w9X6O3mB6AjL0ipJEF82DvwApESQCEc,12335
169
+ fusion_bench/method/pwe_moe/module.py,sha256=mQbVbE6y-Q2zxifF1_k13UGGx_I725V9aUkRumjIDHI,12251
162
170
  fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o5XaLCsHohjWOEd7lJc,18354
163
171
  fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
164
172
  fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
@@ -195,11 +203,12 @@ fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk
195
203
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
196
204
  fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=qhOLb0kXDdgHCgqOAASwwXDTK0gnaiUVI1N72ZJLUyI,5617
197
205
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
198
- fusion_bench/method/task_singular_vector/TSVM.py,sha256=H5RzZlQQeF4kZFjuxkz8v3gyVKS3iKPgqNnitKQzbXk,2787
206
+ fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
199
207
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
200
208
  fusion_bench/method/task_singular_vector/utils/TSVC_utils.py,sha256=FytKbal48EW6iGIA-2zV7QSVbYTVflXr4Mr56q0W75k,2286
201
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=dsTMQ15zFJ1MPqDOt2TJ01O9Bwq_klyG9xL9hRD2aI0,27521
202
- fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Pgthb9Ld1x0Qis1wKWottwgzlBcyuzByFZCMIoI6Fys,240
209
+ fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsNVpceHamQytZi-q4wzrCmGGQCYOm67mI,29146
210
+ fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
211
+ fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
203
212
  fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
204
213
  fusion_bench/method/ties_merging/ties_merging.py,sha256=GAlomW4oTePXd57TvogQXoliNnEto1_QVXVGVrU1QNc,5807
205
214
  fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
@@ -227,25 +236,25 @@ fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k
227
236
  fusion_bench/mixins/__init__.py,sha256=8wUBjN03Pfs1aHrwvnBioqVIuPNwi50hJgUlfLoOFeY,1113
228
237
  fusion_bench/mixins/clip_classification.py,sha256=2Q20bEfRcRx9cg79ubCVpsey3TtpWa8jxk-N_JZVueY,10162
229
238
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
230
- fusion_bench/mixins/hydra_config.py,sha256=WeluM5Qeaoh31mvf9bJL-hRpS2CwNEtVXRMxnBTnL80,1536
231
- fusion_bench/mixins/lightning_fabric.py,sha256=6S1-rV6ItNQDSu7GM4qB99s8rnNXdO4PZDiQI4w0-DU,6593
239
+ fusion_bench/mixins/hydra_config.py,sha256=upAUOQVygdwIe8RA-zgZgihM9q6n-7QDV7Ar_Y4Gzhw,1542
240
+ fusion_bench/mixins/lightning_fabric.py,sha256=Vuu71VVvyqf7aaCXVWwIgWySMoUCIplDCAA-UUOcKmo,7401
232
241
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
233
242
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
234
- fusion_bench/mixins/serialization.py,sha256=9W50JUcM6wgFlaE9H29mATLLVobYniSDxg94FfY25w0,4049
243
+ fusion_bench/mixins/serialization.py,sha256=lulNZuBl-6H3tEJPS0_M746eoUgvESNXNiOO3dyzEWc,4679
235
244
  fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
236
245
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
237
246
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
238
247
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
239
248
  fusion_bench/modelpool/__init__.py,sha256=Oh21MYHCNguLQYFrQXEsNhqr8vNAXUG7jS-Rwv9Qhec,1510
240
- fusion_bench/modelpool/base_pool.py,sha256=KCNRVirODjssWZWswkC63gjcBhIbx9k_ub9h9JV4l2o,9089
249
+ fusion_bench/modelpool/base_pool.py,sha256=FrPjnA_L1Bj3YkHfxGo-zVrOrqpLJDRacD58sKa4Jmo,9119
241
250
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
242
251
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
243
252
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
244
253
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
245
254
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
246
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=fO8lF8YWwoe43sVVOqHW9Ike7x-924-I6QQgZqx9EgA,6505
255
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=dkumbKspfEJhp3gtlZC71zUutdfJOKpKZnHy5z97qbc,6727
247
256
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
248
- fusion_bench/modelpool/clip_vision/modelpool.py,sha256=JH1wLdWefvE242SYpXTnoSLkKX-YcadnidWd2bo8tWQ,5486
257
+ fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ADgzslXwYd95x42V26XvgS09WEKGfhH_AYuQmWKdT0w,5887
249
258
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
250
259
  fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
251
260
  fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
@@ -253,9 +262,9 @@ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgV
253
262
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=k-t4RetcDlbkRkPHNuyeV3pQEcJnFRjd9Wp5tFBb-G8,128
254
263
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
255
264
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=sIKAmGJwfrNSuWtxzJ_-ME0gQksEYY2y-jVt7P82Qs0,3434
256
- fusion_bench/models/__init__.py,sha256=TNOEH_2yAQP51m9mdWepNEf9VGUZgDthtgXbs4rhb4M,100
265
+ fusion_bench/models/__init__.py,sha256=w2QbRl-nIHMHNCl9X46f2CD6oqZfEDAxGRs4G9cw2nw,145
257
266
  fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
258
- fusion_bench/models/parameter_dict.py,sha256=lkVaK6xInqHoQ3_N6zx8CNKH4dnf8AP8H9xAY6ds6lg,3515
267
+ fusion_bench/models/parameter_dict.py,sha256=RBAXZ-PFLxy3eHxQqWLEvjKIR1uTHBWdKP0XXMNGmQg,3635
259
268
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
260
269
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
261
270
  fusion_bench/models/sparse_we_moe.py,sha256=b-yIeCsl2rz0i7BP9g_fqCEam7KUNjNX_J8oyZV6MJ8,16509
@@ -264,6 +273,11 @@ fusion_bench/models/we_moe.py,sha256=0U-m3mhzb4vFLIzn2jd7j_SQOF9lot4ddzq0l_VPp9g
264
273
  fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
265
274
  fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
266
275
  fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
276
+ fusion_bench/models/expert_sparsity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
277
+ fusion_bench/models/expert_sparsity/mixtral/__init__.py,sha256=3L_dcXW3op6ichd3GTlrTEZF_UA57Pyr13SlQRer7lg,439
278
+ fusion_bench/models/expert_sparsity/mixtral/dataset.py,sha256=1-OxRbK-TRaQBJuOfnuzQKSV_55mMRV6iqKWBuX5BIM,1350
279
+ fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py,sha256=uGbn69toZ3ldHZKfwXNBijjcPQXeDdXpwJv3HnVwUbc,8252
280
+ fusion_bench/models/expert_sparsity/mixtral/wrapper.py,sha256=1zACEwXDNbi9uwI96oD84YrCsh6b8yh25ZjP3q37muo,10167
267
281
  fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
268
282
  fusion_bench/models/linearized/linearized_model_utils.py,sha256=5yKXReQHIwDttzT_oXwY_iIpaG1zIU0Nv93BWmmOqrg,3212
269
283
  fusion_bench/models/linearized/vision_model.py,sha256=HhbhtyoLD1qVvh1Sgl_beYF2W7AvMevmUy4Jx2XlcsY,4636
@@ -326,7 +340,7 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
326
340
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
327
341
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
328
342
  fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
329
- fusion_bench/programs/fabric_fusion_program.py,sha256=lzSkoCb8L_FKzl0urQqOLTT1VXqV721mjjlJgdm3zKM,13112
343
+ fusion_bench/programs/fabric_fusion_program.py,sha256=978t9Fw9kvw-Il7rJLR2jNI1OfSxkhq1c5-5D4BgnYU,13813
330
344
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
331
345
  fusion_bench/scripts/cli.py,sha256=hw32XtmixFxYXwgAY7iRBMzma_XQjdf_FxPiXKL6dIc,1154
332
346
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
@@ -335,8 +349,8 @@ fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw
335
349
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
336
350
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
337
351
  fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
338
- fusion_bench/taskpool/base_pool.py,sha256=Cbe3ZgJ34DWSDZeZEjlgqR0b84aM1i68D9-vomaooo8,852
339
- fusion_bench/taskpool/dummy.py,sha256=Di9JZO3XyDYn6wAGukrJMTnkS_NaxGTeQYo_3j1JD3Y,1675
352
+ fusion_bench/taskpool/base_pool.py,sha256=vNr_zLtDtFSwU4nwss8tRJ6Qh0Rx541Z0AL0L60iBTk,881
353
+ fusion_bench/taskpool/dummy.py,sha256=1xUDrzqtwd8APSXThoeseA_EfqHpEib9iCJu1cm2yeI,1783
340
354
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
341
355
  fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
342
356
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
@@ -389,26 +403,26 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
389
403
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
390
404
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
391
405
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
392
- fusion_bench/utils/__init__.py,sha256=r4ahPkqUsZTSyP6-P6dhaE1CFl5ttbQ3A_w1YW4i_40,441
406
+ fusion_bench/utils/__init__.py,sha256=XbmQGNmzVKnPLodevlM15iEIXCFx3hled7Vni4fzPYc,504
393
407
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
394
408
  fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
395
409
  fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
396
410
  fusion_bench/utils/devices.py,sha256=MIAxbEGinN-QU4W1g3-YKkJsteHQrwhbLqkmbzX1W3U,8035
397
411
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
398
- fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
412
+ fusion_bench/utils/dtype.py,sha256=qtsDFfm5XTuxsjvVg-orpWvbhebCvyivzzZbLg-xiaA,4327
399
413
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
400
- fusion_bench/utils/fabric.py,sha256=X2B_QPT2kqDPceQo3tp4XYAKbBpIs07w94Je_h2_81w,355
414
+ fusion_bench/utils/fabric.py,sha256=dF0Aj8NmVir30io6WcL5gpWmbQSPlEADvw_yFxFx1sQ,613
401
415
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
402
416
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
403
- fusion_bench/utils/instantiate.py,sha256=Q82pa96V5kKsci_D-Vvb6GWcUwjITqrjTzUGrf3MeBI,17407
417
+ fusion_bench/utils/instantiate_utils.py,sha256=57D8YP25OO-ArltOSsHDKtnNcA44m1yAq-1wKZc2YVI,17523
404
418
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
405
419
  fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
406
- fusion_bench/utils/lazy_state_dict.py,sha256=0KBd3j6A_T_9-m8t68tSDpQZB_MWk9-cwho3O_8PkXY,10150
420
+ fusion_bench/utils/lazy_state_dict.py,sha256=xb_NM4F653_HiPK8OClG3oTPuPk4SaarfCtLLg87Yi8,13347
407
421
  fusion_bench/utils/misc.py,sha256=Rgec7eKcGIcp9BaFVdm2pzx0J-L8AyX5qWuiYNTGvTc,530
408
422
  fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
409
423
  fusion_bench/utils/parameters.py,sha256=2vs8vo2o-nRA9NOMOYFye-X8-aHQZoYe54tM6n0r0RE,11757
410
424
  fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
411
- fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4KI,2468
425
+ fusion_bench/utils/pylogger.py,sha256=amlRsdqHpOjxmBl6f9TA8y0LaWelEWgQNcGgEGsVOIc,3333
412
426
  fusion_bench/utils/rich_utils.py,sha256=B8DhAYuVp23pG6ZnnYrUhcL-ikHZoQeTNqlM7u4pwwU,5786
413
427
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
414
428
  fusion_bench/utils/state_dict_arithmetic.py,sha256=iz5YYhMJpg2-lBLBY8E1onV4i_GkRhJOGn2DjhLBbYE,11390
@@ -422,10 +436,10 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
422
436
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
423
437
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
424
438
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
425
- fusion_bench-0.2.16.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
439
+ fusion_bench-0.2.18.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
426
440
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
427
441
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
428
- fusion_bench_config/fabric_model_fusion.yaml,sha256=5iPgaM8UOhuvBW2Hap_csst-eqlYRwb_lru8ngjrZ_g,948
442
+ fusion_bench_config/fabric_model_fusion.yaml,sha256=YwJx_aUXm4ca4_mVItKVUOesMvmBBRGudQIOqgc1EP8,974
429
443
  fusion_bench_config/llama_full_finetune.yaml,sha256=z7YPC6plyIqnMEngiK7sFvcVrppConhhqEpbGPpElQY,769
430
444
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
431
445
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
@@ -525,6 +539,7 @@ fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sR
525
539
  fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
526
540
  fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
527
541
  fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=Pv8I-xbxrpTb_fwtDiUtCAEoCZ8QYCLu2GeJNzb3Z3c,373
542
+ fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
528
543
  fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=w9ZP1i8lRYQFslzEM98PmbcFhhn5dXReSJhLOdEi-do,381
529
544
  fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
530
545
  fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
@@ -567,6 +582,8 @@ fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKl
567
582
  fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
568
583
  fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJqp8Q8S8W1k7VZG9ulyPxkcuaWsw,54
569
584
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
585
+ fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
586
+ fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
570
587
  fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
571
588
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
572
589
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
@@ -617,7 +634,7 @@ fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEF
617
634
  fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
618
635
  fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2Icd8LKN5YJEi5LwNSGo-Gp4Xg7wBC4,826
619
636
  fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
620
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=21vs14DEf2qg7Tqm5wNnjkpsjTRJbVs8JGl4SlrijDM,168
637
+ fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=jgRDs2J3f6628QVMEVeW5ShmyaChvQl8Ng3AiQbNbtE,202
621
638
  fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
622
639
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
623
640
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
@@ -757,6 +774,7 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.y
757
774
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml,sha256=gGVJbI9LqenrGlFL3OCIqUxpf8IGM5GaXajgi9qVe1Y,380
758
775
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml,sha256=V-p1JLhNwILgR0F4i6l8oOEQvZcYxs3J0Ly0VeAJY48,380
759
776
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml,sha256=xYr0g5mdv0wly5HkTcnLq5yG6Mjj78XB7fGaCTk5KEc,256
777
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml,sha256=V93v7cjxF0ZPJj0wX76Q-hSNvolUaTtoeWuAImSU53g,524
760
778
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml,sha256=2WtCV1cJEEK3R-t4Tf-YB1AIZl-d0FkE6C0CsUBm9fw,625
761
779
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml,sha256=BmQ0JP8Oa5_V5pJ55nJS1xR-OIPmvySSqQ36l2jAB1w,625
762
780
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml,sha256=FeUppoZLOvjfsHt326aB2E9MT_b0yOkrKVBFZAkSVOI,337
@@ -765,6 +783,9 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustne
765
783
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=txMh1k0O3Spusqewp7zV0N0L9e2fg87lviDEnNJSHGQ,900
766
784
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml,sha256=SBTyUX3wJwzdCTvZsW14FqaQP5r_nHPvusggGzP9P4o,148
767
785
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml,sha256=urlcrY5TEDOFJqYYmbaIY2Mi6_jIRdECnqo1gXWnPyU,390
786
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml,sha256=kC_DbHgZoC6p2-26e-jtjMS9mxyHMT-_B684UNQ59vo,533
787
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml,sha256=BeF2ygrcElkvPlUo9LV9XxBO1Y75XxDSSS52cU-gNq4,503
788
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml,sha256=Dl08CAHcqbUPZkOYTAycJ_clkAPvkDSpxPxsY0uz54o,591
768
789
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=fYthV8iwRvF-b4-OCIFW1Rud-BVoLx4Oo3DzVszfqek,175
769
790
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml,sha256=5uw3lD-bdHNQ76osDb0SBnzsdWABw08HYtUkDG-jioI,477
770
791
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml,sha256=-Tt_YggxkuIGT4_q5FR16zPvW2wWhGJ5LL8omxvHjvw,380
@@ -850,12 +871,12 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397
850
871
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml,sha256=2AqMiNCRRunLIrssHvFzu1lUzOaQn8uOHM9yjrQq-_A,109
851
872
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=DNm1LRlQS9KbukEl6oEZzWLizyaOBcYZ2r7L8ZQtnJc,434
852
873
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=EjN3Pu1F_7EuZrk-geyL4qohqJ5-F2UFjWjj2V57ju0,433
853
- fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=45kSz44pcjTDCL3dnEECRMnN0kIaoWKUFZMFy5JJIyw,416
874
+ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaMSdxLOxzomrruDmu2pJo8oQD95S7y3S20_4,415
854
875
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
855
876
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
856
877
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
857
- fusion_bench-0.2.16.dist-info/METADATA,sha256=WhxJXXVCu3q6poHTd0VSc1WGGlZwyzOTyDI_UyeRask,21721
858
- fusion_bench-0.2.16.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
859
- fusion_bench-0.2.16.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
860
- fusion_bench-0.2.16.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
861
- fusion_bench-0.2.16.dist-info/RECORD,,
878
+ fusion_bench-0.2.18.dist-info/METADATA,sha256=igyW5oJQzJfuEagCgyNbi0MvXp-Rz56u3FPtIHJFG5Y,21966
879
+ fusion_bench-0.2.18.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
880
+ fusion_bench-0.2.18.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
881
+ fusion_bench-0.2.18.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
882
+ fusion_bench-0.2.18.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.8.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,2 @@
1
+ # https://mlflow.org/
2
+ _target_: lightning.pytorch.loggers.MLFlowLogger
@@ -9,11 +9,11 @@ defaults:
9
9
  _target_: fusion_bench.programs.FabricModelFusionProgram
10
10
  _recursive_: false
11
11
  fast_dev_run: false # Run a single batch of data to test the model or method
12
- # Run the script without actually running the experiment, use with `print_config=true`.
12
+ # Run the script without actually running the experiment, use with `print_config=true`.
13
13
  # You can also use `--cfg` or `-c` to show the configuration instead of running.
14
14
  dry_run: false
15
15
  print_config: true # Print the configuration to the console
16
16
  merged_model_save_path: null # path to save the merged model, use "{log_dir}" to refer to the logger directory, for example `merged_model_save_path=\{log_dir\}/merged_model`
17
17
  merged_model_save_kwargs: null
18
- report_save_path: null # path to save the result report
18
+ report_save_path: "{log_dir}/program_report.json" # path to save the result report
19
19
  print_function_call: true # set to false if you don't want to print the details of instantiate calls
@@ -0,0 +1,6 @@
1
+ Original repo: https://github.com/Lucky-Lance/Expert_Sparsity
2
+
3
+ Reference:
4
+ Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models.
5
+ ACL 2024.
6
+ http://arxiv.org/abs/2402.14800
@@ -0,0 +1,17 @@
1
+ _target_: fusion_bench.method.LayerWisePruningForMixtral
2
+ num_preserved_experts: 4
3
+ # c4 or math
4
+ # corresponding to the keys of `fusion_bench.method.expert_sparsity.utils.calibration_data.DATASETS`
5
+ calib_set: c4
6
+ # Maximal sequence length of each sample in calibration set
7
+ max_block_size: 2048
8
+ # Number of sequences in calibration set. If set to 0 or negative, the whole dataset will be used
9
+ n_blocks_for_stat: 128
10
+ # Batch size for model inference
11
+ batch_size: 8
12
+ # Number of workers in dataloader
13
+ num_workers: 8
14
+ # Random seed
15
+ seed: 42
16
+ # Path to save the pruned model
17
+ model_save_path: "{log_dir}/pruned_model"
@@ -1,7 +1,8 @@
1
1
  _target_: fusion_bench.method.TaskSingularVectorMerging
2
- remove_keys: null
2
+ exclude_keys: null
3
3
  # alpha is a float or a list of floats
4
4
  # example:
5
5
  # alpha: 1
6
6
  # alpha: [1, 0.5, 0.25]
7
7
  alpha: 1
8
+ return_single_task_models: false
@@ -0,0 +1,16 @@
1
+ defaults:
2
+ - /model/clip-vit@models:
3
+ - clip-vit-base-patch32
4
+ - clip-vit-base-patch32_stanford-cars
5
+ - clip-vit-base-patch32_dtd
6
+ - /dataset/image_classification/train@train_datasets:
7
+ - stanford-cars
8
+ - dtd
9
+ - /dataset/image_classification/test@test_datasets:
10
+ - stanford-cars
11
+ - dtd
12
+ _target_: fusion_bench.modelpool.CLIPVisionModelPool
13
+ _recursive_: False
14
+ processor:
15
+ _target_: transformers.CLIPProcessor.from_pretrained
16
+ pretrained_model_name_or_path: openai/clip-vit-base-patch32
@@ -0,0 +1,16 @@
1
+ defaults:
2
+ - /model/clip-vit@models:
3
+ - clip-vit-base-patch32
4
+ - clip-vit-base-patch32_sun397
5
+ - clip-vit-base-patch32_stanford-cars
6
+ - /dataset/image_classification/train@train_datasets:
7
+ - sun397
8
+ - stanford-cars
9
+ - /dataset/image_classification/test@test_datasets:
10
+ - sun397
11
+ - stanford-cars
12
+ _target_: fusion_bench.modelpool.CLIPVisionModelPool
13
+ _recursive_: False
14
+ processor:
15
+ _target_: transformers.CLIPProcessor.from_pretrained
16
+ pretrained_model_name_or_path: openai/clip-vit-base-patch32
@@ -0,0 +1,16 @@
1
+ defaults:
2
+ - /model/clip-vit@models:
3
+ - clip-vit-base-patch32
4
+ - clip-vit-base-patch32_sun397
5
+ - clip-vit-base-patch32_dtd
6
+ - /dataset/image_classification/train@train_datasets:
7
+ - sun397
8
+ - dtd
9
+ - /dataset/image_classification/test@test_datasets:
10
+ - sun397
11
+ - dtd
12
+ _target_: fusion_bench.modelpool.CLIPVisionModelPool
13
+ _recursive_: False
14
+ processor:
15
+ _target_: transformers.CLIPProcessor.from_pretrained
16
+ pretrained_model_name_or_path: openai/clip-vit-base-patch32
@@ -0,0 +1,19 @@
1
+ defaults:
2
+ - /model/clip-vit@models:
3
+ - clip-vit-base-patch32
4
+ - clip-vit-base-patch32_sun397
5
+ - clip-vit-base-patch32_stanford-cars
6
+ - clip-vit-base-patch32_dtd
7
+ - /dataset/image_classification/train@train_datasets:
8
+ - sun397
9
+ - stanford-cars
10
+ - dtd
11
+ - /dataset/image_classification/test@test_datasets:
12
+ - sun397
13
+ - stanford-cars
14
+ - dtd
15
+ _target_: fusion_bench.modelpool.CLIPVisionModelPool
16
+ _recursive_: False
17
+ processor:
18
+ _target_: transformers.CLIPProcessor.from_pretrained
19
+ pretrained_model_name_or_path: openai/clip-vit-base-patch32
@@ -1,5 +1,4 @@
1
1
  _target_: fusion_bench.taskpool.LMEvalHarnessTaskPool
2
-
3
2
  tasks:
4
3
  - truthfulqa
5
4
  batch_size: 1