fusion-bench 0.2.14__py3-none-any.whl → 0.2.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. fusion_bench/method/__init__.py +4 -0
  2. fusion_bench/method/fw_merging/__init__.py +2 -0
  3. fusion_bench/method/fw_merging/fw_hard.py +448 -0
  4. fusion_bench/method/fw_merging/fw_soft.py +519 -0
  5. fusion_bench/method/fw_merging/utils.py +331 -0
  6. fusion_bench/method/moe_pruner/__init__.py +7 -0
  7. fusion_bench/method/moe_pruner/hooks/__init__.py +6 -0
  8. fusion_bench/method/moe_pruner/hooks/deepseek_v2.py +85 -0
  9. fusion_bench/method/moe_pruner/hooks/hook.py +23 -0
  10. fusion_bench/method/moe_pruner/hooks/mixtral.py +93 -0
  11. fusion_bench/method/moe_pruner/moe_pruner.py +304 -0
  12. fusion_bench/method/moe_pruner/utils/__init__.py +1 -0
  13. fusion_bench/method/moe_pruner/utils/data.py +154 -0
  14. fusion_bench/method/moe_pruner/utils/layerwrapper.py +61 -0
  15. fusion_bench/method/moe_pruner/utils/prune.py +313 -0
  16. fusion_bench/method/moe_pruner/utils/score.py +41 -0
  17. fusion_bench/method/pruning/__init__.py +1 -0
  18. fusion_bench/method/pruning/llama_sparsegpt_prune.py +223 -0
  19. fusion_bench/method/pruning/sparsegpt_utils/__init__.py +1 -0
  20. fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py +128 -0
  21. fusion_bench/method/pruning/wanda_utils/data.py +33 -14
  22. fusion_bench/method/randes/__init__.py +15 -0
  23. fusion_bench/method/randes/base_algorithm.py +1013 -0
  24. fusion_bench/method/randes/modelsoup.py +126 -0
  25. fusion_bench/method/randes/task_arithmetic.py +318 -0
  26. fusion_bench/method/sparselo/sparselo.py +20 -2
  27. fusion_bench/method/tall_mask/__init__.py +1 -0
  28. fusion_bench/method/tall_mask/task_arithmetic.py +133 -0
  29. fusion_bench/modelpool/causal_lm/causal_lm.py +73 -10
  30. fusion_bench/modelpool/lazy_state_dict_pool.py +15 -0
  31. fusion_bench/models/modeling_deepseek_v2/__init__.py +15 -0
  32. fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py +208 -0
  33. fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py +1922 -0
  34. fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py +38 -0
  35. fusion_bench/programs/fabric_fusion_program.py +5 -0
  36. fusion_bench/taskpool/clip_vision/taskpool.py +8 -1
  37. fusion_bench/utils/__init__.py +1 -0
  38. fusion_bench/utils/data.py +1 -1
  39. fusion_bench/utils/lazy_state_dict.py +268 -0
  40. fusion_bench/utils/parameters.py +33 -0
  41. fusion_bench/utils/state_dict_arithmetic.py +74 -2
  42. fusion_bench/utils/type.py +1 -0
  43. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/METADATA +10 -3
  44. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/RECORD +86 -22
  45. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/WHEEL +1 -1
  46. fusion_bench_config/dataset/image_classification/test/TALL10.yaml +28 -0
  47. fusion_bench_config/dataset/image_classification/test/TALL12.yaml +28 -0
  48. fusion_bench_config/dataset/image_classification/test/TALL16.yaml +28 -0
  49. fusion_bench_config/dataset/image_classification/test/TALL18.yaml +28 -0
  50. fusion_bench_config/dataset/image_classification/train/TALL10.yaml +28 -0
  51. fusion_bench_config/dataset/image_classification/train/TALL12.yaml +28 -0
  52. fusion_bench_config/dataset/image_classification/train/TALL16.yaml +28 -0
  53. fusion_bench_config/dataset/image_classification/train/TALL18.yaml +28 -0
  54. fusion_bench_config/method/fw_merging/fw_hard.yaml +11 -0
  55. fusion_bench_config/method/fw_merging/fw_soft.yaml +12 -0
  56. fusion_bench_config/method/moe_pruner/moe_pruner.yaml +15 -0
  57. fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml +16 -0
  58. fusion_bench_config/method/randes/superposed_model_soup.yaml +18 -0
  59. fusion_bench_config/method/randes/superposed_task_arithmetic.yaml +20 -0
  60. fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml +20 -0
  61. fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +2 -1
  62. fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +1 -1
  63. fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +1 -1
  64. fusion_bench_config/method/tall_mask/task_arithmetic.yaml +4 -0
  65. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml +29 -0
  66. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml +29 -0
  67. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml +29 -0
  68. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml +29 -0
  69. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml +8 -0
  70. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml +8 -0
  71. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml +8 -0
  72. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml +8 -0
  73. fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml +15 -0
  74. fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml +11 -0
  75. fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml +11 -0
  76. fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml +11 -0
  77. fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml +11 -0
  78. fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml +11 -0
  79. fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml +11 -0
  80. fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml +11 -0
  81. fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml +11 -0
  82. fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml +14 -0
  83. fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml +69 -0
  84. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/entry_points.txt +0 -0
  85. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/licenses/LICENSE +0 -0
  86. {fusion_bench-0.2.14.dist-info → fusion_bench-0.2.16.dist-info}/top_level.txt +0 -0
@@ -42,7 +42,7 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
42
42
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
43
43
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
44
44
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- fusion_bench/method/__init__.py,sha256=CzRMLnKUGkacVM1-81j2f_ySs1vNlG7tR4HucPhloLM,7331
45
+ fusion_bench/method/__init__.py,sha256=xry6_2sAWT_qeNFgcLTE7lBWWWjGhuljrJFeWL1NBXg,7552
46
46
  fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
47
47
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
48
48
  fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
@@ -92,6 +92,10 @@ fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqve
92
92
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
93
93
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=OiceW0bqvnzGjIyIjd0A55ckXImDfEvi-Nk6td0sFFw,20892
94
94
  fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
95
+ fusion_bench/method/fw_merging/__init__.py,sha256=JyF4BIafap83MI8wHJhOX1VRC2J7Olj4ApirPuEkrJI,90
96
+ fusion_bench/method/fw_merging/fw_hard.py,sha256=mLo-W7k171-wG98DLgisrqqCd6mK5bA2j94XqUo34MQ,17164
97
+ fusion_bench/method/fw_merging/fw_soft.py,sha256=KxgVhRg-abyu1uJU3Mic8tN2U0Ge3oZCGzrqtySOCu4,20730
98
+ fusion_bench/method/fw_merging/utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
95
99
  fusion_bench/method/gossip/__init__.py,sha256=3b7mB4wl7weA6JtPmEeHHG2Zb_MWaOt-i1beJjNCbc8,198
96
100
  fusion_bench/method/gossip/clip_layer_wise_gossip.py,sha256=UPiy6FlCMDZEz7pBOopwr5w9cn_flp8XSAfYbBGpA7g,1207
97
101
  fusion_bench/method/gossip/clip_task_wise_gossip.py,sha256=yY-fHBynWgkac5J61V9xI1SNUv6k2z1SgvmNb13l2jg,7063
@@ -118,21 +122,35 @@ fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9
118
122
  fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
119
123
  fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
120
124
  fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=tQYAeS8MLFEfH3zDFfNZrML7lRnpGLN-HquQvjPtHNw,11208
125
+ fusion_bench/method/moe_pruner/__init__.py,sha256=UzOxEoA9PwLg7fmJXNeksDv9cO6iE9nV9g1ZhZLnBiQ,165
126
+ fusion_bench/method/moe_pruner/moe_pruner.py,sha256=DWj1YHSHssc6no0yoTEftozl-YVdxPUsAE9uGcKmaIY,11459
127
+ fusion_bench/method/moe_pruner/hooks/__init__.py,sha256=oOz0MA38L-5Chjp84KuzecO4k7cNOai53hi8__5y6m8,137
128
+ fusion_bench/method/moe_pruner/hooks/deepseek_v2.py,sha256=JYi47CeEMkngIkB8ARYElCwA3__2hVaK2YU3QCBTfNo,2684
129
+ fusion_bench/method/moe_pruner/hooks/hook.py,sha256=xSzz4B2JplA6zoEPBO8jc-e9lCbF22D7lc8ZnhIxzTg,492
130
+ fusion_bench/method/moe_pruner/hooks/mixtral.py,sha256=EGm5AwvA4ysOznXOicLTl6YSMwRCpYbwSQym7aFYJSw,2864
131
+ fusion_bench/method/moe_pruner/utils/__init__.py,sha256=67M1SB-4uX-TSJzGq_z5LtNLZMALreUQ7vrlDwncqFI,44
132
+ fusion_bench/method/moe_pruner/utils/data.py,sha256=ddZMfl8280-Q5VwUStsuhy2hcw--aXmzymkGA067tno,5517
133
+ fusion_bench/method/moe_pruner/utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
134
+ fusion_bench/method/moe_pruner/utils/prune.py,sha256=vTLJQceP1qJeBCRrgEO2td5bR0AQSHyGFRqtASQF-TU,10570
135
+ fusion_bench/method/moe_pruner/utils/score.py,sha256=AVWOwsu6CGBHnO7S1JnJNqZVMMTfSj5QQNAPQXI59no,1177
121
136
  fusion_bench/method/opcm/__init__.py,sha256=0QcltOnjIYV1XEPDEagChLixLAhjiBnYwfWK00am29k,202
122
137
  fusion_bench/method/opcm/opcm.py,sha256=fIZtR8KZCUKTxo5URMZIVmDdb2Y6vugJaUvmg5tswdc,11655
123
138
  fusion_bench/method/opcm/task_arithmetic.py,sha256=YvtsWkjtnk7E3C4_xNr--uQWjQhoDZZB-klSx81_tGw,4824
124
139
  fusion_bench/method/opcm/ties_merging.py,sha256=-N3i7eMbhK95qyJsmmNMKNmPCkgGHGFa423a52cgi6g,6868
125
140
  fusion_bench/method/opcm/utils.py,sha256=_q7yy3ENNFUh1qUd5J5DThRL4J1tIxEcknCO2AKmeYM,2102
126
141
  fusion_bench/method/opcm/weight_average.py,sha256=JfQoIU5J1jvrNKpO9k_t4Zj0y8PtteIfyoSQWx1yg2k,4379
127
- fusion_bench/method/pruning/__init__.py,sha256=3gtmay2bkdIAEGjpAhbY2ztMZOZLKhiJcKV3mCe2H5w,252
142
+ fusion_bench/method/pruning/__init__.py,sha256=g0poIEzp4kch1tJqeMQq4O3jtXm1hu_Wz4-bNV3ZPJY,312
128
143
  fusion_bench/method/pruning/llama_magnitude_prune.py,sha256=40Gmy665S9XqIw027En6E5IlomOIcKECIRje7NDkH00,6300
129
144
  fusion_bench/method/pruning/llama_random_prune.py,sha256=EW7zfE-1a5VlPPrQ5xO1k1aqFcpPUfs5eSO_a4M1K90,4566
145
+ fusion_bench/method/pruning/llama_sparsegpt_prune.py,sha256=fMsfpBmNUZetH4YUg6lI9s4DBpVLJppwHwyIhdJj4_w,7480
130
146
  fusion_bench/method/pruning/llama_wanda_prune.py,sha256=8pcg3X1yn8vfhV0lEg1fHP3oTzAc_-ixLmsZRdH5uPo,12070
131
147
  fusion_bench/method/pruning/magnitude_diff_pruning.py,sha256=nXRHW87_Nwiash-udnwR9iOaJMBDo7fPTmAwmSqsAaI,6451
132
148
  fusion_bench/method/pruning/prune_utils.py,sha256=ITWO8WtrhcOYXTcjc_fAAw7cyjvqFa6axawPr3uTT68,5882
149
+ fusion_bench/method/pruning/sparsegpt_utils/__init__.py,sha256=XKA9h4nlbEEK4qu2y7LKGWaSSPj2CNK6rOcU01TtJD0,33
150
+ fusion_bench/method/pruning/sparsegpt_utils/sparsegpt.py,sha256=WNDIKZ1HWAjgZctiHBN2bbQfgJ_LBtf-6kCEDjaZYTk,4077
133
151
  fusion_bench/method/pruning/wanda_utils/__init__.py,sha256=ujOZ9GUTwzqfVjXUL0e6y_gAEfTQU85rBq2MZ5om7oQ,320
134
152
  fusion_bench/method/pruning/wanda_utils/ablate.py,sha256=TUKsbInQD3UmS8FpuFeco6FeTMaJLZXho9ASWRPcurc,6459
135
- fusion_bench/method/pruning/wanda_utils/data.py,sha256=uDLmjqLLXi8UrfKHfF2afwr8MnZV5G2d6Hw717d1jEk,4836
153
+ fusion_bench/method/pruning/wanda_utils/data.py,sha256=PAg5iHr8g11PAA_morIMrHpyWaOVzr8HYhcgP-md6Is,5507
136
154
  fusion_bench/method/pruning/wanda_utils/eval.py,sha256=YuxpIcIh8yMtZODKk4gSVM9p-Tx94jYP3PmagXGabVI,6987
137
155
  fusion_bench/method/pruning/wanda_utils/layerwrapper.py,sha256=6ahiuzw00qtbpmJg11YqffQ8kVaNy9369XFSgog5b4s,2173
138
156
  fusion_bench/method/pruning/wanda_utils/prune.py,sha256=Jah6VduC0mKaDSehRx01rrUFWMYU0zvDyY7mPumHuGI,18564
@@ -145,6 +163,10 @@ fusion_bench/method/pwe_moe/openclip_pwe_moe.py,sha256=xhQsFt8FwK_obd3u3FQsBpH1o
145
163
  fusion_bench/method/pwe_moe/utils.py,sha256=K9BeVMrhYv7GNlJO76eoQbkI1dOO7XF18yK06WUh9ZA,1336
146
164
  fusion_bench/method/pwe_moe/phn/__init__.py,sha256=PXX-hb_bd7GdtLHcAcnGGsW_Wbg8g2YlRZMTCk3axUw,78
147
165
  fusion_bench/method/pwe_moe/phn/solvers.py,sha256=OO-ImNwsWIQ3eXPxzj1V-kNgXrJc4FKcK-RwaOl_np0,6156
166
+ fusion_bench/method/randes/__init__.py,sha256=v7iJFBxBcMrYn76qeWgd4qG083Y761bFVRH39tWxkJo,453
167
+ fusion_bench/method/randes/base_algorithm.py,sha256=DK21zxJ4RUOEvwNg495Q9fFvDDpSlqvuX8YFmQ_m2ls,45680
168
+ fusion_bench/method/randes/modelsoup.py,sha256=aMmtWAcneFw6XvLe0jVOG3iOkp2zZkoA3yvexcdxlic,5657
169
+ fusion_bench/method/randes/task_arithmetic.py,sha256=vwDvRs6BkL3HbXaI1lQz38VeMnaBrRTJIqYy7aVFDrI,14214
148
170
  fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcfrFL5EMw34YNHeE,119
149
171
  fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
150
172
  fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
@@ -164,10 +186,11 @@ fusion_bench/method/sparse_we_moe/__init__.py,sha256=V5VOpLwn6ZpsM09TmwFhhlJwMTB
164
186
  fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6FUQACvSmM364QHlVBYMKOCPbHrU,10288
165
187
  fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
166
188
  fusion_bench/method/sparselo/__init__.py,sha256=0Uk4Hq5b9iwc5yl2QTDwvBHUItN4V6lwhxDYQrFb724,107
167
- fusion_bench/method/sparselo/sparselo.py,sha256=qkfFwovdOA7-NUXtLYiV1iM9bglQJydfuL805azQ6Xc,38806
189
+ fusion_bench/method/sparselo/sparselo.py,sha256=U3eIjLcz484Tq7kbQry_U7YFiTx3ECOeJbg7PnXVtfc,39573
168
190
  fusion_bench/method/surgery/__init__.py,sha256=6sRKWeL8cx6Jy2aC9tRL78irNTJnp9w75K2dAxBxhho,88
169
191
  fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py,sha256=Cc8LiAqkQzJwQJsyuazG5wgq6kghVcyL8rGkhPcBVoU,5936
170
- fusion_bench/method/tall_mask/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
192
+ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuYwIzvwkrr0ILY,61
193
+ fusion_bench/method/tall_mask/task_arithmetic.py,sha256=xtxUVeI-Ler4Wgx8lrt-GlCr-Yth0jNsacvA_rPctJo,4601
171
194
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
172
195
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
173
196
  fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=qhOLb0kXDdgHCgqOAASwwXDTK0gnaiUVI1N72ZJLUyI,5617
@@ -217,9 +240,10 @@ fusion_bench/modelpool/__init__.py,sha256=Oh21MYHCNguLQYFrQXEsNhqr8vNAXUG7jS-Rwv
217
240
  fusion_bench/modelpool/base_pool.py,sha256=KCNRVirODjssWZWswkC63gjcBhIbx9k_ub9h9JV4l2o,9089
218
241
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
219
242
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
243
+ fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
220
244
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
221
245
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
222
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=k0eOOcFbswVgBYhM9CEXvdCRU9zVC8Gw78QaiMWzeWo,4487
246
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=fO8lF8YWwoe43sVVOqHW9Ike7x-924-I6QQgZqx9EgA,6505
223
247
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
224
248
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=JH1wLdWefvE242SYpXTnoSLkKX-YcadnidWd2bo8tWQ,5486
225
249
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
@@ -254,6 +278,10 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
254
278
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
255
279
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
256
280
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
281
+ fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=sDsf53IDcy0umE_0JouUSuZVvbqBaYE9_LUFxvucDUI,505
282
+ fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
283
+ fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=_qDCPMRPEMCXzZwJMJGSQ0FjMAZ9qkB7fCUK_feteKA,78677
284
+ fusion_bench/models/modeling_deepseek_v2/tokenization_deepseek_fast.py,sha256=nj3nGvasPLZlnGwe_Cc6m77eppucqxu5hF30BjdDMqg,1364
257
285
  fusion_bench/models/modeling_losparse_llama/__init__.py,sha256=26twHBq8im8dAJ1DmDGgSCr3Aco2lQlH6Jf-A2jOOC4,187
258
286
  fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py,sha256=nkJ9Fl0emmUWtFcIcFAW7lnSQV9dVp1xbef3o5kAsYo,11116
259
287
  fusion_bench/models/modeling_losparse_llama/losparse_linear.py,sha256=Pp-idKJITzFbsRStetBO0TQ8sTtX7-bvSzX8SQAf_nU,2416
@@ -298,7 +326,7 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
298
326
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
299
327
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
300
328
  fusion_bench/programs/base_program.py,sha256=0dX_KcMWASo53pr-ldzfUBWIjEXy6oeDWZBrfc7FIk8,195
301
- fusion_bench/programs/fabric_fusion_program.py,sha256=WOA9a2hxAKq0aykT4FLwHAyaFTo1XkYLU8fpiyOSX0o,12885
329
+ fusion_bench/programs/fabric_fusion_program.py,sha256=lzSkoCb8L_FKzl0urQqOLTT1VXqV721mjjlJgdm3zKM,13112
302
330
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
303
331
  fusion_bench/scripts/cli.py,sha256=hw32XtmixFxYXwgAY7iRBMzma_XQjdf_FxPiXKL6dIc,1154
304
332
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
@@ -315,7 +343,7 @@ fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBig
315
343
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
316
344
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
317
345
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
318
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=k-cJ3tHQ-mMkmsga_wYOh1nhleCsFALr8E1teJ3_M7w,14949
346
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=bTeR6AFBVZjZqKoaVKYVEXedYoYUGsw93EhM4eLZsQE,15340
319
347
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
320
348
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
321
349
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -361,10 +389,10 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
361
389
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
362
390
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
363
391
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
364
- fusion_bench/utils/__init__.py,sha256=fogKvcbYQx2nhj4-NWeeUg0xWUKA30lVJBxJpoPdFA0,398
392
+ fusion_bench/utils/__init__.py,sha256=r4ahPkqUsZTSyP6-P6dhaE1CFl5ttbQ3A_w1YW4i_40,441
365
393
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
366
394
  fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
367
- fusion_bench/utils/data.py,sha256=qLwuXZTUd9MEK-8h71vvB-CZ85Uz3iuaUUAyEXSh-h8,6575
395
+ fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
368
396
  fusion_bench/utils/devices.py,sha256=MIAxbEGinN-QU4W1g3-YKkJsteHQrwhbLqkmbzX1W3U,8035
369
397
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
370
398
  fusion_bench/utils/dtype.py,sha256=kYoEGqsXitnwOU3W7ivqhQ0OjdI7MGu1VsyMJS4cSyQ,4299
@@ -375,17 +403,18 @@ fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqk
375
403
  fusion_bench/utils/instantiate.py,sha256=Q82pa96V5kKsci_D-Vvb6GWcUwjITqrjTzUGrf3MeBI,17407
376
404
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
377
405
  fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
406
+ fusion_bench/utils/lazy_state_dict.py,sha256=0KBd3j6A_T_9-m8t68tSDpQZB_MWk9-cwho3O_8PkXY,10150
378
407
  fusion_bench/utils/misc.py,sha256=Rgec7eKcGIcp9BaFVdm2pzx0J-L8AyX5qWuiYNTGvTc,530
379
408
  fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
380
- fusion_bench/utils/parameters.py,sha256=-WBZ2jlzxavuFZAEOamAMVtQSZs2F2QV5GcSBMpUd-8,10804
409
+ fusion_bench/utils/parameters.py,sha256=2vs8vo2o-nRA9NOMOYFye-X8-aHQZoYe54tM6n0r0RE,11757
381
410
  fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
382
411
  fusion_bench/utils/pylogger.py,sha256=a5tHfpEFbsdzw0vhQxt4BJ6CfTXaxyuwzoDFhyNy4KI,2468
383
412
  fusion_bench/utils/rich_utils.py,sha256=B8DhAYuVp23pG6ZnnYrUhcL-ikHZoQeTNqlM7u4pwwU,5786
384
413
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
385
- fusion_bench/utils/state_dict_arithmetic.py,sha256=dVPBkO8Te9_VANPbetV59ORAQTw7D3css_-d0lYgK4k,9062
414
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=iz5YYhMJpg2-lBLBY8E1onV4i_GkRhJOGn2DjhLBbYE,11390
386
415
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
387
416
  fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
388
- fusion_bench/utils/type.py,sha256=Jz--BmTAzQkxcXXZfGiQLzLR0IPktrFGdjiWhkE93Qg,567
417
+ fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
389
418
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
390
419
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
391
420
  fusion_bench/utils/plot/token.py,sha256=QGmL_qX8drmWnN_VNLD_0YjKc1o_qahJE-svXVor8dU,1634
@@ -393,7 +422,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
393
422
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
394
423
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
395
424
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
396
- fusion_bench-0.2.14.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
425
+ fusion_bench-0.2.16.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
397
426
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
398
427
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
399
428
  fusion_bench_config/fabric_model_fusion.yaml,sha256=5iPgaM8UOhuvBW2Hap_csst-eqlYRwb_lru8ngjrZ_g,948
@@ -403,7 +432,11 @@ fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SD
403
432
  fusion_bench_config/nyuv2_config.yaml,sha256=yZctiexNVwsXEgKgS3j-OlItzvsQNIuWIKRPBFNdfYM,490
404
433
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=RfsrboIpL9Cct2RkRrKxXAqH4jLi1NECHbwH8iOGtDY,591
405
434
  fusion_bench_config/dataset/image_classification/README.md,sha256=fgxqviGhqkJ-lPihQNG7I8bn-PhU5EDFBDQnH27xEmQ,321
435
+ fusion_bench_config/dataset/image_classification/test/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
436
+ fusion_bench_config/dataset/image_classification/test/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
406
437
  fusion_bench_config/dataset/image_classification/test/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
438
+ fusion_bench_config/dataset/image_classification/test/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
439
+ fusion_bench_config/dataset/image_classification/test/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
407
440
  fusion_bench_config/dataset/image_classification/test/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
408
441
  fusion_bench_config/dataset/image_classification/test/cifar10.yaml,sha256=2Ye2-sKdwf6li3IsoAADcFhey8SYMi23KEVpW6vqQ88,82
409
442
  fusion_bench_config/dataset/image_classification/test/cifar100.yaml,sha256=keK29rjT8M6PT6yhdA_bZfE51Omm26Ixh2ZnDoDs-vw,84
@@ -430,7 +463,11 @@ fusion_bench_config/dataset/image_classification/test/sun397.yaml,sha256=TvLUJ4_
430
463
  fusion_bench_config/dataset/image_classification/test/svhn.yaml,sha256=iMfBz3vYWGx8Qso-AdUE0I2vW7BnRVr0665QXMjKpBY,96
431
464
  fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml,sha256=x1-xurkOIQtWX-gpSwXDxA5fVY30KmrarS7EKaje33M,101
432
465
  fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml,sha256=qDWIQqdOnx48leM1NN_GwfcdWVrT-XqN3AMMBP4SnBQ,94
466
+ fusion_bench_config/dataset/image_classification/train/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
467
+ fusion_bench_config/dataset/image_classification/train/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
433
468
  fusion_bench_config/dataset/image_classification/train/TALL14.yaml,sha256=aQfotA54wVHYyjiciNs9TZ7qewGcCSS9MVi09YdetAo,431
469
+ fusion_bench_config/dataset/image_classification/train/TALL16.yaml,sha256=RGkVzPyB4yMeQi8GdXNIgt6cfkfNChyP1cNqx3GbTdc,596
470
+ fusion_bench_config/dataset/image_classification/train/TALL18.yaml,sha256=zBviSSvUzP47t8eYFC2zbkJuPR8h8xy6GUlHKxakpgA,592
434
471
  fusion_bench_config/dataset/image_classification/train/TALL20.yaml,sha256=g1aOa7_XXjj7oJeIHA3hOMdTXhWYvJZ8CZ_fDbIyqFY,587
435
472
  fusion_bench_config/dataset/image_classification/train/cifar10.yaml,sha256=P7oGTFBr4_UkGJFIwzVCnvWNX9Q2grVyiYci4RmgVYw,83
436
473
  fusion_bench_config/dataset/image_classification/train/cifar100.yaml,sha256=WvrkH63eh4-qV4LSL2Pd7EdnchgQvaw-rP2eZ8WXl00,85
@@ -533,6 +570,8 @@ fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fj
533
570
  fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
534
571
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
535
572
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
573
+ fusion_bench_config/method/fw_merging/fw_hard.yaml,sha256=G6s5td3x1ZnUaELK9y726Du3XIDryTH3d21k79rbPTI,232
574
+ fusion_bench_config/method/fw_merging/fw_soft.yaml,sha256=Rlrg6AB14FLj3b2r-9UiUsf2IOhs4N4DXu8CIakb_4Q,235
536
575
  fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDLz6boZpd43zjEh8pymg4dXPfzQ,1041
537
576
  fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
538
577
  fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
@@ -548,17 +587,22 @@ fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t
548
587
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
549
588
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
550
589
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
590
+ fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
551
591
  fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
552
592
  fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
553
593
  fusion_bench_config/method/opcm/ties_merging.yaml,sha256=XOE1XzSdYXYzqev9bFD4g4prcmE1OiVINkVXsquizAA,541
554
594
  fusion_bench_config/method/opcm/weight_average.yaml,sha256=SmhftSJ_YXN6tn-0GuzQgjbE2sOd7YXoPYjDWzpY_9E,304
555
595
  fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml,sha256=Px8LU_UtDz-YHDFfqQ7scEPOproiFOaudKVshrhCTgc,483
556
596
  fusion_bench_config/method/pruning/llama_random_pruning.yaml,sha256=0RiZS8d42PXZzwncPG8zcbnyYJ9vtfr2sOSqS8oDyT4,325
597
+ fusion_bench_config/method/pruning/llama_sparsegpt_pruning.yaml,sha256=gC6Ss0n2tKSb4gyVfx45BvsFbVBGN-om4-2S1sKS-_w,505
557
598
  fusion_bench_config/method/pruning/llama_wanda_pruning.yaml,sha256=qKe5yIRsmK2KUyYENENWlw1qlGet9TpDhR-E_uO7vAw,501
558
599
  fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml,sha256=GsxsQ2L3kfsdD7A8o7UAHfiSbAGh53zVXdlYuEIEWR0,130
559
600
  fusion_bench_config/method/pwe_moe/epo_for_openclip.yaml,sha256=IcKSDWqxmz18IuwfkXlaLVXfWPAA9Qk3BQEVCs41lJs,1095
560
601
  fusion_bench_config/method/pwe_moe/ls_for_openclip.yaml,sha256=7fxDVq9Lxf3VTMfyyaBIjX40hIXunSqnXS-YfdBKYPE,1096
561
602
  fusion_bench_config/method/pwe_moe/pwe_moe_ls_for_clip.yaml,sha256=fNvLr5700dptUGsExFS5MBUC6ZN3OQ5yOfIChUZA8oM,632
603
+ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE322-6vtmmjDls9itC-VRZjQW4e8f1UNY,513
604
+ fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
605
+ fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
562
606
  fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
563
607
  fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=dxSJMRam6YMks7zYx4ACgvrLP5cndxzraVO93SGhyYo,425
564
608
  fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o8tYQkhXxPV8lRf-dRNPIsOs,422
@@ -568,10 +612,11 @@ fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha2
568
612
  fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
569
613
  fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=Rdcub7yFFn-jKXrlFoj8LQk1cRbJm2do91pV-YMSzTE,378
570
614
  fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
571
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=1zfrT2FNmLyCivth4kzGR8Ai9jyQ87OXRbf4di4IE94,642
572
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=UPnMt_GoMSHOeOx5Sv0oHPRoPhhvVRC5zdVA38OTwSg,636
573
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=wGUDddZAtvQsTZx4mhZ1G3fIrFbyfWSr54nCpYSubuo,614
615
+ fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
616
+ fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
617
+ fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml,sha256=Cmg8N4l--3C0qeSHG-HLOgjJZ954eWHoDNgRnx0pLK0,614
574
618
  fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2Icd8LKN5YJEi5LwNSGo-Gp4Xg7wBC4,826
619
+ fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
575
620
  fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=21vs14DEf2qg7Tqm5wNnjkpsjTRJbVs8JGl4SlrijDM,168
576
621
  fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
577
622
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
@@ -602,7 +647,11 @@ fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml,sha256=bKCK8
602
647
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml,sha256=i-KHKM5TpVatjeYFGIiR7RsQEZEncfCJjwPZsI4poUk,46
603
648
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml,sha256=ueUU5YbT90sPdr-ZxAfwZKEbEIfMF1FO6t8Ba4cChXs,42
604
649
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml,sha256=isHme17QM6vEirZ0lLtFf03gN0-5QWrsXMW2-ya46U0,43
650
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL10.yaml,sha256=R-_Xr119-Cq5vdUX-uWGhzk3I68BA4YXCOJ55aEWqTU,1096
651
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL12.yaml,sha256=w15VL2PH8tmuyeaySLOcQbCpUfdb_7kODCdEbb6a3vw,1091
605
652
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml,sha256=kuMIvKYA8H788FYoyhO2WugwWtL0Ji2oBJreS9F2128,787
653
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL16.yaml,sha256=mAjNmcXx2kloP9f_rbwLfco9uXcc6uCKt7p38GhfCj0,1083
654
+ fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL18.yaml,sha256=Ye0DkzgQBidIN8tEJM9o2EWqTY3T8xkbFndwqk37hII,1079
606
655
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml,sha256=1RsY7kRdd-Tq0GHPfljqyu4W9lJwuX8BTk9PO4tk1AM,1075
607
656
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml,sha256=8gUqMtfzFB0nDnQ6FdPImZIXmFlUz6is6cIROmwDIfg,48
608
657
  fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml,sha256=tq2se6h7E5JSYyz4TIty4bs-YXAYiZwXEpOKLpdByT4,50
@@ -700,8 +749,12 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individu
700
749
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml,sha256=1oY5QXG7flQq1990eN8GyjS1kak-dLPZIusV_dYyJVo,250
701
750
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml,sha256=5-g4DRsD5RBr8As6mDD9V8pT1JxKKPIUjwK8O7vBOMQ,688
702
751
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml,sha256=NdefoS2vRA4byRgjwKh8OplRJB48vg3jaeYiSjwQfAQ,108
752
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL10.yaml,sha256=uAVyNQQT16-oVB9CvxBNyoArni-giZDqkDPQogeJnP0,380
753
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL12.yaml,sha256=K5AWiFweGQ9CxQ0Wk-1ucfAs25WFFcWtpFEiio521rI,380
703
754
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml,sha256=cmHBQY4zl4ySRJ5n11MIOzLERjPyxaFk1DGWFlrn-zQ,380
704
755
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml,sha256=_2t8TV9T7BAiQda5fKCRIryTPg3XHYEM3hQUJqD1lXs,256
756
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL16.yaml,sha256=7Z4UVw3ManuEOw1D242UHn9uOv0LqUh2-uZt1M3718E,380
757
+ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL18.yaml,sha256=gGVJbI9LqenrGlFL3OCIqUxpf8IGM5GaXajgi9qVe1Y,380
705
758
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml,sha256=V-p1JLhNwILgR0F4i6l8oOEQvZcYxs3J0Ly0VeAJY48,380
706
759
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml,sha256=xYr0g5mdv0wly5HkTcnLq5yG6Mjj78XB7fGaCTk5KEc,256
707
760
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml,sha256=2WtCV1cJEEK3R-t4Tf-YB1AIZl-d0FkE6C0CsUBm9fw,625
@@ -721,14 +774,24 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
721
774
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=yC2U_IoBAhawgSahY_mdi7ea5kJ2SSRPJ2FM-bA-E9M,510
722
775
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=a2nviqKSRNoQScYVbj5buq0PbUzmYJwNWdPBUoLaeV8,386
723
776
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=G6yvZuWOKb75RLn6tu2LPnwHUyvoxPfL_wqb_B11aZo,549
777
+ fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
724
778
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
725
779
  fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
726
780
  fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
727
781
  fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml,sha256=vU0q06OUa1UM_Xvp2t27Rl3F6EDgYWPnDxeyzUH-QVI,589
728
782
  fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml,sha256=MpgshGtmMXpUFRA1knjdGRVH4UgZbkkcTmCTrF3LlZk,573
783
+ fusion_bench_config/modelpool/CausalLMPool/mixtral-8x7b.yaml,sha256=trVErtaYjqWElrAjS7aQG8nFDNCvTUt_siK1s82jNOQ,448
729
784
  fusion_bench_config/modelpool/CausalLMPool/qwen2_math_1.5B_and_R1.yaml,sha256=Kbpam1Hds5URMP35dXGdVibH-vTmYPh3xHMkhj6Mgtg,648
730
785
  fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml,sha256=FynhZ1PRvyzsyzrHIuMpGgQGRMlu_xI7earm-CeIVeY,824
731
786
  fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml,sha256=zQWfp7mYm6jQ8g41Eeh2d9vAbocZJ5btPX1ft9QpEZU,546
787
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B-Instruct.yaml,sha256=NDq_prH-b9Vw7lRjsyJIcbeF4MXVVdszxK1FPJxIJYs,453
788
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.1-8B.yaml,sha256=Mg_z2vnw7IkNPoMvhl_Ja6gT9tX942sqaNfjXQRzBvg,390
789
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B-Instruct.yaml,sha256=SfPEji6mWx9Dw48rE0B8MDrYv2NVLC-S98DK5xaU6So,453
790
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/Llama-3.2-3B.yaml,sha256=2vpOp9t8SUP2rkBw21mqwRYApkqXQiaYXcZm2oxLox4,390
791
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml,sha256=8up_cqEhabGeK6l6tMha9DJzsPoEIFN8bS_Kwv7LmCc,389
792
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SODG0kcnAP6yC0_J_SpSVMRV-v5qGV22gcWdiBaZo1I,368
793
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
794
+ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
732
795
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
733
796
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
734
797
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml,sha256=q2_E2R1wIOdxd-AF-wjXkPO64gJgD27YXsZ8FFLWUIo,1607
@@ -745,6 +808,7 @@ fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_tta.yaml,sha256=vx
745
808
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml,sha256=ehrmbx6ZBTCkCEco3AloiuqNxFHU42Igg3z9hmFSlUQ,184
746
809
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml,sha256=ySj-IxxdxwzyUAGP5QSngdgrpwTWY7-5BQFkno6uQXw,1821
747
810
  fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml,sha256=CJ5NQEzTbzkMmggfCUhRuOrzRoSfI-XlpCXqO-kcf7g,876
811
+ fusion_bench_config/modelpool/SeqenceClassificationModelPool/roberta-base_glue.yaml,sha256=uOdai5ktA7ONw4D4MdI25D_RQIziegwrm6w0rtiKOZM,1731
748
812
  fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml,sha256=5mUbWYOcAEtfzMPsSoVZxtDqbhLlkHnI1y557cFa80k,623
749
813
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml,sha256=vcU1ygptQ7nlufCEdKDWGMyi-OH4zJs55_vxG-iNHBc,541
750
814
  fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=Ged9KWmmGl29hq0gXzyG1DlryuLebDQAJIb_t5PvqiE,758
@@ -790,8 +854,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=45kSz44pc
790
854
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
791
855
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
792
856
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
793
- fusion_bench-0.2.14.dist-info/METADATA,sha256=X13MPJ_FA0D5Gc5T-CvbcYOK03QtTiyIHnDNbI7_aOo,20904
794
- fusion_bench-0.2.14.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
795
- fusion_bench-0.2.14.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
796
- fusion_bench-0.2.14.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
797
- fusion_bench-0.2.14.dist-info/RECORD,,
857
+ fusion_bench-0.2.16.dist-info/METADATA,sha256=WhxJXXVCu3q6poHTd0VSc1WGGlZwyzOTyDI_UyeRask,21721
858
+ fusion_bench-0.2.16.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
859
+ fusion_bench-0.2.16.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
860
+ fusion_bench-0.2.16.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
861
+ fusion_bench-0.2.16.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.7.1)
2
+ Generator: setuptools (80.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ # - fer2013
18
+ # - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ - fashion_mnist
25
+ - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ # - fer2013
18
+ # - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ # - stl10
20
+ # - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ # - cifar10
23
+ # - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ # - fashion_mnist
25
+ # - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,28 @@
1
+ # The 20 task used in the paper:
2
+ # Wang et al. Localizing Task Information for Improved Model Merging and Compression
3
+ # http://arxiv.org/abs/2405.07813
4
+ defaults:
5
+ # eight tasks in the task arithmetic paper
6
+ - sun397
7
+ - stanford-cars
8
+ - resisc45
9
+ - eurosat
10
+ - svhn
11
+ - gtsrb
12
+ - mnist
13
+ - dtd
14
+ # additional 6 tasks in the TALL mask paper (TALL 14)
15
+ - oxford_flowers102
16
+ - pcam
17
+ - fer2013
18
+ - oxford-iiit-pet
19
+ - stl10
20
+ - cifar100
21
+ # additional 6 tasks in the TALL mask paper (TALL 20)
22
+ - cifar10
23
+ - food101
24
+ - fashion_mnist
25
+ - emnist_letters
26
+ # - kmnist
27
+ # - rendered-sst2
28
+
@@ -0,0 +1,11 @@
1
+ _target_: fusion_bench.method.FrankWolfeHardAlgorithm
2
+ merge_fn: task_arithmetic
3
+ max_iters: 10
4
+ step_size: 0.1
5
+ dataset_size: 100
6
+ tasks: []
7
+ init_weight:
8
+ loss_fn: cross_entropy
9
+ scaling_factor: 0.3
10
+ max_num_models: 100
11
+ granularity: task
@@ -0,0 +1,12 @@
1
+ _target_: fusion_bench.method.FrankWolfeSoftAlgorithm
2
+ init_weight:
3
+ max_iters: 10
4
+ merge_fn: 'adamerging'
5
+ tasks:
6
+ ada_iters: 500
7
+ dataset_size: 100
8
+ ada_coeff: 1e-8
9
+ step_size: 0.1
10
+ max_num_models: 100
11
+ granularity: task
12
+ ada_loss: entropy_loss
@@ -0,0 +1,15 @@
1
+ _target_: fusion_bench.method.moe_pruner.MoEPruner
2
+
3
+ nsamples: 100
4
+ seed: 42
5
+ device: cuda
6
+ max_seqlen: 2048
7
+ # `prune_type` can be either `unstructured` or `semistructured`
8
+ prune_type: unstructured
9
+ # === options for unstructured pruning ===
10
+ # `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
11
+ sparsity_ratio: 0.5
12
+ # === options for semistructured pruning ===
13
+ # 2:4 means 2 out of 4 weights are pruned
14
+ n: 2
15
+ m: 4
@@ -0,0 +1,16 @@
1
+ _target_: fusion_bench.method.SparseGPTPruningForLlama
2
+ nsamples: 128
3
+ seed: 0
4
+ use_variant: false
5
+ # `prune_type` can be either `unstructured` or `semistructured`
6
+ prune_type: unstructured
7
+ # device and dtype to compute the pruning mask
8
+ device: cuda
9
+ dtype: null
10
+ # === options for unstructured pruning ===
11
+ # `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
12
+ sparsity_ratio: 0.5
13
+ # === options for semistructured pruning ===
14
+ # 2:4 means 2 out of 4 weights are pruned
15
+ n: 2
16
+ m: 4