fusion-bench 0.2.15__py3-none-any.whl → 0.2.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (104) hide show
  1. fusion_bench/method/__init__.py +4 -0
  2. fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +1 -1
  3. fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +1 -1
  4. fusion_bench/method/base_algorithm.py +1 -0
  5. fusion_bench/method/dawe/dawe_for_clip.py +1 -1
  6. fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +3 -2
  7. fusion_bench/method/fw_merging/__init__.py +2 -0
  8. fusion_bench/method/fw_merging/fw_hard.py +448 -0
  9. fusion_bench/method/fw_merging/fw_soft.py +519 -0
  10. fusion_bench/method/fw_merging/utils.py +331 -0
  11. fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py +1 -1
  12. fusion_bench/method/moe_pruner/__init__.py +7 -0
  13. fusion_bench/method/moe_pruner/hooks/__init__.py +6 -0
  14. fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +85 -0
  15. fusion_bench/method/moe_pruner/hooks/hook.py +23 -0
  16. fusion_bench/method/moe_pruner/hooks/mixtral.py +93 -0
  17. fusion_bench/method/moe_pruner/moe_pruner.py +304 -0
  18. fusion_bench/method/moe_pruner/utils/__init__.py +1 -0
  19. fusion_bench/method/moe_pruner/utils/data.py +154 -0
  20. fusion_bench/method/moe_pruner/utils/layerwrapper.py +61 -0
  21. fusion_bench/method/moe_pruner/utils/prune.py +313 -0
  22. fusion_bench/method/moe_pruner/utils/score.py +41 -0
  23. fusion_bench/method/pruning/__init__.py +1 -0
  24. fusion_bench/method/pruning/llama_sparsegpt_prune.py +223 -0
  25. fusion_bench/method/pruning/sparsegpt_utils/__init__.py +1 -0
  26. fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +128 -0
  27. fusion_bench/method/pruning/wanda_utils/data.py +33 -14
  28. fusion_bench/method/pwe_moe/module.py +2 -7
  29. fusion_bench/method/randes/__init__.py +15 -0
  30. fusion_bench/method/randes/base_algorithm.py +1013 -0
  31. fusion_bench/method/randes/modelsoup.py +126 -0
  32. fusion_bench/method/randes/task_arithmetic.py +318 -0
  33. fusion_bench/method/simple_average.py +3 -2
  34. fusion_bench/method/sparselo/sparselo.py +20 -2
  35. fusion_bench/method/tall_mask/__init__.py +1 -0
  36. fusion_bench/method/tall_mask/task_arithmetic.py +133 -0
  37. fusion_bench/method/task_singular_vector/TSVM.py +238 -25
  38. fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +52 -20
  39. fusion_bench/mixins/hydra_config.py +1 -1
  40. fusion_bench/mixins/lightning_fabric.py +25 -1
  41. fusion_bench/mixins/serialization.py +18 -2
  42. fusion_bench/modelpool/base_pool.py +1 -0
  43. fusion_bench/modelpool/clip_vision/modelpool.py +21 -13
  44. fusion_bench/modelpool/lazy_state_dict_pool.py +15 -0
  45. fusion_bench/models/modeling_deepseek_v2/__init__.py +15 -0
  46. fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +208 -0
  47. fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +1922 -0
  48. fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +38 -0
  49. fusion_bench/models/parameter_dict.py +6 -1
  50. fusion_bench/programs/fabric_fusion_program.py +14 -5
  51. fusion_bench/taskpool/base_pool.py +1 -0
  52. fusion_bench/taskpool/clip_vision/taskpool.py +8 -1
  53. fusion_bench/taskpool/dummy.py +6 -4
  54. fusion_bench/utils/__init__.py +2 -1
  55. fusion_bench/utils/data.py +1 -1
  56. fusion_bench/utils/{instantiate.py → instantiate_utils.py} +3 -0
  57. fusion_bench/utils/lazy_state_dict.py +268 -0
  58. fusion_bench/utils/parameters.py +33 -0
  59. fusion_bench/utils/pylogger.py +28 -0
  60. fusion_bench/utils/state_dict_arithmetic.py +74 -2
  61. fusion_bench/utils/type.py +1 -0
  62. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/METADATA +8 -2
  63. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/RECORD +104 -44
  64. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/WHEEL +1 -1
  65. fusion_bench_config/dataset/image_classification/test/TALL10.yaml +28 -0
  66. fusion_bench_config/dataset/image_classification/test/TALL12.yaml +28 -0
  67. fusion_bench_config/dataset/image_classification/test/TALL16.yaml +28 -0
  68. fusion_bench_config/dataset/image_classification/test/TALL18.yaml +28 -0
  69. fusion_bench_config/dataset/image_classification/train/TALL10.yaml +28 -0
  70. fusion_bench_config/dataset/image_classification/train/TALL12.yaml +28 -0
  71. fusion_bench_config/dataset/image_classification/train/TALL16.yaml +28 -0
  72. fusion_bench_config/dataset/image_classification/train/TALL18.yaml +28 -0
  73. fusion_bench_config/fabric_model_fusion.yaml +2 -2
  74. fusion_bench_config/method/fw_merging/fw_hard.yaml +11 -0
  75. fusion_bench_config/method/fw_merging/fw_soft.yaml +12 -0
  76. fusion_bench_config/method/moe_pruner/moe_pruner.yaml +15 -0
  77. fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +16 -0
  78. fusion_bench_config/method/randes/superposed_model_soup.yaml +18 -0
  79. fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +20 -0
  80. fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +20 -0
  81. fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +2 -1
  82. fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
  83. fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
  84. fusion_bench_config/method/tall_mask/task_arithmetic.yaml +4 -0
  85. fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -1
  86. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +29 -0
  87. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +29 -0
  88. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +29 -0
  89. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +29 -0
  90. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +8 -0
  91. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +8 -0
  92. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +8 -0
  93. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +8 -0
  94. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml +16 -0
  95. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml +16 -0
  96. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml +16 -0
  97. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml +19 -0
  98. fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +15 -0
  99. fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +14 -0
  100. fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +69 -0
  101. fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml +0 -1
  102. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/entry_points.txt +0 -0
  103. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/licenses/LICENSE +0 -0
  104. {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.17.dist-info}/top_level.txt +0 -0
@@ -42,20 +42,20 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
42
42
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
43
43
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
44
44
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- fusion_bench/method/__init__.py,sha256=CzRMLnKUGkacVM1-81j2f_ySs1vNlG7tR4HucPhloLM,7331
46
- fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
45
+ fusion_bench/method/__init__.py,sha256=xry6_2sAWT_qeNFgcLTE7lBWWWjGhuljrJFeWL1NBXg,7552
46
+ fusion_bench/method/base_algorithm.py,sha256=UuITuGnSskcKEwUVINuPoWJUwqGm9AIgyQIOCu8BMks,1162
47
47
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
48
48
  fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
49
49
  fusion_bench/method/model_recombination.py,sha256=2tviqmYSPOL0_Ktv8_gt_YzQ4tyCANHxXquUot_3Cgo,5360
50
- fusion_bench/method/simple_average.py,sha256=2ghcL1E-eLbIYDCHYCoR9WtiYSb1GvFAH163OTTTEEI,4481
50
+ fusion_bench/method/simple_average.py,sha256=vVzlfdf0mPHeY3VeOLrcWI4sWoLBW0gaX0lusjePVyQ,4539
51
51
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
52
52
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
53
53
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
54
54
  fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=UUSldRPBxHVOfkMM7ZwqZay5Wjc6XQ3Vy9PgyqV_TZo,1311
55
55
  fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=rREVf8SKlQ9SiWdUWOYo91b1RW9PnNJxsW8MxHs_MUo,6095
56
56
  fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
57
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=osc6ueCgiS4u8KUV_sZkHGFBYC8dThnTSp4NB0wkQIg,12915
58
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=jTGUbhJCV1pcJ5k5jVeAhmtHdbHK5LlEfBhF-86xWjY,13773
57
+ fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py,sha256=c_19Q5zXlFHM4PNH3XdijO7Mf10TOuyWG0RwjPeuygM,12921
58
+ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z9aQDXzjF42VPmvV-XTVPe4SyopfwYIE,13779
59
59
  fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=6d1vWuyiAQDh_kLLrZixPyTAxovOjfq-2T2hgLGXCWg,9734
60
60
  fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
61
61
  fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
@@ -78,12 +78,12 @@ fusion_bench/method/dare/task_arithmetic.py,sha256=Seno_2BhuogdRxXOni8alnHG-fdW1
78
78
  fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
79
79
  fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
80
80
  fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
81
- fusion_bench/method/dawe/dawe_for_clip.py,sha256=bF4U0_skxyPR-5RCdGQCgudqhC1Hj2x62w_xUibFg1c,9828
81
+ fusion_bench/method/dawe/dawe_for_clip.py,sha256=sbDLQDZtTUup-EL8HXU5X8QHfyAfSdjz2AdR9Gp3HDg,9834
82
82
  fusion_bench/method/dawe/warppers/__init__.py,sha256=pxpWh6S3Trfno00ECJc_hpkz5VxKzL7lkqd07F2Ermk,530
83
83
  fusion_bench/method/dawe/warppers/dawe_model.py,sha256=Z1L91vu3UzEHWrHs9i9UbwZpn6ewjrcstw_fOtQPl1g,9856
84
84
  fusion_bench/method/depth_upscaling/__init__.py,sha256=heVUh4tTzK427A10RFknf9eHwoZ1cpn1_0xyNXRU7YM,135
85
85
  fusion_bench/method/depth_upscaling/depth_upscaling.py,sha256=pf08zEae-WaWM4oUwn6_Dm65K59wf9AbTQ5iZU0ydsc,3256
86
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py,sha256=bSMhnrG-JtR0JBnOFy7aWAhD6A-YBB84qm_YnWjc7pA,2180
86
+ fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py,sha256=WkycELr_Rml_R2COphOnhGYy_Klw7Mr-hGuiPMnh24s,2218
87
87
  fusion_bench/method/doge_ta/__init__.py,sha256=dixO0i5fmhgC_W2_DAQ4PzYnkMCZX5D8tDz84soqQ-Q,59
88
88
  fusion_bench/method/doge_ta/clip_layer_wise_adamerging.py,sha256=UUSldRPBxHVOfkMM7ZwqZay5Wjc6XQ3Vy9PgyqV_TZo,1311
89
89
  fusion_bench/method/doge_ta/doge_ta.py,sha256=ec0qIq3F72nhbCVlfqdk1PYFM7QIlfMofeVFVvmDKiE,13785
@@ -92,11 +92,15 @@ fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqve
92
92
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
93
93
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=OiceW0bqvnzGjIyIjd0A55ckXImDfEvi-Nk6td0sFFw,20892
94
94
  fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
95
+ fusion_bench/method/fw_merging/__init__.py,sha256=JyF4BIafap83MI8wHJhOX1VRC2J7Olj4ApirPuEkrJI,90
96
+ fusion_bench/method/fw_merging/fw_hard.py,sha256=mLo-W7k171-wG98DLgisrqqCd6mK5bA2j94XqUo34MQ,17164
97
+ fusion_bench/method/fw_merging/fw_soft.py,sha256=KxgVhRg-abyu1uJU3Mic8tN2U0Ge3oZCGzrqtySOCu4,20730
98
+ fusion_bench/method/fw_merging/utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
95
99
  fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1beJjNCbc8,198
96
100
  fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=UPiy6FlCMDZEz7pBOopwr5w9cn_flp8XSAfYbBGpA7g,1207
97
101
  fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
98
102
  fusion_bench/method/gossip/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
99
- fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=q9rCy20ljoTfLz7QJexILUnTHAcZ7AuZMlSJiw58108,15668
103
+ fusion_bench/method/gossip/flan_t5_layer_wise_gossip.py,sha256=H4KpVkZtcm90GCWodHNJYChxUj3beXn3GajqI4iNiYw,15674
100
104
  fusion_bench/method/gossip/layer_wise_gossip.py,sha256=btcQxAZ6LepJMGPbsUsypAOlmGfUjKu2GfeTg_BfaVw,17173
101
105
  fusion_bench/method/gossip/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
102
106
  fusion_bench/method/gossip/task_wise_gossip.py,sha256=auHdJ-EXAXSHBTw5VA6JlavvShoi-n_HkraZ3JMcLUU,9227
@@ -118,21 +122,35 @@ fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9
118
122
  fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
119
123
  fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
120
124
  fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=tQYAeS8MLFEfH3zDFfNZrML7lRnpGLN-HquQvjPtHNw,11208
125
+ fusion_bench/method/moe_pruner/__init__.py,sha256=UzOxEoA9PwLg7fmJXNeksDv9cO6iE9nV9g1ZhZLnBiQ,165
126
+ fusion_bench/method/moe_pruner/moe_pruner.py,sha256=DWj1YHSHssc6no0yoTEftozl-YVdxPUsAE9uGcKmaIY,11459
127
+ fusion_bench/method/moe_pruner/hooks/__init__.py,sha256=oOz0MA38L-5Chjp84KuzecO4k7cNOai53hi8__5y6m8,137
128
+ fusion_bench/method/moe_pruner/hooks/deepseek_v2.py,sha256=JYi47CeEMkngIkB8ARYElCwA3__2hVaK2YU3QCBTfNo,2684
129
+ fusion_bench/method/moe_pruner/hooks/hook.py,sha256=xSzz4B2JplA6zoEPBO8jc-e9lCbF22D7lc8ZnhIxzTg,492
130
+ fusion_bench/method/moe_pruner/hooks/mixtral.py,sha256=EGm5AwvA4ysOznXOicLTl6YSMwRCpYbwSQym7aFYJSw,2864
131
+ fusion_bench/method/moe_pruner/utils/__init__.py,sha256=67M1SB-4uX-TSJzGq_z5LtNLZMALreUQ7vrlDwncqFI,44
132
+ fusion_bench/method/moe_pruner/utils/data.py,sha256=ddZMfl8280-Q5VwUStsuhy2hcw--aXmzymkGA067tno,5517
133
+ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
134
+ fusion_bench/method/moe_pruner/utils/prune.py,sha256=vTLJQceP1qJeBCRrgEO2td5bR0AQSHyGFRqtASQF-TU,10570
135
+ fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
121
136
  fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
122
137
  fusion_bench/method/opcm/opcm.py,sha256=fIZtR8KZCUKTxo5URMZIVmDdb2Y6vugJaUvmg5tswdc,11655
123
138
  fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
124
139
  fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
125
140
  fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
126
141
  fusion_bench/method/opcm/weight_average.py,sha256=JfQoIU5J1jvrNKpO9k_t4Zj0y8PtteIfyoSQWx1yg2k,4379
127
- fusion_bench/method/pruning/__init__.py,sha256=3gtmay2bkdIAEGjpAhbY2ztMZOZLKhiJcKV3mCe2H5w,252
142
+ fusion_bench/method/pruning/__init__.py,sha256=g0poIEzp4kch1tJqeMQq4O3jtXm1hu_Wz4-bNV3ZPJY,312
128
143
  fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=40Gmy665S9XqIw027En6E5IlomOIcKECIRje7NDkH00,6300
129
144
  fusion_bench/method/pruning/llama_random_prune.py,sha256=EW7zfE-1a5VlPPrQ5xO1k1aqFcpPUfs5eSO_a4M1K90,4566
145
+ fusion_bench/method/pruning/llama_sparsegpt_prune.py,sha256=fMsfpBmNUZetH4YUg6lI9s4DBpVLJppwHwyIhdJj4_w,7480
130
146
  fusion_bench/method/pruning/llama_wanda_prune.py,sha256=8pcg3X1yn8vfhV0lEg1fHP3oTzAc_-ixLmsZRdH5uPo,12070
131
147
  fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=nXRHW87_Nwiash-udnwR9iOaJMBDo7fPTmAwmSqsAaI,6451
132
148
  fusion_bench/method/pruning/prune_utils.py,sha256=ITWO8WtrhcOYXTcjc_fAAw7cyjvqFa6axawPr3uTT68,5882
149
+ fusion_bench/method/pruning/sparsegpt_utils/__init__.py,sha256=XKA9h4nlbEEK4qu2y7LKGWaSSPj2CNK6rOcU01TtJD0,33
150
+ fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py,sha256=WNDIKZ1HWAjgZctiHBN2bbQfgJ_LBtf-6kCEDjaZYTk,4077
133
151
  fusion_bench/method/pruning/wanda_utils/__init__.py,sha256=ujOZ9GUTwzqfVjXUL0e6y_gAEfTQU85rBq2MZ5om7oQ,320
134
152
  fusion_bench/method/pruning/wanda_utils/ablate.py,sha256=TUKsbInQD3UmS8FpuFeco6FeTMaJLZXho9ASWRPcurc,6459
135
- fusion_bench/method/pruning/wanda_utils/data.py,sha256=uDLmjqLLXi8UrfKHfF2afwr8MnZV5G2d6Hw717d1jEk,4836
153
+ fusion_bench/method/pruning/wanda_utils/data.py,sha256=PAg5iHr8g11PAA_morIMrHpyWaOVzr8HYhcgP-md6Is,5507
136
154
  fusion_bench/method/pruning/wanda_utils/eval.py,sha256=YuxpIcIh8yMtZODKk4gSVM9p-Tx94jYP3PmagXGabVI,6987
137
155
  fusion_bench/method/pruning/wanda_utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
138
156
  fusion_bench/method/pruning/wanda_utils/prune.py,sha256=Jah6VduC0mKaDSehRx01rrUFWMYU0zvDyY7mPumHuGI,18564
@@ -140,11 +158,15 @@ fusion_bench/method/pruning/wanda_utils/prune_opt.py,sha256=onfIRAF0yFi9b1GNDS9D
140
158
  fusion_bench/method/pruning/wanda_utils/sparsegpt.py,sha256=V1FEIGgSFbPT5YPrYXCWhz1lLXaor6RwfNund7EEIWM,5434
141
159
  fusion_bench/method/pwe_moe/__init__.py,sha256=gZUhbqCtCeVSip3nyt5rNSrEDqtByl2ILcWrD4Z3jx4,124
142
160
  fusion_bench/method/pwe_moe/clip_pwe_moe.py,sha256=eXNeHfukHFwdSQxNGITmKe6DWjPPr58KQrgtZbPgrjo,11274
143
- fusion_bench/method/pwe_moe/module.py,sha256=l7heyHbdbFh0w9X6O3mB6AjL0ipJEF82DvwApESQCEc,12335
161
+ fusion_bench/method/pwe_moe/module.py,sha256=mQbVbE6y-Q2zxifF1_k13UGGx_I725V9aUkRumjIDHI,12251
144
162
  fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o5XaLCsHohjWOEd7lJc,18354
145
163
  fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
146
164
  fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
147
165
  fusion_bench/method/pwe_moe/phn/solvers.py,sha256=OO-ImNwsWIQ3eXPxzj1V-kNgXrJc4FKcK-RwaOl_np0,6156
166
+ fusion_bench/method/randes/__init__.py,sha256=v7iJFBxBcMrYn76qeWgd4qG083Y761bFVRH39tWxkJo,453
167
+ fusion_bench/method/randes/base_algorithm.py,sha256=DK21zxJ4RUOEvwNg495Q9fFvDDpSlqvuX8YFmQ_m2ls,45680
168
+ fusion_bench/method/randes/modelsoup.py,sha256=aMmtWAcneFw6XvLe0jVOG3iOkp2zZkoA3yvexcdxlic,5657
169
+ fusion_bench/method/randes/task_arithmetic.py,sha256=vwDvRs6BkL3HbXaI1lQz38VeMnaBrRTJIqYy7aVFDrI,14214
148
170
  fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcfrFL5EMw34YNHeE,119
149
171
  fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
150
172
  fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
@@ -164,18 +186,19 @@ fusion_bench/method/sparse_we_moe/__init__.py,sha256=V5VOpLwn6ZpsM09TmwFhhlJwMTB
164
186
  fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6FUQACvSmM364QHlVBYMKOCPbHrU,10288
165
187
  fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
166
188
  fusion_bench/method/sparselo/__init__.py,sha256=0Uk4Hq5b9iwc5yl2QTDwvBHUItN4V6lwhxDYQrFb724,107
167
- fusion_bench/method/sparselo/sparselo.py,sha256=qkfFwovdOA7-NUXtLYiV1iM9bglQJydfuL805azQ6Xc,38806
189
+ fusion_bench/method/sparselo/sparselo.py,sha256=U3eIjLcz484Tq7kbQry_U7YFiTx3ECOeJbg7PnXVtfc,39573
168
190
  fusion_bench/method/surgery/__init__.py,sha256=6sRKWeL8cx6Jy2aC9tRL78irNTJnp9w75K2dAxBxhho,88
169
191
  fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=Cc8LiAqkQzJwQJsyuazG5wgq6kghVcyL8rGkhPcBVoU,5936
170
- fusion_bench/method/tall_mask/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
192
+ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuYwIzvwkrr0ILY,61
193
+ fusion_bench/method/tall_mask/task_arithmetic.py,sha256=xtxUVeI-Ler4Wgx8lrt-GlCr-Yth0jNsacvA_rPctJo,4601
171
194
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
172
195
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
173
196
  fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=qhOLb0kXDdgHCgqOAASwwXDTK0gnaiUVI1N72ZJLUyI,5617
174
197
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
175
- fusion_bench/method/task_singular_vector/TSVM.py,sha256=H5RzZlQQeF4kZFjuxkz8v3gyVKS3iKPgqNnitKQzbXk,2787
198
+ fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
176
199
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
177
200
  fusion_bench/method/task_singular_vector/utils/TSVC_utils.py,sha256=FytKbal48EW6iGIA-2zV7QSVbYTVflXr4Mr56q0W75k,2286
178
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=dsTMQ15zFJ1MPqDOt2TJ01O9Bwq_klyG9xL9hRD2aI0,27521
201
+ fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsNVpceHamQytZi-q4wzrCmGGQCYOm67mI,29146
179
202
  fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Pgthb9Ld1x0Qis1wKWottwgzlBcyuzByFZCMIoI6Fys,240
180
203
  fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
181
204
  fusion_bench/method/ties_merging/ties_merging.py,sha256=GAlomW4oTePXd57TvogQXoliNnEto1_QVXVGVrU1QNc,5807
@@ -204,24 +227,25 @@ fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k
204
227
  fusion_bench/mixins/__init__.py,sha256=8wUBjN03Pfs1aHrwvnBioqVIuPNwi50hJgUlfLoOFeY,1113
205
228
  fusion_bench/mixins/clip_classification.py,sha256=2Q20bEfRcRx9cg79ubCVpsey3TtpWa8jxk-N_JZVueY,10162
206
229
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
207
- fusion_bench/mixins/hydra_config.py,sha256=WeluM5Qeaoh31mvf9bJL-hRpS2CwNEtVXRMxnBTnL80,1536
208
- fusion_bench/mixins/lightning_fabric.py,sha256=6S1-rV6ItNQDSu7GM4qB99s8rnNXdO4PZDiQI4w0-DU,6593
230
+ fusion_bench/mixins/hydra_config.py,sha256=upAUOQVygdwIe8RA-zgZgihM9q6n-7QDV7Ar_Y4Gzhw,1542
231
+ fusion_bench/mixins/lightning_fabric.py,sha256=Vuu71VVvyqf7aaCXVWwIgWySMoUCIplDCAA-UUOcKmo,7401
209
232
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
210
233
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
211
- fusion_bench/mixins/serialization.py,sha256=9W50JUcM6wgFlaE9H29mATLLVobYniSDxg94FfY25w0,4049
234
+ fusion_bench/mixins/serialization.py,sha256=lulNZuBl-6H3tEJPS0_M746eoUgvESNXNiOO3dyzEWc,4679
212
235
  fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
213
236
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
214
237
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
215
238
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
216
239
  fusion_bench/modelpool/__init__.py,sha256=Oh21MYHCNguLQYFrQXEsNhqr8vNAXUG7jS-Rwv9Qhec,1510
217
- fusion_bench/modelpool/base_pool.py,sha256=KCNRVirODjssWZWswkC63gjcBhIbx9k_ub9h9JV4l2o,9089
240
+ fusion_bench/modelpool/base_pool.py,sha256=FrPjnA_L1Bj3YkHfxGo-zVrOrqpLJDRacD58sKa4Jmo,9119
218
241
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
219
242
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
243
+ fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
220
244
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
221
245
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
222
246
  fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=fO8lF8YWwoe43sVVOqHW9Ike7x-924-I6QQgZqx9EgA,6505
223
247
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
224
- fusion_bench/modelpool/clip_vision/modelpool.py,sha256=JH1wLdWefvE242SYpXTnoSLkKX-YcadnidWd2bo8tWQ,5486
248
+ fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ADgzslXwYd95x42V26XvgS09WEKGfhH_AYuQmWKdT0w,5887
225
249
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
226
250
  fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
227
251
  fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
@@ -231,7 +255,7 @@ fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU
231
255
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=sIKAmGJwfrNSuWtxzJ_-ME0gQksEYY2y-jVt7P82Qs0,3434
232
256
  fusion_bench/models/__init__.py,sha256=TNOEH_2yAQP51m9mdWepNEf9VGUZgDthtgXbs4rhb4M,100
233
257
  fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
234
- fusion_bench/models/parameter_dict.py,sha256=lkVaK6xInqHoQ3_N6zx8CNKH4dnf8AP8H9xAY6ds6lg,3515
258
+ fusion_bench/models/parameter_dict.py,sha256=RBAXZ-PFLxy3eHxQqWLEvjKIR1uTHBWdKP0XXMNGmQg,3635
235
259
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
236
260
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
237
261
  fusion_bench/models/sparse_we_moe.py,sha256=b-yIeCsl2rz0i7BP9g_fqCEam7KUNjNX_J8oyZV6MJ8,16509
@@ -254,6 +278,10 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
254
278
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
255
279
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
256
280
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
281
+ fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=sDsf53IDcy0umE_0JouUSuZVvbqBaYE9_LUFxvucDUI,505
282
+ fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
283
+ fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=_qDCPMRPEMCXzZwJMJGSQ0FjMAZ9qkB7fCUK_feteKA,78677
284
+ fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py,sha256=nj3nGvasPLZlnGwe_Cc6m77eppucqxu5hF30BjdDMqg,1364
257
285
  fusion_bench/models/modeling_losparse_llama/__init__.py,sha256=26twHBq8im8dAJ1DmDGgSCr3Aco2lQlH6Jf-A2jOOC4,187
258
286
  fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py,sha256=nkJ9Fl0emmUWtFcIcFAW7lnSQV9dVp1xbef3o5kAsYo,11116
259
287
  fusion_bench/models/modeling_losparse_llama/losparse_linear.py,sha256=Pp-idKJITzFbsRStetBO0TQ8sTtX7-bvSzX8SQAf_nU,2416
@@ -298,7 +326,7 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
298
326
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
299
327
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
300
328
  fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
301
- fusion_bench/programs/fabric_fusion_program.py,sha256=WOA9a2hxAKq0aykT4FLwHAyaFTo1XkYLU8fpiyOSX0o,12885
329
+ fusion_bench/programs/fabric_fusion_program.py,sha256=r-CuvS_OxADXjQgqNm2E_poSvIx1GCMjcyRCMWrwU1w,13427
302
330
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
303
331
  fusion_bench/scripts/cli.py,sha256=hw32XtmixFxYXwgAY7iRBMzma_XQjdf_FxPiXKL6dIc,1154
304
332
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
@@ -307,15 +335,15 @@ fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw
307
335
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
308
336
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
309
337
  fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
310
- fusion_bench/taskpool/base_pool.py,sha256=Cbe3ZgJ34DWSDZeZEjlgqR0b84aM1i68D9-vomaooo8,852
311
- fusion_bench/taskpool/dummy.py,sha256=Di9JZO3XyDYn6wAGukrJMTnkS_NaxGTeQYo_3j1JD3Y,1675
338
+ fusion_bench/taskpool/base_pool.py,sha256=vNr_zLtDtFSwU4nwss8tRJ6Qh0Rx541Z0AL0L60iBTk,881
339
+ fusion_bench/taskpool/dummy.py,sha256=1xUDrzqtwd8APSXThoeseA_EfqHpEib9iCJu1cm2yeI,1783
312
340
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
313
341
  fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
314
342
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
315
343
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
316
344
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
317
345
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
318
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=k-cJ3tHQ-mMkmsga_wYOh1nhleCsFALr8E1teJ3_M7w,14949
346
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=bTeR6AFBVZjZqKoaVKYVEXedYoYUGsw93EhM4eLZsQE,15340
319
347
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
320
348
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
321
349
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -361,10 +389,10 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
361
389
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
362
390
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
363
391
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
364
- fusion_bench/utils/__init__.py,sha256=fogKvcbYQx2nhj4-NWeeUg0xWUKA30lVJBxJpoPdFA0,398
392
+ fusion_bench/utils/__init__.py,sha256=E_K0a1V761KJCn623tL23QpqcnngIcLYo_6WK8Y0Xtc,447
365
393
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
366
394
  fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
367
- fusion_bench/utils/data.py,sha256=qLwuXZTUd9MEK-8h71vvB-CZ85Uz3iuaUUAyEXSh-h8,6575
395
+ fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
368
396
  fusion_bench/utils/devices.py,sha256=MIAxbEGinN-QU4W1g3-YKkJsteHQrwhbLqkmbzX1W3U,8035
369
397
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
370
398
  fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
@@ -372,20 +400,21 @@ fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,23
372
400
  fusion_bench/utils/fabric.py,sha256=X2B_QPT2kqDPceQo3tp4XYAKbBpIs07w94Je_h2_81w,355
373
401
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
374
402
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
375
- fusion_bench/utils/instantiate.py,sha256=Q82pa96V5kKsci_D-Vvb6GWcUwjITqrjTzUGrf3MeBI,17407
403
+ fusion_bench/utils/instantiate_utils.py,sha256=57D8YP25OO-ArltOSsHDKtnNcA44m1yAq-1wKZc2YVI,17523
376
404
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
377
405
  fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
406
+ fusion_bench/utils/lazy_state_dict.py,sha256=0KBd3j6A_T_9-m8t68tSDpQZB_MWk9-cwho3O_8PkXY,10150
378
407
  fusion_bench/utils/misc.py,sha256=Rgec7eKcGIcp9BaFVdm2pzx0J-L8AyX5qWuiYNTGvTc,530
379
408
  fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
380
- fusion_bench/utils/parameters.py,sha256=-WBZ2jlzxavuFZAEOamAMVtQSZs2F2QV5GcSBMpUd-8,10804
409
+ fusion_bench/utils/parameters.py,sha256=2vs8vo2o-nRA9NOMOYFye-X8-aHQZoYe54tM6n0r0RE,11757
381
410
  fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
382
- fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4KI,2468
411
+ fusion_bench/utils/pylogger.py,sha256=05gF2DNtdQG_Ldw029ufj4_IprBpciMVOznwpgaJUpI,3282
383
412
  fusion_bench/utils/rich_utils.py,sha256=B8DhAYuVp23pG6ZnnYrUhcL-ikHZoQeTNqlM7u4pwwU,5786
384
413
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
385
- fusion_bench/utils/state_dict_arithmetic.py,sha256=dVPBkO8Te9_VANPbetV59ORAQTw7D3css_-d0lYgK4k,9062
414
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=iz5YYhMJpg2-lBLBY8E1onV4i_GkRhJOGn2DjhLBbYE,11390
386
415
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
387
416
  fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
388
- fusion_bench/utils/type.py,sha256=Jz--BmTAzQkxcXXZfGiQLzLR0IPktrFGdjiWhkE93Qg,567
417
+ fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
389
418
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
390
419
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
391
420
  fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
@@ -393,17 +422,21 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
393
422
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
394
423
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
395
424
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
396
- fusion_bench-0.2.15.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
425
+ fusion_bench-0.2.17.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
397
426
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
398
427
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
399
- fusion_bench_config/fabric_model_fusion.yaml,sha256=5iPgaM8UOhuvBW2Hap_csst-eqlYRwb_lru8ngjrZ_g,948
428
+ fusion_bench_config/fabric_model_fusion.yaml,sha256=YwJx_aUXm4ca4_mVItKVUOesMvmBBRGudQIOqgc1EP8,974
400
429
  fusion_bench_config/llama_full_finetune.yaml,sha256=z7YPC6plyIqnMEngiK7sFvcVrppConhhqEpbGPpElQY,769
401
430
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
402
431
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
403
432
  fusion_bench_config/nyuv2_config.yaml,sha256=yZctiexNVwsXEgKgS3j-OlItzvsQNIuWIKRPBFNdfYM,490
404
433
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=RfsrboIpL9Cct2RkRrKxXAqH4jLi1NECHbwH8iOGtDY,591
405
434
  fusion_bench_config/dataset/image_classification/README.md,sha256=fgxqviGhqkJ-lPihQNG7I8bn-PhU5EDFBDQnH27xEmQ,321
435
+ fusion_bench_config/dataset/image_classification/test/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
436
+ fusion_bench_config/dataset/image_classification/test/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
406
437
  fusion_bench_config/dataset/image_classification/test/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
438
+ fusion_bench_config/dataset/image_classification/test/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
439
+ fusion_bench_config/dataset/image_classification/test/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
407
440
  fusion_bench_config/dataset/image_classification/test/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
408
441
  fusion_bench_config/dataset/image_classification/test/cifar10.yaml,sha256=2Ye2-sKdwf6li3IsoAADcFhey8SYMi23KEVpW6vqQ88,82
409
442
  fusion_bench_config/dataset/image_classification/test/cifar100.yaml,sha256=keK29rjT8M6PT6yhdA_bZfE51Omm26Ixh2ZnDoDs-vw,84
@@ -430,7 +463,11 @@ fusion_bench_config/dataset/image_classification/test/sun397.yaml,sha256=TvLUJ4_
430
463
  fusion_bench_config/dataset/image_classification/test/svhn.yaml,sha256=iMfBz3vYWGx8Qso-AdUE0I2vW7BnRVr0665QXMjKpBY,96
431
464
  fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml,sha256=x1-xurkOIQtWX-gpSwXDxA5fVY30KmrarS7EKaje33M,101
432
465
  fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml,sha256=qDWIQqdOnx48leM1NN_GwfcdWVrT-XqN3AMMBP4SnBQ,94
466
+ fusion_bench_config/dataset/image_classification/train/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
467
+ fusion_bench_config/dataset/image_classification/train/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
433
468
  fusion_bench_config/dataset/image_classification/train/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
469
+ fusion_bench_config/dataset/image_classification/train/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
470
+ fusion_bench_config/dataset/image_classification/train/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
434
471
  fusion_bench_config/dataset/image_classification/train/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
435
472
  fusion_bench_config/dataset/image_classification/train/cifar10.yaml,sha256=P7oGTFBr4_UkGJFIwzVCnvWNX9Q2grVyiYci4RmgVYw,83
436
473
  fusion_bench_config/dataset/image_classification/train/cifar100.yaml,sha256=WvrkH63eh4-qV4LSL2Pd7EdnchgQvaw-rP2eZ8WXl00,85
@@ -533,6 +570,8 @@ fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fj
533
570
  fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
534
571
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
535
572
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
573
+ fusion_bench_config/method/fw_merging/fw_hard.yaml,sha256=G6s5td3x1ZnUaELK9y726Du3XIDryTH3d21k79rbPTI,232
574
+ fusion_bench_config/method/fw_merging/fw_soft.yaml,sha256=Rlrg6AB14FLj3b2r-9UiUsf2IOhs4N4DXu8CIakb_4Q,235
536
575
  fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDLz6boZpd43zjEh8pymg4dXPfzQ,1041
537
576
  fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
538
577
  fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
@@ -548,17 +587,22 @@ fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t
548
587
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
549
588
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
550
589
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
590
+ fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
551
591
  fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
552
592
  fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
553
593
  fusion_bench_config/method/opcm/ties_merging.yaml,sha256=XOE1XzSdYXYzqev9bFD4g4prcmE1OiVINkVXsquizAA,541
554
594
  fusion_bench_config/method/opcm/weight_average.yaml,sha256=SmhftSJ_YXN6tn-0GuzQgjbE2sOd7YXoPYjDWzpY_9E,304
555
595
  fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
556
596
  fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
597
+ fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml,sha256=gC6Ss0n2tKSb4gyVfx45BvsFbVBGN-om4-2S1sKS-_w,505
557
598
  fusion_bench_config/method/pruning/llama_wanda_pruning.yaml,sha256=qKe5yIRsmK2KUyYENENWlw1qlGet9TpDhR-E_uO7vAw,501
558
599
  fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml,sha256=GsxsQ2L3kfsdD7A8o7UAHfiSbAGh53zVXdlYuEIEWR0,130
559
600
  fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml,sha256=IcKSDWqxmz18IuwfkXlaLVXfWPAA9Qk3BQEVCs41lJs,1095
560
601
  fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml,sha256=7fxDVq9Lxf3VTMfyyaBIjX40hIXunSqnXS-YfdBKYPE,1096
561
602
  fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml,sha256=fNvLr5700dptUGsExFS5MBUC6ZN3OQ5yOfIChUZA8oM,632
603
+ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE322-6vtmmjDls9itC-VRZjQW4e8f1UNY,513
604
+ fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
605
+ fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
562
606
  fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
563
607
  fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=dxSJMRam6YMks7zYx4ACgvrLP5cndxzraVO93SGhyYo,425
564
608
  fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o8tYQkhXxPV8lRf-dRNPIsOs,422
@@ -568,11 +612,12 @@ fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha2
568
612
  fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
569
613
  fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=Rdcub7yFFn-jKXrlFoj8LQk1cRbJm2do91pV-YMSzTE,378
570
614
  fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
571
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=1zfrT2FNmLyCivth4kzGR8Ai9jyQ87OXRbf4di4IE94,642
572
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=UPnMt_GoMSHOeOx5Sv0oHPRoPhhvVRC5zdVA38OTwSg,636
573
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=wGUDddZAtvQsTZx4mhZ1G3fIrFbyfWSr54nCpYSubuo,614
615
+ fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
616
+ fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
617
+ fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
574
618
  fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2Icd8LKN5YJEi5LwNSGo-Gp4Xg7wBC4,826
575
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=21vs14DEf2qg7Tqm5wNnjkpsjTRJbVs8JGl4SlrijDM,168
619
+ fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
620
+ fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=jgRDs2J3f6628QVMEVeW5ShmyaChvQl8Ng3AiQbNbtE,202
576
621
  fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
577
622
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
578
623
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
@@ -602,7 +647,11 @@ fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml,sha256=bKCK8
602
647
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml,sha256=i-KHKM5TpVatjeYFGIiR7RsQEZEncfCJjwPZsI4poUk,46
603
648
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml,sha256=ueUU5YbT90sPdr-ZxAfwZKEbEIfMF1FO6t8Ba4cChXs,42
604
649
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml,sha256=isHme17QM6vEirZ0lLtFf03gN0-5QWrsXMW2-ya46U0,43
650
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml,sha256=R-_Xr119-Cq5vdUX-uWGhzk3I68BA4YXCOJ55aEWqTU,1096
651
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml,sha256=w15VL2PH8tmuyeaySLOcQbCpUfdb_7kODCdEbb6a3vw,1091
605
652
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml,sha256=kuMIvKYA8H788FYoyhO2WugwWtL0Ji2oBJreS9F2128,787
653
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml,sha256=mAjNmcXx2kloP9f_rbwLfco9uXcc6uCKt7p38GhfCj0,1083
654
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml,sha256=Ye0DkzgQBidIN8tEJM9o2EWqTY3T8xkbFndwqk37hII,1079
606
655
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml,sha256=1RsY7kRdd-Tq0GHPfljqyu4W9lJwuX8BTk9PO4tk1AM,1075
607
656
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml,sha256=8gUqMtfzFB0nDnQ6FdPImZIXmFlUz6is6cIROmwDIfg,48
608
657
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml,sha256=tq2se6h7E5JSYyz4TIty4bs-YXAYiZwXEpOKLpdByT4,50
@@ -700,10 +749,15 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individu
700
749
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml,sha256=1oY5QXG7flQq1990eN8GyjS1kak-dLPZIusV_dYyJVo,250
701
750
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml,sha256=5-g4DRsD5RBr8As6mDD9V8pT1JxKKPIUjwK8O7vBOMQ,688
702
751
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml,sha256=NdefoS2vRA4byRgjwKh8OplRJB48vg3jaeYiSjwQfAQ,108
752
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml,sha256=uAVyNQQT16-oVB9CvxBNyoArni-giZDqkDPQogeJnP0,380
753
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml,sha256=K5AWiFweGQ9CxQ0Wk-1ucfAs25WFFcWtpFEiio521rI,380
703
754
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml,sha256=cmHBQY4zl4ySRJ5n11MIOzLERjPyxaFk1DGWFlrn-zQ,380
704
755
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml,sha256=_2t8TV9T7BAiQda5fKCRIryTPg3XHYEM3hQUJqD1lXs,256
756
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml,sha256=7Z4UVw3ManuEOw1D242UHn9uOv0LqUh2-uZt1M3718E,380
757
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml,sha256=gGVJbI9LqenrGlFL3OCIqUxpf8IGM5GaXajgi9qVe1Y,380
705
758
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml,sha256=V-p1JLhNwILgR0F4i6l8oOEQvZcYxs3J0Ly0VeAJY48,380
706
759
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml,sha256=xYr0g5mdv0wly5HkTcnLq5yG6Mjj78XB7fGaCTk5KEc,256
760
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_cars_and_dtd.yaml,sha256=V93v7cjxF0ZPJj0wX76Q-hSNvolUaTtoeWuAImSU53g,524
707
761
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml,sha256=2WtCV1cJEEK3R-t4Tf-YB1AIZl-d0FkE6C0CsUBm9fw,625
708
762
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml,sha256=BmQ0JP8Oa5_V5pJ55nJS1xR-OIPmvySSqQ36l2jAB1w,625
709
763
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml,sha256=FeUppoZLOvjfsHt326aB2E9MT_b0yOkrKVBFZAkSVOI,337
@@ -712,6 +766,9 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustne
712
766
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=txMh1k0O3Spusqewp7zV0N0L9e2fg87lviDEnNJSHGQ,900
713
767
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml,sha256=SBTyUX3wJwzdCTvZsW14FqaQP5r_nHPvusggGzP9P4o,148
714
768
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml,sha256=urlcrY5TEDOFJqYYmbaIY2Mi6_jIRdECnqo1gXWnPyU,390
769
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_cars.yaml,sha256=kC_DbHgZoC6p2-26e-jtjMS9mxyHMT-_B684UNQ59vo,533
770
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_and_dtd.yaml,sha256=BeF2ygrcElkvPlUo9LV9XxBO1Y75XxDSSS52cU-gNq4,503
771
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_sun397_cars_and_dtd.yaml,sha256=Dl08CAHcqbUPZkOYTAycJ_clkAPvkDSpxPxsY0uz54o,591
715
772
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml,sha256=fYthV8iwRvF-b4-OCIFW1Rud-BVoLx4Oo3DzVszfqek,175
716
773
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml,sha256=5uw3lD-bdHNQ76osDb0SBnzsdWABw08HYtUkDG-jioI,477
717
774
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml,sha256=-Tt_YggxkuIGT4_q5FR16zPvW2wWhGJ5LL8omxvHjvw,380
@@ -721,11 +778,13 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
721
778
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=yC2U_IoBAhawgSahY_mdi7ea5kJ2SSRPJ2FM-bA-E9M,510
722
779
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=a2nviqKSRNoQScYVbj5buq0PbUzmYJwNWdPBUoLaeV8,386
723
780
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=G6yvZuWOKb75RLn6tu2LPnwHUyvoxPfL_wqb_B11aZo,549
781
+ fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
724
782
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
725
783
  fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
726
784
  fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
727
785
  fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml,sha256=vU0q06OUa1UM_Xvp2t27Rl3F6EDgYWPnDxeyzUH-QVI,589
728
786
  fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml,sha256=MpgshGtmMXpUFRA1knjdGRVH4UgZbkkcTmCTrF3LlZk,573
787
+ fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml,sha256=trVErtaYjqWElrAjS7aQG8nFDNCvTUt_siK1s82jNOQ,448
729
788
  fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml,sha256=Kbpam1Hds5URMP35dXGdVibH-vTmYPh3xHMkhj6Mgtg,648
730
789
  fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml,sha256=FynhZ1PRvyzsyzrHIuMpGgQGRMlu_xI7earm-CeIVeY,824
731
790
  fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml,sha256=zQWfp7mYm6jQ8g41Eeh2d9vAbocZJ5btPX1ft9QpEZU,546
@@ -753,6 +812,7 @@ fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml,sha256=vx
753
812
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml,sha256=ehrmbx6ZBTCkCEco3AloiuqNxFHU42Igg3z9hmFSlUQ,184
754
813
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml,sha256=ySj-IxxdxwzyUAGP5QSngdgrpwTWY7-5BQFkno6uQXw,1821
755
814
  fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml,sha256=CJ5NQEzTbzkMmggfCUhRuOrzRoSfI-XlpCXqO-kcf7g,876
815
+ fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml,sha256=uOdai5ktA7ONw4D4MdI25D_RQIziegwrm6w0rtiKOZM,1731
756
816
  fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml,sha256=5mUbWYOcAEtfzMPsSoVZxtDqbhLlkHnI1y557cFa80k,623
757
817
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
758
818
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
@@ -794,12 +854,12 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397
794
854
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml,sha256=2AqMiNCRRunLIrssHvFzu1lUzOaQn8uOHM9yjrQq-_A,109
795
855
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=DNm1LRlQS9KbukEl6oEZzWLizyaOBcYZ2r7L8ZQtnJc,434
796
856
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=EjN3Pu1F_7EuZrk-geyL4qohqJ5-F2UFjWjj2V57ju0,433
797
- fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=45kSz44pcjTDCL3dnEECRMnN0kIaoWKUFZMFy5JJIyw,416
857
+ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaMSdxLOxzomrruDmu2pJo8oQD95S7y3S20_4,415
798
858
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
799
859
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
800
860
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
801
- fusion_bench-0.2.15.dist-info/METADATA,sha256=abOyRl-ejl7CvLRCaRP20vn7rdb5OF92GxS_S9qTK3Q,21171
802
- fusion_bench-0.2.15.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
803
- fusion_bench-0.2.15.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
804
- fusion_bench-0.2.15.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
805
- fusion_bench-0.2.15.dist-info/RECORD,,
861
+ fusion_bench-0.2.17.dist-info/METADATA,sha256=cBTM1-Dfm6gdMfQ6vqrxpg7o5abvCwn3b1zb4KUSgHY,21966
862
+ fusion_bench-0.2.17.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
863
+ fusion_bench-0.2.17.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
864
+ fusion_bench-0.2.17.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
865
+ fusion_bench-0.2.17.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.7.1)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ # - fer2013
18
+ # - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ - fashion_mnist
25
+ - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ # - fer2013
18
+ # - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+