fusion-bench 0.2.10__py3-none-any.whl → 0.2.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. fusion_bench/compat/method/__init__.py +5 -0
  2. fusion_bench/method/DOGE_TA/DOGE_TA.py +364 -0
  3. fusion_bench/method/DOGE_TA/__init__.py +2 -0
  4. fusion_bench/method/DOGE_TA/clip_layer_wise_adamerging.py +46 -0
  5. fusion_bench/method/DOGE_TA/layer_wise_adamerging.py +250 -0
  6. fusion_bench/method/__init__.py +10 -0
  7. fusion_bench/method/concrete_subspace/__init__.py +8 -0
  8. fusion_bench/method/concrete_subspace/clip_post_defense.py +744 -0
  9. fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py +832 -0
  10. fusion_bench/method/isotropic_merging/__init__.py +1 -1
  11. fusion_bench/method/isotropic_merging/iso.py +2 -2
  12. fusion_bench/method/task_singular_vector/TSVM.py +3 -3
  13. fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py +531 -0
  14. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/METADATA +1 -1
  15. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/RECORD +24 -12
  16. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/WHEEL +1 -1
  17. fusion_bench_config/method/DOGE_TA/DOGE_TA.yaml +4 -0
  18. fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml +38 -0
  19. fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml +41 -0
  20. fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml +39 -0
  21. fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml +40 -0
  22. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/LICENSE +0 -0
  23. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/entry_points.txt +0 -0
  24. {fusion_bench-0.2.10.dist-info → fusion_bench-0.2.11.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,7 @@
1
1
  fusion_bench/__init__.py,sha256=68dF-zPvb8E2MgYnmgIJsxIHJBy1MApKeOrRZvQEVlg,421
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- fusion_bench/compat/method/__init__.py,sha256=KUKHpX7AfvB7fmOAlruWp0r1z17xpkI9l29PMvLWR9A,4956
4
+ fusion_bench/compat/method/__init__.py,sha256=97izLAf4JssNAoOXR4MYffFxb3OEwpHeQeSlL_ihMKI,5566
5
5
  fusion_bench/compat/method/base_algorithm.py,sha256=63_AQDj1eJOO6RyTSGXVC6G2DsG8yg9E4pT3RJXgP3A,1952
6
6
  fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py,sha256=m68BRGy4P-P9lLB10oXOBI-p58a-0FOPcrJ4r4MU32k,1100
7
7
  fusion_bench/compat/modelpool/__init__.py,sha256=KD8Ddr9D7rJ5YdHEQsTuNmQ0bgQfqF4l3WNMtHmRHD8,4687
@@ -41,12 +41,16 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
41
41
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
42
42
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
43
43
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- fusion_bench/method/__init__.py,sha256=py1hn-gRqwzESwS5KvDapclyUvIW42r0nDsuINgFBB4,6601
44
+ fusion_bench/method/__init__.py,sha256=QGJzdOpZxonu_WUNXSFQIiMy4OHsgqmcU5Bs6OB_RT0,7040
45
45
  fusion_bench/method/base_algorithm.py,sha256=5dutGZfPqNhO8F8FOlo3UFR91TZu2Xj7O0pTB40JvWo,1135
46
46
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
47
47
  fusion_bench/method/ensemble.py,sha256=rGxvJTeorfcBuE_e0XO-0-MAc9un7ZCC46ikKGuAcN4,3077
48
48
  fusion_bench/method/model_recombination.py,sha256=2tviqmYSPOL0_Ktv8_gt_YzQ4tyCANHxXquUot_3Cgo,5360
49
49
  fusion_bench/method/simple_average.py,sha256=2ghcL1E-eLbIYDCHYCoR9WtiYSb1GvFAH163OTTTEEI,4481
50
+ fusion_bench/method/DOGE_TA/DOGE_TA.py,sha256=veNjBfq65fB7oqQL66zAuA339WCY5mG-mefkVteg2-k,13785
51
+ fusion_bench/method/DOGE_TA/__init__.py,sha256=OTukCLUlbCUTDqGBtgBZop7eYFDfU2wjG4PkP4fXN4Q,59
52
+ fusion_bench/method/DOGE_TA/clip_layer_wise_adamerging.py,sha256=YdQ4trHohW6QzWC2enYvXA44WHxvzmoH_6sMrPn6z60,1305
53
+ fusion_bench/method/DOGE_TA/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
50
54
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
51
55
  fusion_bench/method/ada_svd/clip_vision.py,sha256=QrT6cSwgVEGxXEpVhkvKQVQaoRW5P9V52Y3_8NX0f-o,12556
52
56
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
@@ -66,9 +70,11 @@ fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=ie8hPl6QsVz9MQ6C2
66
70
  fusion_bench/method/classification/__init__.py,sha256=emB06UOMDHK5pfQ1WuvLG9Fm0aEEtZxSjpVw8fVE0fM,167
67
71
  fusion_bench/method/classification/clip_finetune.py,sha256=DlV1isp8vz6jwXNYQ6zbblAoUfnssL-WBpDeaXI5BVw,15727
68
72
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
69
- fusion_bench/method/concrete_subspace/__init__.py,sha256=yjadcpquHZbeZYsbfYhe2JlX46kObfiWJRsIoVcOEg4,223
73
+ fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
70
74
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=90_0HkOIl0XQG89xMa0UiBhrwfV2YqfLxlS04AouR3o,24755
71
75
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
76
+ fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
77
+ fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
72
78
  fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
73
79
  fusion_bench/method/dare/simple_average.py,sha256=jR08PokPIr5PWSZbGVOp3IApgKvxAIovg3vnB2KiTwk,906
74
80
  fusion_bench/method/dare/task_arithmetic.py,sha256=Seno_2BhuogdRxXOni8alnHG-fdW15_OWoAvMoBoJj0,2780
@@ -85,8 +91,8 @@ fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqve
85
91
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=QCutGqjkfW3OWETPZsCChqLRAhvfJp4QKD9TGSpTyV0,7635
86
92
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=CPU-tJiDv9FCIBYl7Pn0zA5cdRB1Md5kWchRDlJgly0,20456
87
93
  fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=LZmz41jZ5dSsAHxfOUpr3u2rlCgUPTDR7xMsIlQM-jc,7576
88
- fusion_bench/method/isotropic_merging/__init__.py,sha256=Bg12OiltvZLMmZm066quvtG0LOWSVqI5RggYeaMDGFA,585
89
- fusion_bench/method/isotropic_merging/iso.py,sha256=GILofZQiTcOnJRQ28RmzOjqkso5Xih9WuFuB2JDWA_M,3773
94
+ fusion_bench/method/isotropic_merging/__init__.py,sha256=0mxrl1UIjeFAPQcPcZtbgoCJO-DMW_49GKAhgcG-vEA,585
95
+ fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4Rd0WcEPsYvQhBSCg,3773
90
96
  fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
91
97
  fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
92
98
  fusion_bench/method/linear/expo.py,sha256=LCHTWlsPm1Mjhrq0mfpWLVC7skkI9ZksGduy3TxULoU,3939
@@ -154,7 +160,7 @@ fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk
154
160
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
155
161
  fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=1D0uuNtqyA1VS35jh6AnEVsX72HnT02THyerck_lmso,5441
156
162
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
157
- fusion_bench/method/task_singular_vector/TSVM.py,sha256=2MqeJazsZNBTKghrtZDqXE2XoO_BShK60n3SEMjV74k,2787
163
+ fusion_bench/method/task_singular_vector/TSVM.py,sha256=H5RzZlQQeF4kZFjuxkz8v3gyVKS3iKPgqNnitKQzbXk,2787
158
164
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
159
165
  fusion_bench/method/task_singular_vector/utils/TSVC_utils.py,sha256=FytKbal48EW6iGIA-2zV7QSVbYTVflXr4Mr56q0W75k,2286
160
166
  fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=dsTMQ15zFJ1MPqDOt2TJ01O9Bwq_klyG9xL9hRD2aI0,27521
@@ -254,6 +260,7 @@ fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=F8jX88K5zVWC6HsfN-nGNk
254
260
  fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
255
261
  fusion_bench/models/wrappers/ensemble.py,sha256=wIMZMRyXw5boWAm96c4Tiyebs_HDQovKxpGQ8rLnHUQ,6308
256
262
  fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=ZizBGQtSLKOzMLFAhrMNMcv6ZNdvABTyO7M1-DGHh3c,12316
263
+ fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=k335dxzq3ezuYkDVOv4ePi128NVyiHVCW6zyuDRTg30,20689
257
264
  fusion_bench/models/wrappers/task_wise_fusion.py,sha256=Wn3buQvWw_lihWaKB03_iz34cBPzwBD94kBT6uafWVQ,8404
258
265
  fusion_bench/optim/__init__.py,sha256=lemrcuiA6OLjQkpYm-RP-Ox2MgjngN1ywvCo0NgShlM,61
259
266
  fusion_bench/optim/exception.py,sha256=fMgo1heiqfGhuI5RIbf30BwWSShn5RQiyeb30QtfTI0,1607
@@ -465,6 +472,7 @@ fusion_bench_config/method/pwe_moe_ls_for_clip.yaml,sha256=brs9zYeuXfFnnCoRrSaAY
465
472
  fusion_bench_config/method/simple_average.yaml,sha256=GtMNvt0-qWOevRX2V6fjiYUO2BwDvMw-EcxRMS_PhZQ,53
466
473
  fusion_bench_config/method/task_arithmetic.yaml,sha256=TbpAeTwIX48PFOkZU-Ihuu6U9Y5XHZJGDu7vHLt5FjU,74
467
474
  fusion_bench_config/method/ties_merging.yaml,sha256=N-XyOTEW0JRtyRJizpHqtb1GEIogUU22XSG76QvIvnw,292
475
+ fusion_bench_config/method/DOGE_TA/DOGE_TA.yaml,sha256=6R9NRuWmj0oapJ_raMB6R6rZPMckt2JtMLrTQ6HhrFc,77
468
476
  fusion_bench_config/method/ada_svd/clip_vision.yaml,sha256=KDpDpzuNVqqyyqJcL0q-Ml2A7IUqn_-2dOZXs8zHKlU,184
469
477
  fusion_bench_config/method/adamerging/clip.yaml,sha256=fBG7jBBepygKpCbM3fmUeVAr2zzx0g8C21rGGfnEPkA,730
470
478
  fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml,sha256=7FPPMf6lcOD2dlNUbb5JyF3pqJ3D2jmvbWAbW9WGn0Y,546
@@ -477,6 +485,10 @@ fusion_bench_config/method/classification/clip_finetune.yaml,sha256=yWjcdKYaKvy5
477
485
  fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=XsHzr_5NoUZs0Us3eVwP3lUYXYvyJwGEEG9aDI_Z0rU,740
478
486
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
479
487
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml,sha256=WgTJj28FlVjR0_mCGJC5B8aJa9yezI3QusoXXHOrFoU,739
488
+ fusion_bench_config/method/concrete_subspace/clip_post_defense_AWM.yaml,sha256=eGUCntXzDtW0tYX1vij7BHgDWzWq6sz2yFipVZj6z9E,849
489
+ fusion_bench_config/method/concrete_subspace/clip_post_defense_SAU.yaml,sha256=DUYOU5A8MQw2cTqbraIDMFC7ciO8RXE2qXgVEEUudLM,891
490
+ fusion_bench_config/method/concrete_subspace/clip_safe_concrete_layer_wise_adamerging.yaml,sha256=olDW_p5gyyaynwbGAQgm2ZicYAx9n3i4FprxPecuUsU,923
491
+ fusion_bench_config/method/concrete_subspace/clip_safe_concrete_task_arithmetic.yaml,sha256=KLO3C1BdeB6FBKHT0xG4V0OFk7ib2SeMScKeaN5BlsU,863
480
492
  fusion_bench_config/method/dare/simple_average.yaml,sha256=oTFSCHul86NTjTtJYK5pNr3tuxW7XxNI-y6fL9Yo4VI,113
481
493
  fusion_bench_config/method/dare/task_arithmetic.yaml,sha256=Cvsam89yquamn_GkITT6q8qFKN_Yb5nv8p-XgvnVrgU,134
482
494
  fusion_bench_config/method/dare/ties_merging.yaml,sha256=50mPiRkzLN7gxaIs56sPWkAUSvqvdxjQJ8eVl1yUGOg,418
@@ -724,9 +736,9 @@ fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397
724
736
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml,sha256=2AqMiNCRRunLIrssHvFzu1lUzOaQn8uOHM9yjrQq-_A,109
725
737
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml,sha256=iQMj2VpDTe_D8OfCo94w5Ud2MON-EGa0DzVr6UmphrA,436
726
738
  fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml,sha256=i5Bn8bLl2cgqvrgtIGmoovUfSMehk_m-6C2wwcx5JMU,435
727
- fusion_bench-0.2.10.dist-info/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
728
- fusion_bench-0.2.10.dist-info/METADATA,sha256=kBYozBf6hgA-7ebsn7znqJdhCz4H0dJSv2jVIEkBvyA,16780
729
- fusion_bench-0.2.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
730
- fusion_bench-0.2.10.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
731
- fusion_bench-0.2.10.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
732
- fusion_bench-0.2.10.dist-info/RECORD,,
739
+ fusion_bench-0.2.11.dist-info/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
740
+ fusion_bench-0.2.11.dist-info/METADATA,sha256=AYdGcKXZ6BeHCv1piGgpK1yktQqVga-PjUDxS4RYwog,16780
741
+ fusion_bench-0.2.11.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
742
+ fusion_bench-0.2.11.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
743
+ fusion_bench-0.2.11.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
744
+ fusion_bench-0.2.11.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (75.8.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.DOGE_TA_Algorithm
2
+ subspace: 6
3
+ K: 30
4
+ lamda: 0.07
@@ -0,0 +1,38 @@
1
+ # Reference: Jinluan Yang, et al. Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace. ICLR 2025.
2
+
3
+ name: clip_post_defense_AWM
4
+
5
+ # batch size per gpu
6
+ # if you have multiple gpus, the total batch size will be `batch_size * num_gpus`
7
+ batch_size: 16
8
+ num_workers: 8
9
+
10
+ optimizer: adam
11
+ lr: 1e-3
12
+
13
+ scaling_factor: 0.3
14
+
15
+ ###new
16
+ adv_lr: 1e-4
17
+ trigger_norm: 1000
18
+ adv_weight: 0.01
19
+
20
+
21
+ max_steps: 2000
22
+ save_interval: 500
23
+ initial_logits: 0
24
+ temperature: 0.5
25
+
26
+ # "discrete" or "continuous", this is the mask applied for evaluation, not during training
27
+ # the performance of final model are expected to be similar
28
+ eval_mask_type: continuous
29
+
30
+ mask_checkpoint: null
31
+ # if `clamp_weights` is true, the weights will be clamped to [0, 1]
32
+ clamp_weights: false
33
+
34
+ # arguments of `functional_call`
35
+ tie_weights: true
36
+ strict: false
37
+
38
+ cache_dir: outputs
@@ -0,0 +1,41 @@
1
+ # Reference: Jinluan Yang, et al. Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace. ICLR 2025.
2
+
3
+ name: clip_post_defense_SAU
4
+
5
+ # batch size per gpu
6
+ # if you have multiple gpus, the total batch size will be `batch_size * num_gpus`
7
+ batch_size: 16
8
+ num_workers: 8
9
+
10
+ optimizer: adam
11
+ lr: 1e-3
12
+
13
+ scaling_factor: 0.3
14
+
15
+ ###new
16
+ adv_lr: 1e-4
17
+ trigger_norm: 1000
18
+ adv_weight: 0.01
19
+ shared_weight: 0.01
20
+ beta1: 0.5
21
+ beta2: 0.5
22
+
23
+
24
+ max_steps: 2000
25
+ save_interval: 500
26
+ initial_logits: 0
27
+ temperature: 0.5
28
+
29
+ # "discrete" or "continuous", this is the mask applied for evaluation, not during training
30
+ # the performance of final model are expected to be similar
31
+ eval_mask_type: continuous
32
+
33
+ mask_checkpoint: null
34
+ # if `clamp_weights` is true, the weights will be clamped to [0, 1]
35
+ clamp_weights: false
36
+
37
+ # arguments of `functional_call`
38
+ tie_weights: true
39
+ strict: false
40
+
41
+ cache_dir: outputs
@@ -0,0 +1,39 @@
1
+ # Reference: Jinluan Yang, et al. Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace. ICLR 2025.
2
+
3
+ name: clip_safe_concrete_layer_wise_adamerging
4
+
5
+ # batch size per gpu
6
+ # if you have multiple gpus, the total batch size will be `batch_size * num_gpus`
7
+ batch_size: 16
8
+ num_workers: 8
9
+
10
+ optimizer: adam
11
+ lr: 1e-3
12
+ base_lr: 1
13
+ adamerging_lr: 1e-3
14
+
15
+ scaling_factor: 0.3
16
+
17
+ max_steps: 1000
18
+ max_adamerging_steps: 1000
19
+ save_interval: 500
20
+ initial_logits: 0
21
+ temperature: 0.5
22
+
23
+ ###new
24
+ adv_lr: 1e-4
25
+ trigger_norm: 1000
26
+ adv_weight: 0.1
27
+ # "discrete" or "continuous", this is the mask applied for evaluation, not during training
28
+ # the performance of final model are expected to be similar
29
+ eval_mask_type: continuous
30
+
31
+ mask_checkpoint: null
32
+ # if `clamp_weights` is true, the weights will be clamped to [0, 1]
33
+ clamp_weights: false
34
+
35
+ # arguments of `functional_call`
36
+ tie_weights: true
37
+ strict: false
38
+
39
+ cache_dir: outputs
@@ -0,0 +1,40 @@
1
+ # Reference: Jinluan Yang, et al. Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace. ICLR 2025.
2
+
3
+ name: clip_safe_concrete_task_arithmetic
4
+
5
+ # batch size per gpu
6
+ # if you have multiple gpus, the total batch size will be `batch_size * num_gpus`
7
+ batch_size: 16
8
+ num_workers: 8
9
+
10
+ optimizer: adam
11
+ lr: 1e-3
12
+
13
+ scaling_factor: 0.3
14
+
15
+
16
+
17
+ ###new
18
+ adv_lr: 1e-4
19
+ trigger_norm: 1000
20
+ adv_weight: 0.1
21
+
22
+
23
+ max_steps: 2000
24
+ save_interval: 500
25
+ initial_logits: 0
26
+ temperature: 0.5
27
+
28
+ # "discrete" or "continuous", this is the mask applied for evaluation, not during training
29
+ # the performance of final model are expected to be similar
30
+ eval_mask_type: continuous
31
+
32
+ mask_checkpoint: null
33
+ # if `clamp_weights` is true, the weights will be clamped to [0, 1]
34
+ clamp_weights: false
35
+
36
+ # arguments of `functional_call`
37
+ tie_weights: true
38
+ strict: false
39
+
40
+ cache_dir: outputs