fusion-bench 0.2.15__py3-none-any.whl → 0.2.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/method/__init__.py +4 -0
- fusion_bench/method/fw_merging/__init__.py +2 -0
- fusion_bench/method/fw_merging/fw_hard.py +448 -0
- fusion_bench/method/fw_merging/fw_soft.py +519 -0
- fusion_bench/method/fw_merging/utils.py +331 -0
- fusion_bench/method/moe_pruner/__init__.py +7 -0
- fusion_bench/method/moe_pruner/hooks/__init__.py +6 -0
- fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +85 -0
- fusion_bench/method/moe_pruner/hooks/hook.py +23 -0
- fusion_bench/method/moe_pruner/hooks/mixtral.py +93 -0
- fusion_bench/method/moe_pruner/moe_pruner.py +304 -0
- fusion_bench/method/moe_pruner/utils/__init__.py +1 -0
- fusion_bench/method/moe_pruner/utils/data.py +154 -0
- fusion_bench/method/moe_pruner/utils/layerwrapper.py +61 -0
- fusion_bench/method/moe_pruner/utils/prune.py +313 -0
- fusion_bench/method/moe_pruner/utils/score.py +41 -0
- fusion_bench/method/pruning/__init__.py +1 -0
- fusion_bench/method/pruning/llama_sparsegpt_prune.py +223 -0
- fusion_bench/method/pruning/sparsegpt_utils/__init__.py +1 -0
- fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +128 -0
- fusion_bench/method/pruning/wanda_utils/data.py +33 -14
- fusion_bench/method/randes/__init__.py +15 -0
- fusion_bench/method/randes/base_algorithm.py +1013 -0
- fusion_bench/method/randes/modelsoup.py +126 -0
- fusion_bench/method/randes/task_arithmetic.py +318 -0
- fusion_bench/method/sparselo/sparselo.py +20 -2
- fusion_bench/method/tall_mask/__init__.py +1 -0
- fusion_bench/method/tall_mask/task_arithmetic.py +133 -0
- fusion_bench/modelpool/lazy_state_dict_pool.py +15 -0
- fusion_bench/models/modeling_deepseek_v2/__init__.py +15 -0
- fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +208 -0
- fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +1922 -0
- fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +38 -0
- fusion_bench/programs/fabric_fusion_program.py +5 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +8 -1
- fusion_bench/utils/__init__.py +1 -0
- fusion_bench/utils/data.py +1 -1
- fusion_bench/utils/lazy_state_dict.py +268 -0
- fusion_bench/utils/parameters.py +33 -0
- fusion_bench/utils/state_dict_arithmetic.py +74 -2
- fusion_bench/utils/type.py +1 -0
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/METADATA +6 -2
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/RECORD +77 -21
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/WHEEL +1 -1
- fusion_bench_config/dataset/image_classification/test/TALL10.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/TALL12.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/TALL16.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/TALL18.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/TALL10.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/TALL12.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/TALL16.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/TALL18.yaml +28 -0
- fusion_bench_config/method/fw_merging/fw_hard.yaml +11 -0
- fusion_bench_config/method/fw_merging/fw_soft.yaml +12 -0
- fusion_bench_config/method/moe_pruner/moe_pruner.yaml +15 -0
- fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +16 -0
- fusion_bench_config/method/randes/superposed_model_soup.yaml +18 -0
- fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +20 -0
- fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +2 -1
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
- fusion_bench_config/method/tall_mask/task_arithmetic.yaml +4 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +8 -0
- fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +15 -0
- fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +14 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +69 -0
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.15.dist-info → fusion_bench-0.2.16.dist-info}/top_level.txt +0 -0
|
@@ -42,7 +42,7 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
|
|
|
42
42
|
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
43
43
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
44
44
|
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
45
|
-
fusion_bench/method/__init__.py,sha256=
|
|
45
|
+
fusion_bench/method/__init__.py,sha256=xry6_2sAWT_qeNFgcLTE7lBWWWjGhuljrJFeWL1NBXg,7552
|
|
46
46
|
fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
|
|
47
47
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
48
48
|
fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
|
|
@@ -92,6 +92,10 @@ fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqve
|
|
|
92
92
|
fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
|
|
93
93
|
fusion_bench/method/fisher_merging/fisher_merging.py,sha256=OiceW0bqvnzGjIyIjd0A55ckXImDfEvi-Nk6td0sFFw,20892
|
|
94
94
|
fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
|
|
95
|
+
fusion_bench/method/fw_merging/__init__.py,sha256=JyF4BIafap83MI8wHJhOX1VRC2J7Olj4ApirPuEkrJI,90
|
|
96
|
+
fusion_bench/method/fw_merging/fw_hard.py,sha256=mLo-W7k171-wG98DLgisrqqCd6mK5bA2j94XqUo34MQ,17164
|
|
97
|
+
fusion_bench/method/fw_merging/fw_soft.py,sha256=KxgVhRg-abyu1uJU3Mic8tN2U0Ge3oZCGzrqtySOCu4,20730
|
|
98
|
+
fusion_bench/method/fw_merging/utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
|
|
95
99
|
fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1beJjNCbc8,198
|
|
96
100
|
fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=UPiy6FlCMDZEz7pBOopwr5w9cn_flp8XSAfYbBGpA7g,1207
|
|
97
101
|
fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
|
|
@@ -118,21 +122,35 @@ fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9
|
|
|
118
122
|
fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
|
|
119
123
|
fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
|
|
120
124
|
fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=tQYAeS8MLFEfH3zDFfNZrML7lRnpGLN-HquQvjPtHNw,11208
|
|
125
|
+
fusion_bench/method/moe_pruner/__init__.py,sha256=UzOxEoA9PwLg7fmJXNeksDv9cO6iE9nV9g1ZhZLnBiQ,165
|
|
126
|
+
fusion_bench/method/moe_pruner/moe_pruner.py,sha256=DWj1YHSHssc6no0yoTEftozl-YVdxPUsAE9uGcKmaIY,11459
|
|
127
|
+
fusion_bench/method/moe_pruner/hooks/__init__.py,sha256=oOz0MA38L-5Chjp84KuzecO4k7cNOai53hi8__5y6m8,137
|
|
128
|
+
fusion_bench/method/moe_pruner/hooks/deepseek_v2.py,sha256=JYi47CeEMkngIkB8ARYElCwA3__2hVaK2YU3QCBTfNo,2684
|
|
129
|
+
fusion_bench/method/moe_pruner/hooks/hook.py,sha256=xSzz4B2JplA6zoEPBO8jc-e9lCbF22D7lc8ZnhIxzTg,492
|
|
130
|
+
fusion_bench/method/moe_pruner/hooks/mixtral.py,sha256=EGm5AwvA4ysOznXOicLTl6YSMwRCpYbwSQym7aFYJSw,2864
|
|
131
|
+
fusion_bench/method/moe_pruner/utils/__init__.py,sha256=67M1SB-4uX-TSJzGq_z5LtNLZMALreUQ7vrlDwncqFI,44
|
|
132
|
+
fusion_bench/method/moe_pruner/utils/data.py,sha256=ddZMfl8280-Q5VwUStsuhy2hcw--aXmzymkGA067tno,5517
|
|
133
|
+
fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
|
|
134
|
+
fusion_bench/method/moe_pruner/utils/prune.py,sha256=vTLJQceP1qJeBCRrgEO2td5bR0AQSHyGFRqtASQF-TU,10570
|
|
135
|
+
fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
|
|
121
136
|
fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
|
|
122
137
|
fusion_bench/method/opcm/opcm.py,sha256=fIZtR8KZCUKTxo5URMZIVmDdb2Y6vugJaUvmg5tswdc,11655
|
|
123
138
|
fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
|
|
124
139
|
fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
|
|
125
140
|
fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
|
|
126
141
|
fusion_bench/method/opcm/weight_average.py,sha256=JfQoIU5J1jvrNKpO9k_t4Zj0y8PtteIfyoSQWx1yg2k,4379
|
|
127
|
-
fusion_bench/method/pruning/__init__.py,sha256=
|
|
142
|
+
fusion_bench/method/pruning/__init__.py,sha256=g0poIEzp4kch1tJqeMQq4O3jtXm1hu_Wz4-bNV3ZPJY,312
|
|
128
143
|
fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=40Gmy665S9XqIw027En6E5IlomOIcKECIRje7NDkH00,6300
|
|
129
144
|
fusion_bench/method/pruning/llama_random_prune.py,sha256=EW7zfE-1a5VlPPrQ5xO1k1aqFcpPUfs5eSO_a4M1K90,4566
|
|
145
|
+
fusion_bench/method/pruning/llama_sparsegpt_prune.py,sha256=fMsfpBmNUZetH4YUg6lI9s4DBpVLJppwHwyIhdJj4_w,7480
|
|
130
146
|
fusion_bench/method/pruning/llama_wanda_prune.py,sha256=8pcg3X1yn8vfhV0lEg1fHP3oTzAc_-ixLmsZRdH5uPo,12070
|
|
131
147
|
fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=nXRHW87_Nwiash-udnwR9iOaJMBDo7fPTmAwmSqsAaI,6451
|
|
132
148
|
fusion_bench/method/pruning/prune_utils.py,sha256=ITWO8WtrhcOYXTcjc_fAAw7cyjvqFa6axawPr3uTT68,5882
|
|
149
|
+
fusion_bench/method/pruning/sparsegpt_utils/__init__.py,sha256=XKA9h4nlbEEK4qu2y7LKGWaSSPj2CNK6rOcU01TtJD0,33
|
|
150
|
+
fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py,sha256=WNDIKZ1HWAjgZctiHBN2bbQfgJ_LBtf-6kCEDjaZYTk,4077
|
|
133
151
|
fusion_bench/method/pruning/wanda_utils/__init__.py,sha256=ujOZ9GUTwzqfVjXUL0e6y_gAEfTQU85rBq2MZ5om7oQ,320
|
|
134
152
|
fusion_bench/method/pruning/wanda_utils/ablate.py,sha256=TUKsbInQD3UmS8FpuFeco6FeTMaJLZXho9ASWRPcurc,6459
|
|
135
|
-
fusion_bench/method/pruning/wanda_utils/data.py,sha256=
|
|
153
|
+
fusion_bench/method/pruning/wanda_utils/data.py,sha256=PAg5iHr8g11PAA_morIMrHpyWaOVzr8HYhcgP-md6Is,5507
|
|
136
154
|
fusion_bench/method/pruning/wanda_utils/eval.py,sha256=YuxpIcIh8yMtZODKk4gSVM9p-Tx94jYP3PmagXGabVI,6987
|
|
137
155
|
fusion_bench/method/pruning/wanda_utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
|
|
138
156
|
fusion_bench/method/pruning/wanda_utils/prune.py,sha256=Jah6VduC0mKaDSehRx01rrUFWMYU0zvDyY7mPumHuGI,18564
|
|
@@ -145,6 +163,10 @@ fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o
|
|
|
145
163
|
fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
|
|
146
164
|
fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
|
|
147
165
|
fusion_bench/method/pwe_moe/phn/solvers.py,sha256=OO-ImNwsWIQ3eXPxzj1V-kNgXrJc4FKcK-RwaOl_np0,6156
|
|
166
|
+
fusion_bench/method/randes/__init__.py,sha256=v7iJFBxBcMrYn76qeWgd4qG083Y761bFVRH39tWxkJo,453
|
|
167
|
+
fusion_bench/method/randes/base_algorithm.py,sha256=DK21zxJ4RUOEvwNg495Q9fFvDDpSlqvuX8YFmQ_m2ls,45680
|
|
168
|
+
fusion_bench/method/randes/modelsoup.py,sha256=aMmtWAcneFw6XvLe0jVOG3iOkp2zZkoA3yvexcdxlic,5657
|
|
169
|
+
fusion_bench/method/randes/task_arithmetic.py,sha256=vwDvRs6BkL3HbXaI1lQz38VeMnaBrRTJIqYy7aVFDrI,14214
|
|
148
170
|
fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcfrFL5EMw34YNHeE,119
|
|
149
171
|
fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
|
|
150
172
|
fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
|
|
@@ -164,10 +186,11 @@ fusion_bench/method/sparse_we_moe/__init__.py,sha256=V5VOpLwn6ZpsM09TmwFhhlJwMTB
|
|
|
164
186
|
fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6FUQACvSmM364QHlVBYMKOCPbHrU,10288
|
|
165
187
|
fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
|
|
166
188
|
fusion_bench/method/sparselo/__init__.py,sha256=0Uk4Hq5b9iwc5yl2QTDwvBHUItN4V6lwhxDYQrFb724,107
|
|
167
|
-
fusion_bench/method/sparselo/sparselo.py,sha256=
|
|
189
|
+
fusion_bench/method/sparselo/sparselo.py,sha256=U3eIjLcz484Tq7kbQry_U7YFiTx3ECOeJbg7PnXVtfc,39573
|
|
168
190
|
fusion_bench/method/surgery/__init__.py,sha256=6sRKWeL8cx6Jy2aC9tRL78irNTJnp9w75K2dAxBxhho,88
|
|
169
191
|
fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=Cc8LiAqkQzJwQJsyuazG5wgq6kghVcyL8rGkhPcBVoU,5936
|
|
170
|
-
fusion_bench/method/tall_mask/__init__.py,sha256=
|
|
192
|
+
fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuYwIzvwkrr0ILY,61
|
|
193
|
+
fusion_bench/method/tall_mask/task_arithmetic.py,sha256=xtxUVeI-Ler4Wgx8lrt-GlCr-Yth0jNsacvA_rPctJo,4601
|
|
171
194
|
fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
|
|
172
195
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
173
196
|
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=qhOLb0kXDdgHCgqOAASwwXDTK0gnaiUVI1N72ZJLUyI,5617
|
|
@@ -217,6 +240,7 @@ fusion_bench/modelpool/__init__.py,sha256=Oh21MYHCNguLQYFrQXEsNhqr8vNAXUG7jS-Rwv
|
|
|
217
240
|
fusion_bench/modelpool/base_pool.py,sha256=KCNRVirODjssWZWswkC63gjcBhIbx9k_ub9h9JV4l2o,9089
|
|
218
241
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
219
242
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
243
|
+
fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
|
|
220
244
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
221
245
|
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
222
246
|
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=fO8lF8YWwoe43sVVOqHW9Ike7x-924-I6QQgZqx9EgA,6505
|
|
@@ -254,6 +278,10 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
|
|
|
254
278
|
fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
|
|
255
279
|
fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
|
|
256
280
|
fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
|
|
281
|
+
fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=sDsf53IDcy0umE_0JouUSuZVvbqBaYE9_LUFxvucDUI,505
|
|
282
|
+
fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
|
|
283
|
+
fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=_qDCPMRPEMCXzZwJMJGSQ0FjMAZ9qkB7fCUK_feteKA,78677
|
|
284
|
+
fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py,sha256=nj3nGvasPLZlnGwe_Cc6m77eppucqxu5hF30BjdDMqg,1364
|
|
257
285
|
fusion_bench/models/modeling_losparse_llama/__init__.py,sha256=26twHBq8im8dAJ1DmDGgSCr3Aco2lQlH6Jf-A2jOOC4,187
|
|
258
286
|
fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py,sha256=nkJ9Fl0emmUWtFcIcFAW7lnSQV9dVp1xbef3o5kAsYo,11116
|
|
259
287
|
fusion_bench/models/modeling_losparse_llama/losparse_linear.py,sha256=Pp-idKJITzFbsRStetBO0TQ8sTtX7-bvSzX8SQAf_nU,2416
|
|
@@ -298,7 +326,7 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
|
|
|
298
326
|
fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
|
|
299
327
|
fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
|
|
300
328
|
fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
|
|
301
|
-
fusion_bench/programs/fabric_fusion_program.py,sha256=
|
|
329
|
+
fusion_bench/programs/fabric_fusion_program.py,sha256=lzSkoCb8L_FKzl0urQqOLTT1VXqV721mjjlJgdm3zKM,13112
|
|
302
330
|
fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
303
331
|
fusion_bench/scripts/cli.py,sha256=hw32XtmixFxYXwgAY7iRBMzma_XQjdf_FxPiXKL6dIc,1154
|
|
304
332
|
fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
|
|
@@ -315,7 +343,7 @@ fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBig
|
|
|
315
343
|
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
|
|
316
344
|
fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
|
|
317
345
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
|
|
318
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=
|
|
346
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=bTeR6AFBVZjZqKoaVKYVEXedYoYUGsw93EhM4eLZsQE,15340
|
|
319
347
|
fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
320
348
|
fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
|
|
321
349
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
@@ -361,10 +389,10 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
|
|
|
361
389
|
fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
|
|
362
390
|
fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
|
|
363
391
|
fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
|
|
364
|
-
fusion_bench/utils/__init__.py,sha256=
|
|
392
|
+
fusion_bench/utils/__init__.py,sha256=r4ahPkqUsZTSyP6-P6dhaE1CFl5ttbQ3A_w1YW4i_40,441
|
|
365
393
|
fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
|
|
366
394
|
fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
|
|
367
|
-
fusion_bench/utils/data.py,sha256=
|
|
395
|
+
fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
|
|
368
396
|
fusion_bench/utils/devices.py,sha256=MIAxbEGinN-QU4W1g3-YKkJsteHQrwhbLqkmbzX1W3U,8035
|
|
369
397
|
fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
|
|
370
398
|
fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
|
|
@@ -375,17 +403,18 @@ fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqk
|
|
|
375
403
|
fusion_bench/utils/instantiate.py,sha256=Q82pa96V5kKsci_D-Vvb6GWcUwjITqrjTzUGrf3MeBI,17407
|
|
376
404
|
fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
|
|
377
405
|
fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
|
|
406
|
+
fusion_bench/utils/lazy_state_dict.py,sha256=0KBd3j6A_T_9-m8t68tSDpQZB_MWk9-cwho3O_8PkXY,10150
|
|
378
407
|
fusion_bench/utils/misc.py,sha256=Rgec7eKcGIcp9BaFVdm2pzx0J-L8AyX5qWuiYNTGvTc,530
|
|
379
408
|
fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
|
|
380
|
-
fusion_bench/utils/parameters.py,sha256
|
|
409
|
+
fusion_bench/utils/parameters.py,sha256=2vs8vo2o-nRA9NOMOYFye-X8-aHQZoYe54tM6n0r0RE,11757
|
|
381
410
|
fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
|
|
382
411
|
fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4KI,2468
|
|
383
412
|
fusion_bench/utils/rich_utils.py,sha256=B8DhAYuVp23pG6ZnnYrUhcL-ikHZoQeTNqlM7u4pwwU,5786
|
|
384
413
|
fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
|
|
385
|
-
fusion_bench/utils/state_dict_arithmetic.py,sha256=
|
|
414
|
+
fusion_bench/utils/state_dict_arithmetic.py,sha256=iz5YYhMJpg2-lBLBY8E1onV4i_GkRhJOGn2DjhLBbYE,11390
|
|
386
415
|
fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
|
|
387
416
|
fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
|
|
388
|
-
fusion_bench/utils/type.py,sha256=
|
|
417
|
+
fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
|
|
389
418
|
fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
390
419
|
fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
|
|
391
420
|
fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
|
|
@@ -393,7 +422,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
|
|
|
393
422
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
394
423
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
395
424
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
396
|
-
fusion_bench-0.2.
|
|
425
|
+
fusion_bench-0.2.16.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
397
426
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
398
427
|
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
|
|
399
428
|
fusion_bench_config/fabric_model_fusion.yaml,sha256=5iPgaM8UOhuvBW2Hap_csst-eqlYRwb_lru8ngjrZ_g,948
|
|
@@ -403,7 +432,11 @@ fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SD
|
|
|
403
432
|
fusion_bench_config/nyuv2_config.yaml,sha256=yZctiexNVwsXEgKgS3j-OlItzvsQNIuWIKRPBFNdfYM,490
|
|
404
433
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=RfsrboIpL9Cct2RkRrKxXAqH4jLi1NECHbwH8iOGtDY,591
|
|
405
434
|
fusion_bench_config/dataset/image_classification/README.md,sha256=fgxqviGhqkJ-lPihQNG7I8bn-PhU5EDFBDQnH27xEmQ,321
|
|
435
|
+
fusion_bench_config/dataset/image_classification/test/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
|
|
436
|
+
fusion_bench_config/dataset/image_classification/test/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
|
|
406
437
|
fusion_bench_config/dataset/image_classification/test/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
|
|
438
|
+
fusion_bench_config/dataset/image_classification/test/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
|
|
439
|
+
fusion_bench_config/dataset/image_classification/test/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
|
|
407
440
|
fusion_bench_config/dataset/image_classification/test/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
|
|
408
441
|
fusion_bench_config/dataset/image_classification/test/cifar10.yaml,sha256=2Ye2-sKdwf6li3IsoAADcFhey8SYMi23KEVpW6vqQ88,82
|
|
409
442
|
fusion_bench_config/dataset/image_classification/test/cifar100.yaml,sha256=keK29rjT8M6PT6yhdA_bZfE51Omm26Ixh2ZnDoDs-vw,84
|
|
@@ -430,7 +463,11 @@ fusion_bench_config/dataset/image_classification/test/sun397.yaml,sha256=TvLUJ4_
|
|
|
430
463
|
fusion_bench_config/dataset/image_classification/test/svhn.yaml,sha256=iMfBz3vYWGx8Qso-AdUE0I2vW7BnRVr0665QXMjKpBY,96
|
|
431
464
|
fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml,sha256=x1-xurkOIQtWX-gpSwXDxA5fVY30KmrarS7EKaje33M,101
|
|
432
465
|
fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml,sha256=qDWIQqdOnx48leM1NN_GwfcdWVrT-XqN3AMMBP4SnBQ,94
|
|
466
|
+
fusion_bench_config/dataset/image_classification/train/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
|
|
467
|
+
fusion_bench_config/dataset/image_classification/train/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
|
|
433
468
|
fusion_bench_config/dataset/image_classification/train/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
|
|
469
|
+
fusion_bench_config/dataset/image_classification/train/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
|
|
470
|
+
fusion_bench_config/dataset/image_classification/train/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
|
|
434
471
|
fusion_bench_config/dataset/image_classification/train/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
|
|
435
472
|
fusion_bench_config/dataset/image_classification/train/cifar10.yaml,sha256=P7oGTFBr4_UkGJFIwzVCnvWNX9Q2grVyiYci4RmgVYw,83
|
|
436
473
|
fusion_bench_config/dataset/image_classification/train/cifar100.yaml,sha256=WvrkH63eh4-qV4LSL2Pd7EdnchgQvaw-rP2eZ8WXl00,85
|
|
@@ -533,6 +570,8 @@ fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fj
|
|
|
533
570
|
fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
|
|
534
571
|
fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
|
|
535
572
|
fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
|
|
573
|
+
fusion_bench_config/method/fw_merging/fw_hard.yaml,sha256=G6s5td3x1ZnUaELK9y726Du3XIDryTH3d21k79rbPTI,232
|
|
574
|
+
fusion_bench_config/method/fw_merging/fw_soft.yaml,sha256=Rlrg6AB14FLj3b2r-9UiUsf2IOhs4N4DXu8CIakb_4Q,235
|
|
536
575
|
fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDLz6boZpd43zjEh8pymg4dXPfzQ,1041
|
|
537
576
|
fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
|
|
538
577
|
fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
|
|
@@ -548,17 +587,22 @@ fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t
|
|
|
548
587
|
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
|
|
549
588
|
fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
|
|
550
589
|
fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
|
|
590
|
+
fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
|
|
551
591
|
fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
|
|
552
592
|
fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
|
|
553
593
|
fusion_bench_config/method/opcm/ties_merging.yaml,sha256=XOE1XzSdYXYzqev9bFD4g4prcmE1OiVINkVXsquizAA,541
|
|
554
594
|
fusion_bench_config/method/opcm/weight_average.yaml,sha256=SmhftSJ_YXN6tn-0GuzQgjbE2sOd7YXoPYjDWzpY_9E,304
|
|
555
595
|
fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
|
|
556
596
|
fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
|
|
597
|
+
fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml,sha256=gC6Ss0n2tKSb4gyVfx45BvsFbVBGN-om4-2S1sKS-_w,505
|
|
557
598
|
fusion_bench_config/method/pruning/llama_wanda_pruning.yaml,sha256=qKe5yIRsmK2KUyYENENWlw1qlGet9TpDhR-E_uO7vAw,501
|
|
558
599
|
fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml,sha256=GsxsQ2L3kfsdD7A8o7UAHfiSbAGh53zVXdlYuEIEWR0,130
|
|
559
600
|
fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml,sha256=IcKSDWqxmz18IuwfkXlaLVXfWPAA9Qk3BQEVCs41lJs,1095
|
|
560
601
|
fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml,sha256=7fxDVq9Lxf3VTMfyyaBIjX40hIXunSqnXS-YfdBKYPE,1096
|
|
561
602
|
fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml,sha256=fNvLr5700dptUGsExFS5MBUC6ZN3OQ5yOfIChUZA8oM,632
|
|
603
|
+
fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE322-6vtmmjDls9itC-VRZjQW4e8f1UNY,513
|
|
604
|
+
fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
|
|
605
|
+
fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
|
|
562
606
|
fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
|
|
563
607
|
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=dxSJMRam6YMks7zYx4ACgvrLP5cndxzraVO93SGhyYo,425
|
|
564
608
|
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o8tYQkhXxPV8lRf-dRNPIsOs,422
|
|
@@ -568,10 +612,11 @@ fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha2
|
|
|
568
612
|
fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
|
|
569
613
|
fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=Rdcub7yFFn-jKXrlFoj8LQk1cRbJm2do91pV-YMSzTE,378
|
|
570
614
|
fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
|
|
571
|
-
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=
|
|
572
|
-
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=
|
|
573
|
-
fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=
|
|
615
|
+
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
|
|
616
|
+
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
|
|
617
|
+
fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
|
|
574
618
|
fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2Icd8LKN5YJEi5LwNSGo-Gp4Xg7wBC4,826
|
|
619
|
+
fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
|
|
575
620
|
fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=21vs14DEf2qg7Tqm5wNnjkpsjTRJbVs8JGl4SlrijDM,168
|
|
576
621
|
fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
|
|
577
622
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
|
|
@@ -602,7 +647,11 @@ fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml,sha256=bKCK8
|
|
|
602
647
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml,sha256=i-KHKM5TpVatjeYFGIiR7RsQEZEncfCJjwPZsI4poUk,46
|
|
603
648
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml,sha256=ueUU5YbT90sPdr-ZxAfwZKEbEIfMF1FO6t8Ba4cChXs,42
|
|
604
649
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml,sha256=isHme17QM6vEirZ0lLtFf03gN0-5QWrsXMW2-ya46U0,43
|
|
650
|
+
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml,sha256=R-_Xr119-Cq5vdUX-uWGhzk3I68BA4YXCOJ55aEWqTU,1096
|
|
651
|
+
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml,sha256=w15VL2PH8tmuyeaySLOcQbCpUfdb_7kODCdEbb6a3vw,1091
|
|
605
652
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml,sha256=kuMIvKYA8H788FYoyhO2WugwWtL0Ji2oBJreS9F2128,787
|
|
653
|
+
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml,sha256=mAjNmcXx2kloP9f_rbwLfco9uXcc6uCKt7p38GhfCj0,1083
|
|
654
|
+
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml,sha256=Ye0DkzgQBidIN8tEJM9o2EWqTY3T8xkbFndwqk37hII,1079
|
|
606
655
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml,sha256=1RsY7kRdd-Tq0GHPfljqyu4W9lJwuX8BTk9PO4tk1AM,1075
|
|
607
656
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml,sha256=8gUqMtfzFB0nDnQ6FdPImZIXmFlUz6is6cIROmwDIfg,48
|
|
608
657
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml,sha256=tq2se6h7E5JSYyz4TIty4bs-YXAYiZwXEpOKLpdByT4,50
|
|
@@ -700,8 +749,12 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individu
|
|
|
700
749
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml,sha256=1oY5QXG7flQq1990eN8GyjS1kak-dLPZIusV_dYyJVo,250
|
|
701
750
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml,sha256=5-g4DRsD5RBr8As6mDD9V8pT1JxKKPIUjwK8O7vBOMQ,688
|
|
702
751
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml,sha256=NdefoS2vRA4byRgjwKh8OplRJB48vg3jaeYiSjwQfAQ,108
|
|
752
|
+
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml,sha256=uAVyNQQT16-oVB9CvxBNyoArni-giZDqkDPQogeJnP0,380
|
|
753
|
+
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml,sha256=K5AWiFweGQ9CxQ0Wk-1ucfAs25WFFcWtpFEiio521rI,380
|
|
703
754
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml,sha256=cmHBQY4zl4ySRJ5n11MIOzLERjPyxaFk1DGWFlrn-zQ,380
|
|
704
755
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml,sha256=_2t8TV9T7BAiQda5fKCRIryTPg3XHYEM3hQUJqD1lXs,256
|
|
756
|
+
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml,sha256=7Z4UVw3ManuEOw1D242UHn9uOv0LqUh2-uZt1M3718E,380
|
|
757
|
+
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml,sha256=gGVJbI9LqenrGlFL3OCIqUxpf8IGM5GaXajgi9qVe1Y,380
|
|
705
758
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml,sha256=V-p1JLhNwILgR0F4i6l8oOEQvZcYxs3J0Ly0VeAJY48,380
|
|
706
759
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml,sha256=xYr0g5mdv0wly5HkTcnLq5yG6Mjj78XB7fGaCTk5KEc,256
|
|
707
760
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml,sha256=2WtCV1cJEEK3R-t4Tf-YB1AIZl-d0FkE6C0CsUBm9fw,625
|
|
@@ -721,11 +774,13 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
|
|
|
721
774
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=yC2U_IoBAhawgSahY_mdi7ea5kJ2SSRPJ2FM-bA-E9M,510
|
|
722
775
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=a2nviqKSRNoQScYVbj5buq0PbUzmYJwNWdPBUoLaeV8,386
|
|
723
776
|
fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=G6yvZuWOKb75RLn6tu2LPnwHUyvoxPfL_wqb_B11aZo,549
|
|
777
|
+
fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
|
|
724
778
|
fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
|
|
725
779
|
fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
|
|
726
780
|
fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
|
|
727
781
|
fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml,sha256=vU0q06OUa1UM_Xvp2t27Rl3F6EDgYWPnDxeyzUH-QVI,589
|
|
728
782
|
fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml,sha256=MpgshGtmMXpUFRA1knjdGRVH4UgZbkkcTmCTrF3LlZk,573
|
|
783
|
+
fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml,sha256=trVErtaYjqWElrAjS7aQG8nFDNCvTUt_siK1s82jNOQ,448
|
|
729
784
|
fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml,sha256=Kbpam1Hds5URMP35dXGdVibH-vTmYPh3xHMkhj6Mgtg,648
|
|
730
785
|
fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml,sha256=FynhZ1PRvyzsyzrHIuMpGgQGRMlu_xI7earm-CeIVeY,824
|
|
731
786
|
fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml,sha256=zQWfp7mYm6jQ8g41Eeh2d9vAbocZJ5btPX1ft9QpEZU,546
|
|
@@ -753,6 +808,7 @@ fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml,sha256=vx
|
|
|
753
808
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml,sha256=ehrmbx6ZBTCkCEco3AloiuqNxFHU42Igg3z9hmFSlUQ,184
|
|
754
809
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml,sha256=ySj-IxxdxwzyUAGP5QSngdgrpwTWY7-5BQFkno6uQXw,1821
|
|
755
810
|
fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml,sha256=CJ5NQEzTbzkMmggfCUhRuOrzRoSfI-XlpCXqO-kcf7g,876
|
|
811
|
+
fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml,sha256=uOdai5ktA7ONw4D4MdI25D_RQIziegwrm6w0rtiKOZM,1731
|
|
756
812
|
fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml,sha256=5mUbWYOcAEtfzMPsSoVZxtDqbhLlkHnI1y557cFa80k,623
|
|
757
813
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
|
|
758
814
|
fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
|
|
@@ -798,8 +854,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=45kSz44pc
|
|
|
798
854
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
|
|
799
855
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
|
|
800
856
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
|
|
801
|
-
fusion_bench-0.2.
|
|
802
|
-
fusion_bench-0.2.
|
|
803
|
-
fusion_bench-0.2.
|
|
804
|
-
fusion_bench-0.2.
|
|
805
|
-
fusion_bench-0.2.
|
|
857
|
+
fusion_bench-0.2.16.dist-info/METADATA,sha256=WhxJXXVCu3q6poHTd0VSc1WGGlZwyzOTyDI_UyeRask,21721
|
|
858
|
+
fusion_bench-0.2.16.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
|
|
859
|
+
fusion_bench-0.2.16.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
860
|
+
fusion_bench-0.2.16.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
861
|
+
fusion_bench-0.2.16.dist-info/RECORD,,
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
# - fer2013
|
|
18
|
+
# - oxford-iiit-pet
|
|
19
|
+
# - stl10
|
|
20
|
+
# - cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
# - cifar10
|
|
23
|
+
# - food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
# - stl10
|
|
20
|
+
# - cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
# - cifar10
|
|
23
|
+
# - food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
- stl10
|
|
20
|
+
- cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
- cifar10
|
|
23
|
+
- food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
- stl10
|
|
20
|
+
- cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
- cifar10
|
|
23
|
+
- food101
|
|
24
|
+
- fashion_mnist
|
|
25
|
+
- emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
# - fer2013
|
|
18
|
+
# - oxford-iiit-pet
|
|
19
|
+
# - stl10
|
|
20
|
+
# - cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
# - cifar10
|
|
23
|
+
# - food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
# - stl10
|
|
20
|
+
# - cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
# - cifar10
|
|
23
|
+
# - food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
- stl10
|
|
20
|
+
- cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
- cifar10
|
|
23
|
+
- food101
|
|
24
|
+
# - fashion_mnist
|
|
25
|
+
# - emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# The 20 task used in the paper:
|
|
2
|
+
# Wang et al. Localizing Task Information for Improved Model Merging and Compression
|
|
3
|
+
# http://arxiv.org/abs/2405.07813
|
|
4
|
+
defaults:
|
|
5
|
+
# eight tasks in the task arithmetic paper
|
|
6
|
+
- sun397
|
|
7
|
+
- stanford-cars
|
|
8
|
+
- resisc45
|
|
9
|
+
- eurosat
|
|
10
|
+
- svhn
|
|
11
|
+
- gtsrb
|
|
12
|
+
- mnist
|
|
13
|
+
- dtd
|
|
14
|
+
# additional 6 tasks in the TALL mask paper (TALL 14)
|
|
15
|
+
- oxford_flowers102
|
|
16
|
+
- pcam
|
|
17
|
+
- fer2013
|
|
18
|
+
- oxford-iiit-pet
|
|
19
|
+
- stl10
|
|
20
|
+
- cifar100
|
|
21
|
+
# additional 6 tasks in the TALL mask paper (TALL 20)
|
|
22
|
+
- cifar10
|
|
23
|
+
- food101
|
|
24
|
+
- fashion_mnist
|
|
25
|
+
- emnist_letters
|
|
26
|
+
# - kmnist
|
|
27
|
+
# - rendered-sst2
|
|
28
|
+
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: fusion_bench.method.FrankWolfeSoftAlgorithm
|
|
2
|
+
init_weight:
|
|
3
|
+
max_iters: 10
|
|
4
|
+
merge_fn: 'adamerging'
|
|
5
|
+
tasks:
|
|
6
|
+
ada_iters: 500
|
|
7
|
+
dataset_size: 100
|
|
8
|
+
ada_coeff: 1e-8
|
|
9
|
+
step_size: 0.1
|
|
10
|
+
max_num_models: 100
|
|
11
|
+
granularity: task
|
|
12
|
+
ada_loss: entropy_loss
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
_target_: fusion_bench.method.moe_pruner.MoEPruner
|
|
2
|
+
|
|
3
|
+
nsamples: 100
|
|
4
|
+
seed: 42
|
|
5
|
+
device: cuda
|
|
6
|
+
max_seqlen: 2048
|
|
7
|
+
# `prune_type` can be either `unstructured` or `semistructured`
|
|
8
|
+
prune_type: unstructured
|
|
9
|
+
# === options for unstructured pruning ===
|
|
10
|
+
# `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
|
|
11
|
+
sparsity_ratio: 0.5
|
|
12
|
+
# === options for semistructured pruning ===
|
|
13
|
+
# 2:4 means 2 out of 4 weights are pruned
|
|
14
|
+
n: 2
|
|
15
|
+
m: 4
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
_target_: fusion_bench.method.SparseGPTPruningForLlama
|
|
2
|
+
nsamples: 128
|
|
3
|
+
seed: 0
|
|
4
|
+
use_variant: false
|
|
5
|
+
# `prune_type` can be either `unstructured` or `semistructured`
|
|
6
|
+
prune_type: unstructured
|
|
7
|
+
# device and dtype to compute the pruning mask
|
|
8
|
+
device: cuda
|
|
9
|
+
dtype: null
|
|
10
|
+
# === options for unstructured pruning ===
|
|
11
|
+
# `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
|
|
12
|
+
sparsity_ratio: 0.5
|
|
13
|
+
# === options for semistructured pruning ===
|
|
14
|
+
# 2:4 means 2 out of 4 weights are pruned
|
|
15
|
+
n: 2
|
|
16
|
+
m: 4
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
_target_: fusion_bench.method.randes.SuperposedModelSoupAlgorithm
|
|
2
|
+
#* === base randes options ===
|
|
3
|
+
mode: manual_absorption
|
|
4
|
+
# weights for all mlp and attn layers
|
|
5
|
+
target_layer:
|
|
6
|
+
- mlp_w
|
|
7
|
+
- attn_w
|
|
8
|
+
random_seed: 42 # for random_binary_diagonal_matrix
|
|
9
|
+
different_across_layers: True
|
|
10
|
+
joint_matrix_mode: flatten_hstack
|
|
11
|
+
rank: 1 # for columnwise svd
|
|
12
|
+
random_components: False
|
|
13
|
+
shift_layers: 0
|
|
14
|
+
absorber: None
|
|
15
|
+
debug: 0
|
|
16
|
+
ms_mode: average
|
|
17
|
+
verbose: 0 # level of verbosity
|
|
18
|
+
dropout_rate: 1 # take the target layer per n target layers
|