fullwave25 1.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fullwave25 might be problematic. Click here for more details.
- fullwave/__init__.py +28 -0
- fullwave/constants/__init__.py +5 -0
- fullwave/constants/material_properties.py +112 -0
- fullwave/grid.py +222 -0
- fullwave/medium.py +1042 -0
- fullwave/medium_builder/__init__.py +12 -0
- fullwave/medium_builder/domain.py +151 -0
- fullwave/medium_builder/medium_builder.py +198 -0
- fullwave/medium_builder/presets/__init__.py +8 -0
- fullwave/medium_builder/presets/data/.keep +0 -0
- fullwave/medium_builder/presets/data/abdominal_wall/i2365f_etfw1.mat +0 -0
- fullwave/medium_builder/presets/domain_abdominal_wall.py +293 -0
- fullwave/medium_builder/presets/domain_background.py +140 -0
- fullwave/medium_builder/presets/domain_scatterer.py +179 -0
- fullwave/medium_builder/presets/domain_simple.py +92 -0
- fullwave/medium_builder/presets/domain_water_gel.py +1 -0
- fullwave/sensor.py +161 -0
- fullwave/solver/__init__.py +1 -0
- fullwave/solver/bins/database/relaxation_params_database_num_relax=2_20251027_1437.mat +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenu +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/2d/fullwave2_2d_exponential_attenuation_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_89_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/exponential_attenuation/gpu/3d/fullwave2_3d_exponential_attenuation_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_89_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_isotropic_multi_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_89_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/gpu/2d/num_relax=2/fullwave2_2d_2_relax_multi_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_89_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_isotropic_multi_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_100_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_101_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_120_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_61_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_61_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_61_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_61_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_70_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_70_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_70_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_70_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_75_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_75_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_75_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_75_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_80_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_80_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_80_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_80_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_86_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_86_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_86_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_86_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_89_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_89_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_89_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_89_cuda129 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_90_cuda118 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_90_cuda124 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_90_cuda126 +0 -0
- fullwave/solver/bins/gpu/3d/num_relax=2/fullwave2_3d_2_relax_multi_gpu_sm_90_cuda129 +0 -0
- fullwave/solver/cuda_utils.py +392 -0
- fullwave/solver/input_file_writer.py +853 -0
- fullwave/solver/launcher.py +134 -0
- fullwave/solver/pml_builder.py +1923 -0
- fullwave/solver/solver.py +750 -0
- fullwave/solver/utils.py +83 -0
- fullwave/source.py +173 -0
- fullwave/transducer.py +1003 -0
- fullwave/utils/__init__.py +12 -0
- fullwave/utils/check_functions.py +48 -0
- fullwave/utils/coordinates.py +155 -0
- fullwave/utils/memory_tempfile.py +439 -0
- fullwave/utils/numerical.py +111 -0
- fullwave/utils/plot_utils.py +1122 -0
- fullwave/utils/pulse.py +72 -0
- fullwave/utils/relaxation_parameters.py +212 -0
- fullwave/utils/signal_process.py +197 -0
- fullwave25-1.0.7.dist-info/METADATA +292 -0
- fullwave25-1.0.7.dist-info/RECORD +225 -0
- fullwave25-1.0.7.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,1923 @@
|
|
|
1
|
+
"""Perfectly Matched Layer (PML) setup for Fullwave."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
from collections import OrderedDict
|
|
5
|
+
from dataclasses import dataclass, field
|
|
6
|
+
from functools import cached_property
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
import numpy as np
|
|
11
|
+
from numpy.typing import NDArray
|
|
12
|
+
|
|
13
|
+
import fullwave
|
|
14
|
+
from fullwave.solver.utils import initialize_relaxation_param_dict
|
|
15
|
+
from fullwave.utils import check_functions, plot_utils
|
|
16
|
+
|
|
17
|
+
logger = logging.getLogger("__main__." + __name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def _smooth_transition_function_part(x: NDArray[np.float64]) -> NDArray[np.float64]:
|
|
21
|
+
return np.where(x > 0, np.exp(-1 / (x + 1e-20)), 0)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def _smooth_transition_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
|
|
25
|
+
return _smooth_transition_function_part(x) / (
|
|
26
|
+
_smooth_transition_function_part(x) + _smooth_transition_function_part(1 - x)
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def _linear_transition_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
|
|
31
|
+
return x
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def _n_th_deg_polynomial_function(x: NDArray[np.float64], n: int = 2) -> NDArray[np.float64]:
|
|
35
|
+
return x**n
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def _cosine_transition_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
|
|
39
|
+
return 0.5 * (1 - np.cos(np.pi * x))
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def _obtain_relax_var_rename_dict(
|
|
43
|
+
n_relaxation_mechanisms: int,
|
|
44
|
+
*,
|
|
45
|
+
is_3d: bool = False,
|
|
46
|
+
use_isotropic_relaxation: bool = False,
|
|
47
|
+
) -> dict:
|
|
48
|
+
if use_isotropic_relaxation:
|
|
49
|
+
rename_dict = {
|
|
50
|
+
"kappa_x": "kappa_x2",
|
|
51
|
+
"kappa_u": "kappa_x1",
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
for nu in range(1, n_relaxation_mechanisms + 1):
|
|
55
|
+
rename_dict[f"d_u_nu{nu}"] = f"d_x1_nu{nu}"
|
|
56
|
+
rename_dict[f"d_x_nu{nu}"] = f"d_x2_nu{nu}"
|
|
57
|
+
|
|
58
|
+
rename_dict[f"alpha_u_nu{nu}"] = f"alpha_x1_nu{nu}"
|
|
59
|
+
rename_dict[f"alpha_x_nu{nu}"] = f"alpha_x2_nu{nu}"
|
|
60
|
+
else:
|
|
61
|
+
rename_dict = {
|
|
62
|
+
"kappa_x": "kappa_x2",
|
|
63
|
+
"kappa_y": "kappa_x2",
|
|
64
|
+
"kappa_u": "kappa_x1",
|
|
65
|
+
"kappa_w": "kappa_x1",
|
|
66
|
+
}
|
|
67
|
+
if is_3d:
|
|
68
|
+
rename_dict.update(
|
|
69
|
+
{
|
|
70
|
+
"kappa_z": "kappa_x2",
|
|
71
|
+
"kappa_v": "kappa_x1",
|
|
72
|
+
},
|
|
73
|
+
)
|
|
74
|
+
for nu in range(1, n_relaxation_mechanisms + 1):
|
|
75
|
+
rename_dict[f"d_u_nu{nu}"] = f"d_x1_nu{nu}"
|
|
76
|
+
rename_dict[f"d_w_nu{nu}"] = f"d_x1_nu{nu}"
|
|
77
|
+
rename_dict[f"d_x_nu{nu}"] = f"d_x2_nu{nu}"
|
|
78
|
+
rename_dict[f"d_y_nu{nu}"] = f"d_x2_nu{nu}"
|
|
79
|
+
|
|
80
|
+
rename_dict[f"alpha_u_nu{nu}"] = f"alpha_x1_nu{nu}"
|
|
81
|
+
rename_dict[f"alpha_w_nu{nu}"] = f"alpha_x1_nu{nu}"
|
|
82
|
+
rename_dict[f"alpha_x_nu{nu}"] = f"alpha_x2_nu{nu}"
|
|
83
|
+
rename_dict[f"alpha_y_nu{nu}"] = f"alpha_x2_nu{nu}"
|
|
84
|
+
if is_3d:
|
|
85
|
+
rename_dict[f"d_v_nu{nu}"] = f"d_x1_nu{nu}"
|
|
86
|
+
rename_dict[f"d_z_nu{nu}"] = f"d_x2_nu{nu}"
|
|
87
|
+
rename_dict[f"alpha_v_nu{nu}"] = f"alpha_x1_nu{nu}"
|
|
88
|
+
rename_dict[f"alpha_z_nu{nu}"] = f"alpha_x2_nu{nu}"
|
|
89
|
+
|
|
90
|
+
return rename_dict
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
@dataclass
|
|
94
|
+
class PMLBuilder:
|
|
95
|
+
"""Setup for Perfectly Matched Layers (PML) in fullwave simulations."""
|
|
96
|
+
|
|
97
|
+
medium_org: fullwave.Medium
|
|
98
|
+
source_org: fullwave.Source
|
|
99
|
+
sensor_org: fullwave.Sensor
|
|
100
|
+
|
|
101
|
+
m_spatial_order: int
|
|
102
|
+
n_pml_layer: int
|
|
103
|
+
n_relaxation: int
|
|
104
|
+
n_transition_layer: int
|
|
105
|
+
|
|
106
|
+
extended_grid: fullwave.Grid = field(init=False)
|
|
107
|
+
extended_medium: fullwave.Medium = field(init=False)
|
|
108
|
+
extended_source: fullwave.Source = field(init=False)
|
|
109
|
+
extended_sensor: fullwave.Sensor = field(init=False)
|
|
110
|
+
|
|
111
|
+
pml_mask_x: NDArray[np.float64] = field(init=False)
|
|
112
|
+
pml_mask_y: NDArray[np.float64] = field(init=False)
|
|
113
|
+
|
|
114
|
+
def __init__(
|
|
115
|
+
self,
|
|
116
|
+
grid: fullwave.Grid,
|
|
117
|
+
medium: fullwave.Medium,
|
|
118
|
+
source: fullwave.Source,
|
|
119
|
+
sensor: fullwave.Sensor,
|
|
120
|
+
*,
|
|
121
|
+
m_spatial_order: int = 8,
|
|
122
|
+
n_pml_layer: int = 40,
|
|
123
|
+
n_transition_layer: int = 40,
|
|
124
|
+
use_isotropic_relaxation: bool = False,
|
|
125
|
+
# pml_alpha_target: float = 1.1,
|
|
126
|
+
# pml_alpha_power_target: float = 1.6,
|
|
127
|
+
# pml_strength_factor: float = 2.0,
|
|
128
|
+
# use_2_relax_mechanisms: bool = False,
|
|
129
|
+
) -> None:
|
|
130
|
+
"""Initialize the PMLSetup with the given medium, source, sensor, and PML parameters.
|
|
131
|
+
|
|
132
|
+
Parameters
|
|
133
|
+
----------
|
|
134
|
+
grid: fullwave.Grid
|
|
135
|
+
The grid configuration.
|
|
136
|
+
medium : fullwave.Medium)
|
|
137
|
+
The medium relaxation maps.
|
|
138
|
+
source : fullwave.Source
|
|
139
|
+
The source configuration.
|
|
140
|
+
sensor : fullwave.Sensor
|
|
141
|
+
The sensor configuration.
|
|
142
|
+
m_spatial_order : int, optional
|
|
143
|
+
fullwave simulation's spatial order (default is 8).
|
|
144
|
+
It depends on the fullwave simulation binary version.
|
|
145
|
+
Fullwave simulation has 2M th order spatial accuracy and fourth order accuracy in time.
|
|
146
|
+
see Pinton, G. (2021) http://arxiv.org/abs/2106.11476 for more detail.
|
|
147
|
+
n_pml_layer : int, optional
|
|
148
|
+
PML layer thickness (default is 40).
|
|
149
|
+
n_transition_layer : int, optional
|
|
150
|
+
Number of transition layers (default is 40).
|
|
151
|
+
pml_alpha_target : float, optional
|
|
152
|
+
Target alpha value for PML (default is 0.5).
|
|
153
|
+
This value is used to calculate the transition layer values.
|
|
154
|
+
pml_alpha_power_target : float, optional
|
|
155
|
+
Target alpha power value for PML (default is 1.0).
|
|
156
|
+
This value is used to calculate the transition layer values.
|
|
157
|
+
pml_strength_factor : float, optional
|
|
158
|
+
Strength factor for PML (default is 2.0).
|
|
159
|
+
This value is used to calculate the PML target values.
|
|
160
|
+
use_2_relax_mechanisms : bool, optional
|
|
161
|
+
If True, use 2 relaxation mechanisms for PML for stability (default is False).
|
|
162
|
+
if True, pml_alpha_target, pml_alpha_power_target, and pml_strength_factor are ignored.
|
|
163
|
+
use_isotropic_relaxation : bool, optional
|
|
164
|
+
Whether to use isotropic relaxation mechanisms for attenuation modeling
|
|
165
|
+
to reduce memory usage while retaining accuracy.
|
|
166
|
+
For 2D it will reduce the memory usage by approximately 15%.
|
|
167
|
+
For 3D it will reduce the memory usage by approximately 25%.
|
|
168
|
+
This option omits the anisotropic relaxation mechanisms to model the attenuation.
|
|
169
|
+
We usually recommend using isotropic relaxation mechanisms
|
|
170
|
+
unless the anisotropic attenuation is required for the simulation.
|
|
171
|
+
|
|
172
|
+
"""
|
|
173
|
+
check_functions.check_instance(
|
|
174
|
+
grid,
|
|
175
|
+
fullwave.Grid,
|
|
176
|
+
)
|
|
177
|
+
check_functions.check_instance(
|
|
178
|
+
medium,
|
|
179
|
+
fullwave.Medium,
|
|
180
|
+
)
|
|
181
|
+
check_functions.check_instance(
|
|
182
|
+
source,
|
|
183
|
+
fullwave.Source,
|
|
184
|
+
)
|
|
185
|
+
check_functions.check_instance(
|
|
186
|
+
sensor,
|
|
187
|
+
fullwave.Sensor,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
self.grid_org = grid
|
|
191
|
+
self.medium_org = medium
|
|
192
|
+
self.source_org = source
|
|
193
|
+
self.sensor_org = sensor
|
|
194
|
+
self.is_3d = grid.is_3d
|
|
195
|
+
self.use_isotropic_relaxation = use_isotropic_relaxation
|
|
196
|
+
|
|
197
|
+
self.m_spatial_order = m_spatial_order
|
|
198
|
+
self.n_pml_layer = n_pml_layer
|
|
199
|
+
self.n_transition_layer = n_transition_layer
|
|
200
|
+
|
|
201
|
+
domain_size: tuple[float, ...]
|
|
202
|
+
if self.is_3d:
|
|
203
|
+
domain_size = (
|
|
204
|
+
(self.medium_org.sound_speed.shape[0] + 2 * self.num_boundary_points)
|
|
205
|
+
* self.grid_org.dx,
|
|
206
|
+
(self.medium_org.sound_speed.shape[1] + 2 * self.num_boundary_points)
|
|
207
|
+
* self.grid_org.dy,
|
|
208
|
+
(self.medium_org.sound_speed.shape[2] + 2 * self.num_boundary_points)
|
|
209
|
+
* self.grid_org.dz,
|
|
210
|
+
)
|
|
211
|
+
else:
|
|
212
|
+
domain_size = (
|
|
213
|
+
(self.medium_org.sound_speed.shape[0] + 2 * self.num_boundary_points)
|
|
214
|
+
* self.grid_org.dx,
|
|
215
|
+
(self.medium_org.sound_speed.shape[1] + 2 * self.num_boundary_points)
|
|
216
|
+
* self.grid_org.dy,
|
|
217
|
+
)
|
|
218
|
+
self.extended_grid = fullwave.Grid(
|
|
219
|
+
domain_size=domain_size,
|
|
220
|
+
f0=self.grid_org.f0,
|
|
221
|
+
duration=self.grid_org.duration,
|
|
222
|
+
c0=self.grid_org.c0,
|
|
223
|
+
ppw=self.grid_org.ppw,
|
|
224
|
+
cfl=self.grid_org.cfl,
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
self.extended_medium = fullwave.Medium(
|
|
228
|
+
grid=self.extended_grid,
|
|
229
|
+
sound_speed=self._extend_map_for_pml(self.medium_org.sound_speed),
|
|
230
|
+
density=self._extend_map_for_pml(self.medium_org.density),
|
|
231
|
+
beta=self._extend_map_for_pml(self.medium_org.beta),
|
|
232
|
+
alpha_coeff=self._extend_map_for_pml(self.medium_org.alpha_coeff),
|
|
233
|
+
alpha_power=self._extend_map_for_pml(self.medium_org.alpha_power),
|
|
234
|
+
air_map=self._extend_map_for_pml(self.medium_org.air_map, fill_edge=False),
|
|
235
|
+
n_relaxation_mechanisms=self.medium_org.n_relaxation_mechanisms,
|
|
236
|
+
path_relaxation_parameters_database=self.medium_org.path_relaxation_parameters_database,
|
|
237
|
+
attenuation_builder=self.medium_org.attenuation_builder,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
self.extended_source = fullwave.Source(
|
|
241
|
+
p0=self.source_org.p0,
|
|
242
|
+
mask=self._extend_map_for_pml(self.source_org.mask, fill_edge=False),
|
|
243
|
+
)
|
|
244
|
+
self.extended_sensor = fullwave.Sensor(
|
|
245
|
+
mask=self._extend_map_for_pml(self.sensor_org.mask, fill_edge=False),
|
|
246
|
+
sampling_modulus_time=self.sensor_org.sampling_modulus_time,
|
|
247
|
+
)
|
|
248
|
+
if self.is_3d:
|
|
249
|
+
self.pml_mask_x, self.pml_mask_y, self.pml_mask_z = self._localize_pml_region()
|
|
250
|
+
else:
|
|
251
|
+
self.pml_mask_x, self.pml_mask_y = self._localize_pml_region()
|
|
252
|
+
|
|
253
|
+
self.pml_layer_m = self.extended_grid.dx * self.n_pml_layer
|
|
254
|
+
self.transition_layer_m = self.extended_grid.dx * self.n_transition_layer
|
|
255
|
+
|
|
256
|
+
self.n_polynomial = 2
|
|
257
|
+
self.theoritical_reflection_coefficient = 10 ** (-30)
|
|
258
|
+
|
|
259
|
+
if self.n_pml_layer == 0:
|
|
260
|
+
self.n_transition_layer = 0
|
|
261
|
+
|
|
262
|
+
# ---
|
|
263
|
+
@cached_property
|
|
264
|
+
def num_boundary_points(self) -> int:
|
|
265
|
+
"""Returns the number of the boundary points.
|
|
266
|
+
|
|
267
|
+
Number of PML layer and ghost cells.
|
|
268
|
+
"""
|
|
269
|
+
return self.n_transition_layer + self.n_pml_layer + self.m_spatial_order
|
|
270
|
+
|
|
271
|
+
@cached_property
|
|
272
|
+
def nx(self) -> int:
|
|
273
|
+
"""Returns the number of grid points in x-direction."""
|
|
274
|
+
return self.extended_grid.nx
|
|
275
|
+
|
|
276
|
+
@cached_property
|
|
277
|
+
def ny(self) -> int:
|
|
278
|
+
"""Returns the number of grid points in y-direction."""
|
|
279
|
+
return self.extended_grid.ny
|
|
280
|
+
|
|
281
|
+
@cached_property
|
|
282
|
+
def nz(self) -> int:
|
|
283
|
+
"""Returns the number of grid points in y-direction."""
|
|
284
|
+
return self.extended_grid.nz
|
|
285
|
+
|
|
286
|
+
@cached_property
|
|
287
|
+
def nt(self) -> int:
|
|
288
|
+
"""Returns the number of time steps."""
|
|
289
|
+
return self.extended_grid.nt
|
|
290
|
+
|
|
291
|
+
@cached_property
|
|
292
|
+
def n_sources(self) -> int:
|
|
293
|
+
"""Return the number of sources."""
|
|
294
|
+
return self.extended_source.n_sources
|
|
295
|
+
|
|
296
|
+
@cached_property
|
|
297
|
+
def n_sensors(self) -> int:
|
|
298
|
+
"""Return the number of sources."""
|
|
299
|
+
return self.extended_sensor.n_sensors
|
|
300
|
+
|
|
301
|
+
@cached_property
|
|
302
|
+
def n_air(self) -> int:
|
|
303
|
+
"""Return the number of air coordinates."""
|
|
304
|
+
return self.extended_medium.n_air
|
|
305
|
+
|
|
306
|
+
@cached_property
|
|
307
|
+
def n_coords_zero(self) -> int:
|
|
308
|
+
"""Return the number of air coordinates.
|
|
309
|
+
|
|
310
|
+
(alias for self.n_air)
|
|
311
|
+
"""
|
|
312
|
+
return self.n_air
|
|
313
|
+
|
|
314
|
+
def _extend_map_for_pml( # noqa: PLR0915
|
|
315
|
+
self,
|
|
316
|
+
input_map: NDArray[np.float64 | np.int64 | np.bool],
|
|
317
|
+
*,
|
|
318
|
+
fill_edge: bool = True,
|
|
319
|
+
) -> NDArray[np.float64 | np.int64 | np.bool]:
|
|
320
|
+
output_map: NDArray[np.float64 | np.int64 | np.bool]
|
|
321
|
+
if self.is_3d:
|
|
322
|
+
output_map = np.zeros(
|
|
323
|
+
(
|
|
324
|
+
input_map.shape[0] + 2 * self.num_boundary_points,
|
|
325
|
+
input_map.shape[1] + 2 * self.num_boundary_points,
|
|
326
|
+
input_map.shape[2] + 2 * self.num_boundary_points,
|
|
327
|
+
),
|
|
328
|
+
)
|
|
329
|
+
# center
|
|
330
|
+
output_map[
|
|
331
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
332
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
333
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
334
|
+
] = input_map
|
|
335
|
+
# edges
|
|
336
|
+
if fill_edge:
|
|
337
|
+
output_map[
|
|
338
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
339
|
+
: self.num_boundary_points,
|
|
340
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
341
|
+
] = input_map[:, [0], :]
|
|
342
|
+
output_map[
|
|
343
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
344
|
+
-self.num_boundary_points :,
|
|
345
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
346
|
+
] = input_map[:, [-1], :]
|
|
347
|
+
|
|
348
|
+
output_map[
|
|
349
|
+
: self.num_boundary_points,
|
|
350
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
351
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
352
|
+
] = input_map[[0], :, :]
|
|
353
|
+
output_map[
|
|
354
|
+
-self.num_boundary_points :,
|
|
355
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
356
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
357
|
+
] = input_map[[-1], :, :]
|
|
358
|
+
|
|
359
|
+
output_map[
|
|
360
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
361
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
362
|
+
: self.num_boundary_points,
|
|
363
|
+
] = input_map[:, :, [0]]
|
|
364
|
+
output_map[
|
|
365
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
366
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
367
|
+
-self.num_boundary_points :,
|
|
368
|
+
] = input_map[:, :, [-1]]
|
|
369
|
+
|
|
370
|
+
# corners
|
|
371
|
+
output_map[
|
|
372
|
+
: self.num_boundary_points,
|
|
373
|
+
: self.num_boundary_points,
|
|
374
|
+
: self.num_boundary_points,
|
|
375
|
+
] = input_map[
|
|
376
|
+
0,
|
|
377
|
+
0,
|
|
378
|
+
0,
|
|
379
|
+
]
|
|
380
|
+
|
|
381
|
+
output_map[
|
|
382
|
+
-self.num_boundary_points :,
|
|
383
|
+
: self.num_boundary_points,
|
|
384
|
+
: self.num_boundary_points,
|
|
385
|
+
] = input_map[
|
|
386
|
+
-1,
|
|
387
|
+
0,
|
|
388
|
+
0,
|
|
389
|
+
]
|
|
390
|
+
output_map[
|
|
391
|
+
: self.num_boundary_points,
|
|
392
|
+
-self.num_boundary_points :,
|
|
393
|
+
: self.num_boundary_points,
|
|
394
|
+
] = input_map[
|
|
395
|
+
0,
|
|
396
|
+
-1,
|
|
397
|
+
0,
|
|
398
|
+
]
|
|
399
|
+
output_map[
|
|
400
|
+
: self.num_boundary_points,
|
|
401
|
+
: self.num_boundary_points,
|
|
402
|
+
-self.num_boundary_points :,
|
|
403
|
+
] = input_map[
|
|
404
|
+
0,
|
|
405
|
+
0,
|
|
406
|
+
-1,
|
|
407
|
+
]
|
|
408
|
+
output_map[
|
|
409
|
+
-self.num_boundary_points :,
|
|
410
|
+
-self.num_boundary_points :,
|
|
411
|
+
: self.num_boundary_points,
|
|
412
|
+
] = input_map[
|
|
413
|
+
-1,
|
|
414
|
+
-1,
|
|
415
|
+
0,
|
|
416
|
+
]
|
|
417
|
+
output_map[
|
|
418
|
+
: self.num_boundary_points,
|
|
419
|
+
-self.num_boundary_points :,
|
|
420
|
+
-self.num_boundary_points :,
|
|
421
|
+
] = input_map[
|
|
422
|
+
0,
|
|
423
|
+
-1,
|
|
424
|
+
-1,
|
|
425
|
+
]
|
|
426
|
+
output_map[
|
|
427
|
+
-self.num_boundary_points :,
|
|
428
|
+
: self.num_boundary_points,
|
|
429
|
+
-self.num_boundary_points :,
|
|
430
|
+
] = input_map[
|
|
431
|
+
-1,
|
|
432
|
+
0,
|
|
433
|
+
-1,
|
|
434
|
+
]
|
|
435
|
+
output_map[
|
|
436
|
+
-self.num_boundary_points :,
|
|
437
|
+
-self.num_boundary_points :,
|
|
438
|
+
-self.num_boundary_points :,
|
|
439
|
+
] = input_map[
|
|
440
|
+
-1,
|
|
441
|
+
-1,
|
|
442
|
+
-1,
|
|
443
|
+
]
|
|
444
|
+
# ---
|
|
445
|
+
output_map[
|
|
446
|
+
: self.num_boundary_points,
|
|
447
|
+
: self.num_boundary_points,
|
|
448
|
+
: self.num_boundary_points,
|
|
449
|
+
] = input_map[
|
|
450
|
+
0,
|
|
451
|
+
0,
|
|
452
|
+
0,
|
|
453
|
+
]
|
|
454
|
+
for i in range(input_map.shape[0]):
|
|
455
|
+
output_map[
|
|
456
|
+
self.num_boundary_points + i,
|
|
457
|
+
: self.num_boundary_points,
|
|
458
|
+
: self.num_boundary_points,
|
|
459
|
+
] = input_map[
|
|
460
|
+
i,
|
|
461
|
+
[0],
|
|
462
|
+
[0],
|
|
463
|
+
]
|
|
464
|
+
output_map[
|
|
465
|
+
self.num_boundary_points + i,
|
|
466
|
+
: self.num_boundary_points,
|
|
467
|
+
-self.num_boundary_points :,
|
|
468
|
+
] = input_map[
|
|
469
|
+
i,
|
|
470
|
+
[0],
|
|
471
|
+
[-1],
|
|
472
|
+
]
|
|
473
|
+
output_map[
|
|
474
|
+
-self.num_boundary_points - (i + 1),
|
|
475
|
+
: self.num_boundary_points,
|
|
476
|
+
: self.num_boundary_points,
|
|
477
|
+
] = input_map[
|
|
478
|
+
-(i + 1),
|
|
479
|
+
[0],
|
|
480
|
+
[0],
|
|
481
|
+
]
|
|
482
|
+
output_map[
|
|
483
|
+
-self.num_boundary_points - (i + 1),
|
|
484
|
+
: self.num_boundary_points,
|
|
485
|
+
-self.num_boundary_points :,
|
|
486
|
+
] = input_map[
|
|
487
|
+
-(i + 1),
|
|
488
|
+
[0],
|
|
489
|
+
[-1],
|
|
490
|
+
]
|
|
491
|
+
output_map[
|
|
492
|
+
self.num_boundary_points + i,
|
|
493
|
+
-self.num_boundary_points :,
|
|
494
|
+
: self.num_boundary_points,
|
|
495
|
+
] = input_map[
|
|
496
|
+
i,
|
|
497
|
+
[-1],
|
|
498
|
+
[0],
|
|
499
|
+
]
|
|
500
|
+
|
|
501
|
+
output_map[
|
|
502
|
+
-self.num_boundary_points - (i + 1),
|
|
503
|
+
-self.num_boundary_points :,
|
|
504
|
+
: self.num_boundary_points,
|
|
505
|
+
] = input_map[
|
|
506
|
+
-(i + 1),
|
|
507
|
+
[-1],
|
|
508
|
+
[0],
|
|
509
|
+
]
|
|
510
|
+
output_map[
|
|
511
|
+
-self.num_boundary_points - (i + 1),
|
|
512
|
+
-self.num_boundary_points :,
|
|
513
|
+
-self.num_boundary_points :,
|
|
514
|
+
] = input_map[
|
|
515
|
+
-(i + 1),
|
|
516
|
+
[-1],
|
|
517
|
+
[-1],
|
|
518
|
+
]
|
|
519
|
+
for i in range(input_map.shape[1]):
|
|
520
|
+
output_map[
|
|
521
|
+
: self.num_boundary_points,
|
|
522
|
+
self.num_boundary_points + i,
|
|
523
|
+
: self.num_boundary_points,
|
|
524
|
+
] = input_map[
|
|
525
|
+
[0],
|
|
526
|
+
i,
|
|
527
|
+
[0],
|
|
528
|
+
]
|
|
529
|
+
output_map[
|
|
530
|
+
: self.num_boundary_points,
|
|
531
|
+
self.num_boundary_points + i,
|
|
532
|
+
-self.num_boundary_points :,
|
|
533
|
+
] = input_map[
|
|
534
|
+
[0],
|
|
535
|
+
i,
|
|
536
|
+
[-1],
|
|
537
|
+
]
|
|
538
|
+
output_map[
|
|
539
|
+
: self.num_boundary_points,
|
|
540
|
+
-self.num_boundary_points - (i + 1),
|
|
541
|
+
: self.num_boundary_points,
|
|
542
|
+
] = input_map[
|
|
543
|
+
[0],
|
|
544
|
+
-(i + 1),
|
|
545
|
+
[0],
|
|
546
|
+
]
|
|
547
|
+
output_map[
|
|
548
|
+
: self.num_boundary_points,
|
|
549
|
+
-self.num_boundary_points - (i + 1),
|
|
550
|
+
-self.num_boundary_points :,
|
|
551
|
+
] = input_map[
|
|
552
|
+
[0],
|
|
553
|
+
-(i + 1),
|
|
554
|
+
[-1],
|
|
555
|
+
]
|
|
556
|
+
output_map[
|
|
557
|
+
-self.num_boundary_points :,
|
|
558
|
+
self.num_boundary_points + i,
|
|
559
|
+
: self.num_boundary_points,
|
|
560
|
+
] = input_map[
|
|
561
|
+
[-1],
|
|
562
|
+
i,
|
|
563
|
+
[0],
|
|
564
|
+
]
|
|
565
|
+
|
|
566
|
+
output_map[
|
|
567
|
+
-self.num_boundary_points :,
|
|
568
|
+
-self.num_boundary_points - (i + 1),
|
|
569
|
+
: self.num_boundary_points,
|
|
570
|
+
] = input_map[
|
|
571
|
+
[-1],
|
|
572
|
+
-(i + 1),
|
|
573
|
+
[0],
|
|
574
|
+
]
|
|
575
|
+
output_map[
|
|
576
|
+
-self.num_boundary_points :,
|
|
577
|
+
-self.num_boundary_points - (i + 1),
|
|
578
|
+
-self.num_boundary_points :,
|
|
579
|
+
] = input_map[
|
|
580
|
+
[-1],
|
|
581
|
+
-(i + 1),
|
|
582
|
+
[-1],
|
|
583
|
+
]
|
|
584
|
+
for i in range(input_map.shape[2]):
|
|
585
|
+
output_map[
|
|
586
|
+
: self.num_boundary_points,
|
|
587
|
+
: self.num_boundary_points,
|
|
588
|
+
self.num_boundary_points + i,
|
|
589
|
+
] = input_map[
|
|
590
|
+
[0],
|
|
591
|
+
[0],
|
|
592
|
+
i,
|
|
593
|
+
]
|
|
594
|
+
output_map[
|
|
595
|
+
: self.num_boundary_points,
|
|
596
|
+
-self.num_boundary_points :,
|
|
597
|
+
self.num_boundary_points + i,
|
|
598
|
+
] = input_map[
|
|
599
|
+
[0],
|
|
600
|
+
[-1],
|
|
601
|
+
i,
|
|
602
|
+
]
|
|
603
|
+
output_map[
|
|
604
|
+
: self.num_boundary_points,
|
|
605
|
+
: self.num_boundary_points,
|
|
606
|
+
-self.num_boundary_points - (i + 1),
|
|
607
|
+
] = input_map[
|
|
608
|
+
[0],
|
|
609
|
+
[0],
|
|
610
|
+
-(i + 1),
|
|
611
|
+
]
|
|
612
|
+
output_map[
|
|
613
|
+
: self.num_boundary_points,
|
|
614
|
+
-self.num_boundary_points :,
|
|
615
|
+
-self.num_boundary_points - (i + 1),
|
|
616
|
+
] = input_map[
|
|
617
|
+
[0],
|
|
618
|
+
[-1],
|
|
619
|
+
-(i + 1),
|
|
620
|
+
]
|
|
621
|
+
output_map[
|
|
622
|
+
-self.num_boundary_points :,
|
|
623
|
+
: self.num_boundary_points,
|
|
624
|
+
self.num_boundary_points + i,
|
|
625
|
+
] = input_map[
|
|
626
|
+
[-1],
|
|
627
|
+
[0],
|
|
628
|
+
i,
|
|
629
|
+
]
|
|
630
|
+
|
|
631
|
+
output_map[
|
|
632
|
+
-self.num_boundary_points :,
|
|
633
|
+
: self.num_boundary_points,
|
|
634
|
+
-self.num_boundary_points - (i + 1),
|
|
635
|
+
] = input_map[
|
|
636
|
+
[-1],
|
|
637
|
+
[0],
|
|
638
|
+
-(i + 1),
|
|
639
|
+
]
|
|
640
|
+
output_map[
|
|
641
|
+
-self.num_boundary_points :,
|
|
642
|
+
-self.num_boundary_points :,
|
|
643
|
+
-self.num_boundary_points - (i + 1),
|
|
644
|
+
] = input_map[
|
|
645
|
+
[-1],
|
|
646
|
+
[-1],
|
|
647
|
+
-(i + 1),
|
|
648
|
+
]
|
|
649
|
+
else:
|
|
650
|
+
output_map = np.zeros(
|
|
651
|
+
(
|
|
652
|
+
input_map.shape[0] + 2 * self.num_boundary_points,
|
|
653
|
+
input_map.shape[1] + 2 * self.num_boundary_points,
|
|
654
|
+
),
|
|
655
|
+
)
|
|
656
|
+
# center
|
|
657
|
+
output_map[
|
|
658
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
659
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
660
|
+
] = input_map
|
|
661
|
+
|
|
662
|
+
# edges
|
|
663
|
+
if fill_edge:
|
|
664
|
+
output_map[
|
|
665
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
666
|
+
: self.num_boundary_points,
|
|
667
|
+
] = input_map[:, [0]]
|
|
668
|
+
output_map[
|
|
669
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
670
|
+
-self.num_boundary_points :,
|
|
671
|
+
] = input_map[:, [-1]]
|
|
672
|
+
|
|
673
|
+
output_map[
|
|
674
|
+
: self.num_boundary_points,
|
|
675
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
676
|
+
] = input_map[[0], :]
|
|
677
|
+
output_map[
|
|
678
|
+
-self.num_boundary_points :,
|
|
679
|
+
self.num_boundary_points : -self.num_boundary_points,
|
|
680
|
+
] = input_map[[-1], :]
|
|
681
|
+
|
|
682
|
+
# corners
|
|
683
|
+
output_map[: self.num_boundary_points, : self.num_boundary_points] = input_map[0, 0]
|
|
684
|
+
output_map[-self.num_boundary_points :, -self.num_boundary_points :] = input_map[
|
|
685
|
+
-1,
|
|
686
|
+
-1,
|
|
687
|
+
]
|
|
688
|
+
output_map[-self.num_boundary_points :, : self.num_boundary_points] = input_map[
|
|
689
|
+
-1,
|
|
690
|
+
0,
|
|
691
|
+
]
|
|
692
|
+
output_map[: self.num_boundary_points, -self.num_boundary_points :] = input_map[
|
|
693
|
+
0,
|
|
694
|
+
-1,
|
|
695
|
+
]
|
|
696
|
+
|
|
697
|
+
return output_map
|
|
698
|
+
|
|
699
|
+
def _extend_relaxation_param_dict(
|
|
700
|
+
self,
|
|
701
|
+
relaxation_param_dict: dict[str, NDArray[np.float64 | np.int64 | np.bool]],
|
|
702
|
+
) -> dict[str, NDArray[np.float64 | np.int64 | np.bool]]:
|
|
703
|
+
output_dict = {}
|
|
704
|
+
for key, value in relaxation_param_dict.items():
|
|
705
|
+
output_dict[key] = self._extend_map_for_pml(value)
|
|
706
|
+
return output_dict
|
|
707
|
+
|
|
708
|
+
def _localize_pml_region(self) -> tuple[NDArray[np.float64], ...]:
|
|
709
|
+
pml_mask_x: NDArray[np.float64]
|
|
710
|
+
pml_mask_y: NDArray[np.float64]
|
|
711
|
+
pml_mask_z: NDArray[np.float64]
|
|
712
|
+
if self.is_3d:
|
|
713
|
+
n_x_extended, n_y_extended, n_z_extended = self.extended_medium.sound_speed.shape
|
|
714
|
+
|
|
715
|
+
pml_mask_x = np.zeros((n_x_extended, n_y_extended, n_z_extended))
|
|
716
|
+
pml_mask_y = np.zeros((n_x_extended, n_y_extended, n_z_extended))
|
|
717
|
+
pml_mask_z = np.zeros((n_x_extended, n_y_extended, n_z_extended))
|
|
718
|
+
for i in range(self.n_pml_layer):
|
|
719
|
+
pml_mask_x[
|
|
720
|
+
i + (n_x_extended - self.m_spatial_order - self.n_pml_layer),
|
|
721
|
+
:,
|
|
722
|
+
:,
|
|
723
|
+
] = i / self.n_pml_layer
|
|
724
|
+
|
|
725
|
+
pml_mask_x[self.m_spatial_order + self.n_pml_layer - i - 1, :, :] = (
|
|
726
|
+
i / self.n_pml_layer
|
|
727
|
+
)
|
|
728
|
+
|
|
729
|
+
pml_mask_y[
|
|
730
|
+
:,
|
|
731
|
+
i + (n_y_extended - self.m_spatial_order - self.n_pml_layer),
|
|
732
|
+
:,
|
|
733
|
+
] = i / self.n_pml_layer
|
|
734
|
+
|
|
735
|
+
pml_mask_y[:, self.m_spatial_order + self.n_pml_layer - i - 1, :] = (
|
|
736
|
+
i / self.n_pml_layer
|
|
737
|
+
)
|
|
738
|
+
|
|
739
|
+
pml_mask_z[
|
|
740
|
+
:,
|
|
741
|
+
:,
|
|
742
|
+
i + (n_z_extended - self.m_spatial_order - self.n_pml_layer),
|
|
743
|
+
] = i / self.n_pml_layer
|
|
744
|
+
|
|
745
|
+
pml_mask_z[:, :, self.m_spatial_order + self.n_pml_layer - i - 1] = (
|
|
746
|
+
i / self.n_pml_layer
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
pml_mask_x[0 : self.m_spatial_order, :, :] = 1
|
|
750
|
+
pml_mask_x[n_x_extended - self.m_spatial_order : n_x_extended, :, :] = 1
|
|
751
|
+
|
|
752
|
+
pml_mask_y[:, 0 : self.m_spatial_order, :] = 1
|
|
753
|
+
pml_mask_y[:, n_y_extended - self.m_spatial_order : n_y_extended, :] = 1
|
|
754
|
+
|
|
755
|
+
pml_mask_z[:, :, 0 : self.m_spatial_order] = 1
|
|
756
|
+
pml_mask_z[:, :, n_z_extended - self.m_spatial_order : n_z_extended] = 1
|
|
757
|
+
return pml_mask_x, pml_mask_y, pml_mask_z
|
|
758
|
+
|
|
759
|
+
n_x_extended, n_y_extended = self.extended_medium.sound_speed.shape
|
|
760
|
+
|
|
761
|
+
pml_mask_x = np.zeros((n_x_extended, n_y_extended))
|
|
762
|
+
pml_mask_y = np.zeros((n_x_extended, n_y_extended))
|
|
763
|
+
|
|
764
|
+
for i in range(self.n_pml_layer):
|
|
765
|
+
pml_mask_x[
|
|
766
|
+
i + (n_x_extended - self.m_spatial_order - self.n_pml_layer),
|
|
767
|
+
:,
|
|
768
|
+
] = i / self.n_pml_layer
|
|
769
|
+
|
|
770
|
+
pml_mask_x[self.m_spatial_order + self.n_pml_layer - i - 1, :] = i / self.n_pml_layer
|
|
771
|
+
|
|
772
|
+
pml_mask_y[
|
|
773
|
+
:,
|
|
774
|
+
i + (n_y_extended - self.m_spatial_order - self.n_pml_layer),
|
|
775
|
+
] = i / self.n_pml_layer
|
|
776
|
+
|
|
777
|
+
pml_mask_y[:, self.m_spatial_order + self.n_pml_layer - i - 1] = i / self.n_pml_layer
|
|
778
|
+
|
|
779
|
+
pml_mask_x[0 : self.m_spatial_order, :] = 1
|
|
780
|
+
pml_mask_x[n_x_extended - self.m_spatial_order : n_x_extended, :] = 1
|
|
781
|
+
|
|
782
|
+
pml_mask_y[:, 0 : self.m_spatial_order] = 1
|
|
783
|
+
pml_mask_y[:, n_y_extended - self.m_spatial_order : n_y_extended] = 1
|
|
784
|
+
|
|
785
|
+
return pml_mask_x, pml_mask_y
|
|
786
|
+
|
|
787
|
+
@staticmethod
|
|
788
|
+
def _calc_a_and_b(
|
|
789
|
+
d_x: NDArray[np.float64] | float,
|
|
790
|
+
kappa_x: NDArray[np.float64] | float,
|
|
791
|
+
alpha_x: NDArray[np.float64] | float,
|
|
792
|
+
dt: NDArray[np.float64] | float,
|
|
793
|
+
) -> tuple[NDArray[np.float64], NDArray[np.float64]]:
|
|
794
|
+
# function [a b] = ab(dx,kappax,alphax,dT)
|
|
795
|
+
d_x = np.array(d_x)
|
|
796
|
+
kappa_x = np.array(kappa_x)
|
|
797
|
+
alpha_x = np.array(alpha_x)
|
|
798
|
+
dt = np.array(dt)
|
|
799
|
+
|
|
800
|
+
b = np.exp(-(d_x / kappa_x + alpha_x) * dt)
|
|
801
|
+
eps = 1e-10
|
|
802
|
+
a = d_x / (kappa_x * (d_x + kappa_x * alpha_x) + eps) * (b - 1)
|
|
803
|
+
return a, b
|
|
804
|
+
|
|
805
|
+
def run(self, *, use_pml: bool = True) -> fullwave.MediumRelaxationMaps:
|
|
806
|
+
"""Generate perfect matched layer (PML) relaxation parameters.
|
|
807
|
+
|
|
808
|
+
It generates the relaxation parameters
|
|
809
|
+
for the PML region considering the given medium and PML parameters.
|
|
810
|
+
|
|
811
|
+
Returns
|
|
812
|
+
-------
|
|
813
|
+
Medium
|
|
814
|
+
A Medium instance with the constructed domain properties.
|
|
815
|
+
|
|
816
|
+
"""
|
|
817
|
+
if use_pml:
|
|
818
|
+
extended_medium: fullwave.MediumRelaxationMaps = self.extended_medium.build()
|
|
819
|
+
if self.is_3d:
|
|
820
|
+
return self._apply_pml_3d(
|
|
821
|
+
extended_medium=extended_medium,
|
|
822
|
+
theoritical_reflection_coefficient=self.theoritical_reflection_coefficient,
|
|
823
|
+
n_polynomial=self.n_polynomial,
|
|
824
|
+
)
|
|
825
|
+
|
|
826
|
+
return self._apply_pml(
|
|
827
|
+
extended_medium=extended_medium,
|
|
828
|
+
theoritical_reflection_coefficient=self.theoritical_reflection_coefficient,
|
|
829
|
+
n_polynomial=self.n_polynomial,
|
|
830
|
+
)
|
|
831
|
+
|
|
832
|
+
extended_medium: fullwave.MediumRelaxationMaps = self.extended_medium.build()
|
|
833
|
+
return extended_medium
|
|
834
|
+
|
|
835
|
+
def _apply_pml(
|
|
836
|
+
self,
|
|
837
|
+
extended_medium: fullwave.MediumRelaxationMaps,
|
|
838
|
+
theoritical_reflection_coefficient: float,
|
|
839
|
+
n_polynomial: float,
|
|
840
|
+
) -> fullwave.MediumRelaxationMaps:
|
|
841
|
+
"""Apply PML to the extended medium relaxation parameters.
|
|
842
|
+
|
|
843
|
+
ref: Komatitsch, D., & Martin, R. (2007).
|
|
844
|
+
An unsplit convolutional perfectly matched layer improved
|
|
845
|
+
at grazing incidence for the seismic wave equation.
|
|
846
|
+
Geophysics, 72(5), SM155-SM167. https://doi.org/10.1190/1.2757586
|
|
847
|
+
|
|
848
|
+
Parameters
|
|
849
|
+
----------
|
|
850
|
+
extended_medium : fullwave.MediumRelaxationMaps
|
|
851
|
+
The extended medium relaxation parameters.
|
|
852
|
+
n_polynomial : float
|
|
853
|
+
The polynomial order for the PML damping parameter.
|
|
854
|
+
it changes the transition function shape from the medium to the PML.
|
|
855
|
+
theoritical_reflection_coefficient : float
|
|
856
|
+
The theoretical reflection coefficient for the PML.
|
|
857
|
+
it changes the PML strength. it gets unstable if it is too low.
|
|
858
|
+
|
|
859
|
+
Returns
|
|
860
|
+
-------
|
|
861
|
+
fullwave.MediumRelaxationMaps
|
|
862
|
+
The extended medium relaxation parameters with PML applied.
|
|
863
|
+
|
|
864
|
+
"""
|
|
865
|
+
# alpha=0 and d=0 will make a and b in the PML be 0
|
|
866
|
+
# this procedure shrinks the multiple relaxation mechanisms to a single one
|
|
867
|
+
alpha_target_pml = 0
|
|
868
|
+
alpha_target_higher_nu = 0
|
|
869
|
+
d_target_higher_nu = 0
|
|
870
|
+
|
|
871
|
+
# see Komatitsch, D., & Martin, R. (2007), SM160
|
|
872
|
+
d_target_pml = (
|
|
873
|
+
-(n_polynomial + 1)
|
|
874
|
+
* self.extended_grid.c0
|
|
875
|
+
* np.log(theoritical_reflection_coefficient)
|
|
876
|
+
/ (2 * (self.pml_layer_m + self.transition_layer_m))
|
|
877
|
+
# / (2 * (self.pml_layer_m))
|
|
878
|
+
)
|
|
879
|
+
# alpha_pml_entrance = np.pi * self.extended_grid.f0
|
|
880
|
+
|
|
881
|
+
out_dict = {}
|
|
882
|
+
relaxation_param_dict = extended_medium.relaxation_param_dict
|
|
883
|
+
rename_dict = _obtain_relax_var_rename_dict(
|
|
884
|
+
n_relaxation_mechanisms=self.extended_medium.n_relaxation_mechanisms,
|
|
885
|
+
is_3d=self.is_3d,
|
|
886
|
+
use_isotropic_relaxation=self.use_isotropic_relaxation,
|
|
887
|
+
)
|
|
888
|
+
for key_fw2, key_py in rename_dict.items():
|
|
889
|
+
if key_fw2 in ["kappa_x", "kappa_u", "kappa_y", "kappa_w"]:
|
|
890
|
+
out_dict[key_fw2] = relaxation_param_dict[key_py].copy()
|
|
891
|
+
elif (
|
|
892
|
+
("alpha_u_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
893
|
+
or ("alpha_x_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
894
|
+
or ("alpha_w_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
895
|
+
or ("alpha_y_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
896
|
+
):
|
|
897
|
+
# out_dict[key_fw2] = relaxation_param_dict[key_py].copy()
|
|
898
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
899
|
+
relaxation_param_dict[key_py].copy(),
|
|
900
|
+
value_target=alpha_target_higher_nu,
|
|
901
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
902
|
+
axis=0,
|
|
903
|
+
transition_type="cosine",
|
|
904
|
+
transit_within_transition_layer=True,
|
|
905
|
+
is_3d=self.is_3d,
|
|
906
|
+
)
|
|
907
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
908
|
+
out_dict[key_fw2],
|
|
909
|
+
# relaxation_param_dict[key_py].copy(),
|
|
910
|
+
value_target=alpha_target_higher_nu,
|
|
911
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
912
|
+
axis=1,
|
|
913
|
+
transition_type="cosine",
|
|
914
|
+
transit_within_transition_layer=True,
|
|
915
|
+
is_3d=self.is_3d,
|
|
916
|
+
)
|
|
917
|
+
elif (
|
|
918
|
+
("d_u_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
919
|
+
or ("d_x_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
920
|
+
or ("d_w_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
921
|
+
or ("d_y_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
922
|
+
):
|
|
923
|
+
# out_dict[key_fw2] = relaxation_param_dict[key_py].copy()
|
|
924
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
925
|
+
relaxation_param_dict[key_py].copy(),
|
|
926
|
+
value_target=d_target_higher_nu,
|
|
927
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
928
|
+
axis=0,
|
|
929
|
+
transition_type="cosine",
|
|
930
|
+
transit_within_transition_layer=True,
|
|
931
|
+
is_3d=self.is_3d,
|
|
932
|
+
)
|
|
933
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
934
|
+
out_dict[key_fw2],
|
|
935
|
+
# relaxation_param_dict[key_py].copy(),
|
|
936
|
+
value_target=d_target_higher_nu,
|
|
937
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
938
|
+
axis=1,
|
|
939
|
+
transition_type="cosine",
|
|
940
|
+
transit_within_transition_layer=True,
|
|
941
|
+
is_3d=self.is_3d,
|
|
942
|
+
)
|
|
943
|
+
elif (
|
|
944
|
+
("alpha_u_nu" in key_fw2 and "nu1" in key_fw2)
|
|
945
|
+
or ("alpha_x_nu" in key_fw2 and "nu1" in key_fw2)
|
|
946
|
+
or ("alpha_w_nu" in key_fw2 and "nu1" in key_fw2)
|
|
947
|
+
or ("alpha_y_nu" in key_fw2 and "nu1" in key_fw2)
|
|
948
|
+
):
|
|
949
|
+
# out_dict[key_fw2] = relaxation_param_dict[key_py].copy()
|
|
950
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
951
|
+
relaxation_param_dict[key_py].copy(),
|
|
952
|
+
value_target=alpha_target_pml,
|
|
953
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
954
|
+
axis=0,
|
|
955
|
+
transition_type="linear",
|
|
956
|
+
transit_within_transition_layer=False,
|
|
957
|
+
transit_within_pml_layer=False,
|
|
958
|
+
is_3d=self.is_3d,
|
|
959
|
+
)
|
|
960
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
961
|
+
out_dict[key_fw2],
|
|
962
|
+
# relaxation_param_dict[key_py].copy(),
|
|
963
|
+
value_target=alpha_target_pml,
|
|
964
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
965
|
+
axis=1,
|
|
966
|
+
transition_type="linear",
|
|
967
|
+
transit_within_transition_layer=False,
|
|
968
|
+
transit_within_pml_layer=False,
|
|
969
|
+
is_3d=self.is_3d,
|
|
970
|
+
)
|
|
971
|
+
elif (
|
|
972
|
+
("d_u_nu" in key_fw2 and "nu1" in key_fw2)
|
|
973
|
+
or ("d_x_nu" in key_fw2 and "nu1" in key_fw2)
|
|
974
|
+
or ("d_w_nu" in key_fw2 and "nu1" in key_fw2)
|
|
975
|
+
or ("d_y_nu" in key_fw2 and "nu1" in key_fw2)
|
|
976
|
+
):
|
|
977
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
978
|
+
relaxation_param_dict[key_py].copy(),
|
|
979
|
+
value_target=d_target_pml,
|
|
980
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
981
|
+
axis=0,
|
|
982
|
+
n_polynomial=n_polynomial,
|
|
983
|
+
transition_type="polynomial",
|
|
984
|
+
transit_within_transition_layer=False,
|
|
985
|
+
transit_within_pml_layer=False,
|
|
986
|
+
is_3d=self.is_3d,
|
|
987
|
+
)
|
|
988
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
989
|
+
out_dict[key_fw2],
|
|
990
|
+
# relaxation_param_dict[key_py].copy(),
|
|
991
|
+
value_target=d_target_pml,
|
|
992
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
993
|
+
axis=1,
|
|
994
|
+
n_polynomial=n_polynomial,
|
|
995
|
+
transition_type="polynomial",
|
|
996
|
+
transit_within_transition_layer=False,
|
|
997
|
+
transit_within_pml_layer=False,
|
|
998
|
+
is_3d=self.is_3d,
|
|
999
|
+
)
|
|
1000
|
+
|
|
1001
|
+
axis_list = ["u", "x"] if self.use_isotropic_relaxation else ["u", "w", "x", "y"]
|
|
1002
|
+
for nu in range(1, extended_medium.n_relaxation_mechanisms + 1):
|
|
1003
|
+
for axis in axis_list:
|
|
1004
|
+
(
|
|
1005
|
+
out_dict[f"a_pml_{axis}{nu}"],
|
|
1006
|
+
out_dict[f"b_pml_{axis}{nu}"],
|
|
1007
|
+
) = self._calc_a_and_b(
|
|
1008
|
+
d_x=out_dict[f"d_{axis}_nu{nu}"],
|
|
1009
|
+
kappa_x=out_dict[f"kappa_{axis}"],
|
|
1010
|
+
alpha_x=out_dict[f"alpha_{axis}_nu{nu}"],
|
|
1011
|
+
dt=extended_medium.grid.dt,
|
|
1012
|
+
)
|
|
1013
|
+
|
|
1014
|
+
extended_medium.relaxation_param_dict_for_fw2.update(
|
|
1015
|
+
out_dict,
|
|
1016
|
+
)
|
|
1017
|
+
|
|
1018
|
+
return extended_medium
|
|
1019
|
+
|
|
1020
|
+
def _apply_pml_3d(
|
|
1021
|
+
self,
|
|
1022
|
+
extended_medium: fullwave.MediumRelaxationMaps,
|
|
1023
|
+
theoritical_reflection_coefficient: float,
|
|
1024
|
+
n_polynomial: float,
|
|
1025
|
+
) -> fullwave.MediumRelaxationMaps:
|
|
1026
|
+
"""Apply PML to the extended medium relaxation parameters.
|
|
1027
|
+
|
|
1028
|
+
ref: Komatitsch, D., & Martin, R. (2007).
|
|
1029
|
+
An unsplit convolutional perfectly matched layer improved
|
|
1030
|
+
at grazing incidence for the seismic wave equation.
|
|
1031
|
+
Geophysics, 72(5), SM155-SM167. https://doi.org/10.1190/1.2757586
|
|
1032
|
+
|
|
1033
|
+
Parameters
|
|
1034
|
+
----------
|
|
1035
|
+
extended_medium : fullwave.MediumRelaxationMaps
|
|
1036
|
+
The extended medium relaxation parameters.
|
|
1037
|
+
n_polynomial : float
|
|
1038
|
+
The polynomial order for the PML damping parameter.
|
|
1039
|
+
it changes the transition function shape from the medium to the PML.
|
|
1040
|
+
theoritical_reflection_coefficient : float
|
|
1041
|
+
The theoretical reflection coefficient for the PML.
|
|
1042
|
+
it changes the PML strength. it gets unstable if it is too low.
|
|
1043
|
+
|
|
1044
|
+
Returns
|
|
1045
|
+
-------
|
|
1046
|
+
fullwave.MediumRelaxationMaps
|
|
1047
|
+
The extended medium relaxation parameters with PML applied.
|
|
1048
|
+
|
|
1049
|
+
"""
|
|
1050
|
+
# alpha=0 and d=0 will make a and b in the PML be 0
|
|
1051
|
+
# this procedure shrinks the multiple relaxation mechanisms to a single one
|
|
1052
|
+
alpha_target_pml = 0
|
|
1053
|
+
alpha_target_higher_nu = 0
|
|
1054
|
+
d_target_higher_nu = 0
|
|
1055
|
+
|
|
1056
|
+
# see Komatitsch, D., & Martin, R. (2007), SM160
|
|
1057
|
+
d_target_pml = (
|
|
1058
|
+
-(n_polynomial + 1)
|
|
1059
|
+
* self.extended_grid.c0
|
|
1060
|
+
* np.log(theoritical_reflection_coefficient)
|
|
1061
|
+
/ (2 * (self.pml_layer_m + self.transition_layer_m))
|
|
1062
|
+
# / (2 * self.pml_layer_m)
|
|
1063
|
+
)
|
|
1064
|
+
|
|
1065
|
+
out_dict = {}
|
|
1066
|
+
relaxation_param_dict = extended_medium.relaxation_param_dict
|
|
1067
|
+
rename_dict = _obtain_relax_var_rename_dict(
|
|
1068
|
+
n_relaxation_mechanisms=self.extended_medium.n_relaxation_mechanisms,
|
|
1069
|
+
is_3d=self.is_3d,
|
|
1070
|
+
use_isotropic_relaxation=self.use_isotropic_relaxation,
|
|
1071
|
+
)
|
|
1072
|
+
for key_fw2, key_py in rename_dict.items():
|
|
1073
|
+
if (
|
|
1074
|
+
key_fw2 in ["kappa_x", "kappa_u"]
|
|
1075
|
+
or key_fw2 in ["kappa_y", "kappa_v"]
|
|
1076
|
+
or key_fw2 in ["kappa_z", "kappa_w"]
|
|
1077
|
+
):
|
|
1078
|
+
out_dict[key_fw2] = relaxation_param_dict[key_py].copy()
|
|
1079
|
+
elif (
|
|
1080
|
+
("alpha_u_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1081
|
+
or ("alpha_v_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1082
|
+
or ("alpha_w_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1083
|
+
or ("alpha_x_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1084
|
+
or ("alpha_y_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1085
|
+
or ("alpha_z_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1086
|
+
):
|
|
1087
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1088
|
+
relaxation_param_dict[key_py].copy(),
|
|
1089
|
+
value_target=alpha_target_higher_nu,
|
|
1090
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1091
|
+
axis=0,
|
|
1092
|
+
transition_type="cosine",
|
|
1093
|
+
transit_within_transition_layer=True,
|
|
1094
|
+
is_3d=self.is_3d,
|
|
1095
|
+
)
|
|
1096
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1097
|
+
out_dict[key_fw2],
|
|
1098
|
+
value_target=alpha_target_higher_nu,
|
|
1099
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1100
|
+
axis=1,
|
|
1101
|
+
transition_type="cosine",
|
|
1102
|
+
transit_within_transition_layer=True,
|
|
1103
|
+
is_3d=self.is_3d,
|
|
1104
|
+
)
|
|
1105
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1106
|
+
out_dict[key_fw2],
|
|
1107
|
+
value_target=alpha_target_higher_nu,
|
|
1108
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1109
|
+
axis=2,
|
|
1110
|
+
transition_type="cosine",
|
|
1111
|
+
transit_within_transition_layer=True,
|
|
1112
|
+
is_3d=self.is_3d,
|
|
1113
|
+
)
|
|
1114
|
+
elif (
|
|
1115
|
+
("d_u_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1116
|
+
or ("d_v_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1117
|
+
or ("d_w_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1118
|
+
or ("d_x_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1119
|
+
or ("d_y_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1120
|
+
or ("d_z_nu" in key_fw2 and "nu1" not in key_fw2)
|
|
1121
|
+
):
|
|
1122
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1123
|
+
relaxation_param_dict[key_py].copy(),
|
|
1124
|
+
value_target=d_target_higher_nu,
|
|
1125
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1126
|
+
axis=0,
|
|
1127
|
+
transition_type="cosine",
|
|
1128
|
+
transit_within_transition_layer=True,
|
|
1129
|
+
is_3d=self.is_3d,
|
|
1130
|
+
)
|
|
1131
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1132
|
+
out_dict[key_fw2],
|
|
1133
|
+
value_target=d_target_higher_nu,
|
|
1134
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1135
|
+
axis=1,
|
|
1136
|
+
transition_type="cosine",
|
|
1137
|
+
transit_within_transition_layer=True,
|
|
1138
|
+
is_3d=self.is_3d,
|
|
1139
|
+
)
|
|
1140
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1141
|
+
out_dict[key_fw2],
|
|
1142
|
+
value_target=d_target_higher_nu,
|
|
1143
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1144
|
+
axis=2,
|
|
1145
|
+
transition_type="cosine",
|
|
1146
|
+
transit_within_transition_layer=True,
|
|
1147
|
+
is_3d=self.is_3d,
|
|
1148
|
+
)
|
|
1149
|
+
elif (
|
|
1150
|
+
("alpha_u_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1151
|
+
or ("alpha_v_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1152
|
+
or ("alpha_w_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1153
|
+
or ("alpha_x_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1154
|
+
or ("alpha_y_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1155
|
+
or ("alpha_z_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1156
|
+
):
|
|
1157
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1158
|
+
relaxation_param_dict[key_py].copy(),
|
|
1159
|
+
value_target=alpha_target_pml,
|
|
1160
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1161
|
+
axis=0,
|
|
1162
|
+
transition_type="linear",
|
|
1163
|
+
transit_within_transition_layer=False,
|
|
1164
|
+
transit_within_pml_layer=False,
|
|
1165
|
+
is_3d=self.is_3d,
|
|
1166
|
+
)
|
|
1167
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1168
|
+
out_dict[key_fw2],
|
|
1169
|
+
value_target=alpha_target_pml,
|
|
1170
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1171
|
+
axis=1,
|
|
1172
|
+
transition_type="linear",
|
|
1173
|
+
transit_within_transition_layer=False,
|
|
1174
|
+
transit_within_pml_layer=False,
|
|
1175
|
+
is_3d=self.is_3d,
|
|
1176
|
+
)
|
|
1177
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1178
|
+
out_dict[key_fw2],
|
|
1179
|
+
value_target=alpha_target_pml,
|
|
1180
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1181
|
+
axis=2,
|
|
1182
|
+
transition_type="linear",
|
|
1183
|
+
transit_within_transition_layer=False,
|
|
1184
|
+
transit_within_pml_layer=False,
|
|
1185
|
+
is_3d=self.is_3d,
|
|
1186
|
+
)
|
|
1187
|
+
elif (
|
|
1188
|
+
("d_u_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1189
|
+
or ("d_v_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1190
|
+
or ("d_w_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1191
|
+
or ("d_x_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1192
|
+
or ("d_y_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1193
|
+
or ("d_z_nu" in key_fw2 and "nu1" in key_fw2)
|
|
1194
|
+
):
|
|
1195
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1196
|
+
relaxation_param_dict[key_py].copy(),
|
|
1197
|
+
value_target=d_target_pml,
|
|
1198
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1199
|
+
axis=0,
|
|
1200
|
+
n_polynomial=n_polynomial,
|
|
1201
|
+
transition_type="polynomial",
|
|
1202
|
+
transit_within_transition_layer=False,
|
|
1203
|
+
transit_within_pml_layer=False,
|
|
1204
|
+
is_3d=self.is_3d,
|
|
1205
|
+
)
|
|
1206
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1207
|
+
out_dict[key_fw2],
|
|
1208
|
+
value_target=d_target_pml,
|
|
1209
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1210
|
+
axis=1,
|
|
1211
|
+
n_polynomial=n_polynomial,
|
|
1212
|
+
transition_type="polynomial",
|
|
1213
|
+
transit_within_transition_layer=False,
|
|
1214
|
+
transit_within_pml_layer=False,
|
|
1215
|
+
is_3d=self.is_3d,
|
|
1216
|
+
)
|
|
1217
|
+
out_dict[key_fw2] = self._apply_transition_and_pml(
|
|
1218
|
+
out_dict[key_fw2],
|
|
1219
|
+
value_target=d_target_pml,
|
|
1220
|
+
array_shape=relaxation_param_dict[key_py].shape,
|
|
1221
|
+
axis=2,
|
|
1222
|
+
n_polynomial=n_polynomial,
|
|
1223
|
+
transition_type="polynomial",
|
|
1224
|
+
transit_within_transition_layer=False,
|
|
1225
|
+
transit_within_pml_layer=False,
|
|
1226
|
+
is_3d=self.is_3d,
|
|
1227
|
+
)
|
|
1228
|
+
|
|
1229
|
+
axis_list = ["u", "x"] if self.use_isotropic_relaxation else ["u", "v", "w", "x", "y", "z"]
|
|
1230
|
+
|
|
1231
|
+
for nu in range(1, extended_medium.n_relaxation_mechanisms + 1):
|
|
1232
|
+
for axis in axis_list:
|
|
1233
|
+
(
|
|
1234
|
+
out_dict[f"a_pml_{axis}{nu}"],
|
|
1235
|
+
out_dict[f"b_pml_{axis}{nu}"],
|
|
1236
|
+
) = self._calc_a_and_b(
|
|
1237
|
+
d_x=out_dict[f"d_{axis}_nu{nu}"],
|
|
1238
|
+
kappa_x=out_dict[f"kappa_{axis}"],
|
|
1239
|
+
alpha_x=out_dict[f"alpha_{axis}_nu{nu}"],
|
|
1240
|
+
dt=extended_medium.grid.dt,
|
|
1241
|
+
)
|
|
1242
|
+
|
|
1243
|
+
extended_medium.relaxation_param_dict_for_fw2.update(
|
|
1244
|
+
out_dict,
|
|
1245
|
+
)
|
|
1246
|
+
|
|
1247
|
+
return extended_medium
|
|
1248
|
+
|
|
1249
|
+
def _apply_transition_and_pml( # noqa: PLR0912 C901, PLR0915
|
|
1250
|
+
self,
|
|
1251
|
+
input_array: NDArray[np.float64],
|
|
1252
|
+
value_target: float,
|
|
1253
|
+
array_shape: tuple[int, ...],
|
|
1254
|
+
axis: int = 0,
|
|
1255
|
+
*,
|
|
1256
|
+
transition_type: str = "smooth",
|
|
1257
|
+
n_polynomial: float = 2,
|
|
1258
|
+
transit_within_transition_layer: bool = False,
|
|
1259
|
+
transit_within_pml_layer: bool = False,
|
|
1260
|
+
disable_the_transition_and_pml: bool = False,
|
|
1261
|
+
is_3d: bool = False,
|
|
1262
|
+
) -> NDArray[np.float64]:
|
|
1263
|
+
if transit_within_transition_layer and transit_within_pml_layer:
|
|
1264
|
+
error_msg = (
|
|
1265
|
+
"Both transit_within_transition_layer and transit_within_pml_layer "
|
|
1266
|
+
"cannot be True at the same time."
|
|
1267
|
+
)
|
|
1268
|
+
raise ValueError(error_msg)
|
|
1269
|
+
|
|
1270
|
+
if disable_the_transition_and_pml:
|
|
1271
|
+
return input_array
|
|
1272
|
+
|
|
1273
|
+
if transit_within_transition_layer and self.n_transition_layer == 0:
|
|
1274
|
+
error_msg = (
|
|
1275
|
+
"Transition layer is not defined. "
|
|
1276
|
+
"Set transit_within_transition_layer to False or define n_transition_layer."
|
|
1277
|
+
)
|
|
1278
|
+
raise ValueError(error_msg)
|
|
1279
|
+
|
|
1280
|
+
if transit_within_transition_layer:
|
|
1281
|
+
layer_thickness = self.n_transition_layer
|
|
1282
|
+
layer_offset = self.n_pml_layer
|
|
1283
|
+
elif transit_within_pml_layer:
|
|
1284
|
+
layer_thickness = self.n_pml_layer
|
|
1285
|
+
layer_offset = 0
|
|
1286
|
+
else:
|
|
1287
|
+
layer_thickness = self.n_pml_layer + self.n_transition_layer
|
|
1288
|
+
layer_offset = 0
|
|
1289
|
+
|
|
1290
|
+
if transition_type == "smooth":
|
|
1291
|
+
transition_function = _smooth_transition_function(
|
|
1292
|
+
np.linspace(
|
|
1293
|
+
0,
|
|
1294
|
+
1,
|
|
1295
|
+
layer_thickness + 1,
|
|
1296
|
+
),
|
|
1297
|
+
)
|
|
1298
|
+
elif transition_type == "linear":
|
|
1299
|
+
transition_function = _linear_transition_function(
|
|
1300
|
+
np.linspace(
|
|
1301
|
+
0,
|
|
1302
|
+
1,
|
|
1303
|
+
layer_thickness + 1,
|
|
1304
|
+
),
|
|
1305
|
+
)
|
|
1306
|
+
elif transition_type == "polynomial":
|
|
1307
|
+
transition_function = _n_th_deg_polynomial_function(
|
|
1308
|
+
np.linspace(
|
|
1309
|
+
0,
|
|
1310
|
+
1,
|
|
1311
|
+
layer_thickness + 1,
|
|
1312
|
+
),
|
|
1313
|
+
n=n_polynomial,
|
|
1314
|
+
)
|
|
1315
|
+
elif transition_type == "cosine":
|
|
1316
|
+
transition_function = _cosine_transition_function(
|
|
1317
|
+
np.linspace(
|
|
1318
|
+
0,
|
|
1319
|
+
1,
|
|
1320
|
+
layer_thickness + 1,
|
|
1321
|
+
),
|
|
1322
|
+
)
|
|
1323
|
+
else:
|
|
1324
|
+
error_msg = (
|
|
1325
|
+
f"Invalid transition type: {transition_type}. "
|
|
1326
|
+
"Choose from 'smooth', 'linear', or 'polynomial'."
|
|
1327
|
+
)
|
|
1328
|
+
raise ValueError(error_msg)
|
|
1329
|
+
|
|
1330
|
+
n_axis_extended = array_shape[axis]
|
|
1331
|
+
|
|
1332
|
+
if axis == 0:
|
|
1333
|
+
input_array[: self.m_spatial_order + layer_offset + layer_thickness] = value_target
|
|
1334
|
+
input_array[
|
|
1335
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset :,
|
|
1336
|
+
] = value_target
|
|
1337
|
+
if is_3d:
|
|
1338
|
+
up_start = self.m_spatial_order + layer_offset - 1
|
|
1339
|
+
up_end = self.m_spatial_order + layer_offset + layer_thickness
|
|
1340
|
+
up_slice = slice(up_start, up_end)
|
|
1341
|
+
|
|
1342
|
+
down_start = (
|
|
1343
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset - 1
|
|
1344
|
+
)
|
|
1345
|
+
down_end = n_axis_extended - self.m_spatial_order - layer_offset
|
|
1346
|
+
down_slice = slice(down_start, down_end)
|
|
1347
|
+
|
|
1348
|
+
# fetch the "mid" and "down" face values and expand dims for broadcasting
|
|
1349
|
+
up_vals = input_array[up_end, :, :][None, :, :]
|
|
1350
|
+
down_vals = input_array[down_start, :, :][None, :, :]
|
|
1351
|
+
|
|
1352
|
+
# top transition (use reversed transition function)
|
|
1353
|
+
input_array[up_slice, :, :] = up_vals - transition_function[::-1][
|
|
1354
|
+
:,
|
|
1355
|
+
None,
|
|
1356
|
+
None,
|
|
1357
|
+
] * (up_vals - value_target)
|
|
1358
|
+
|
|
1359
|
+
# bottom transition (forward transition function)
|
|
1360
|
+
input_array[down_slice, :, :] = down_vals - transition_function[:, None, None] * (
|
|
1361
|
+
down_vals - value_target
|
|
1362
|
+
)
|
|
1363
|
+
else:
|
|
1364
|
+
up_start = self.m_spatial_order + layer_offset - 1
|
|
1365
|
+
up_end = self.m_spatial_order + layer_offset + layer_thickness
|
|
1366
|
+
up_slice = slice(up_start, up_end)
|
|
1367
|
+
|
|
1368
|
+
down_start = (
|
|
1369
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset - 1
|
|
1370
|
+
)
|
|
1371
|
+
down_end = n_axis_extended - self.m_spatial_order - layer_offset
|
|
1372
|
+
down_slice = slice(down_start, down_end)
|
|
1373
|
+
|
|
1374
|
+
# fetch the "mid" and "down" face values and expand dims for broadcasting
|
|
1375
|
+
up_vals = input_array[up_end, :][None, :]
|
|
1376
|
+
down_vals = input_array[down_start, :][None, :]
|
|
1377
|
+
|
|
1378
|
+
# top transition (use reversed transition function)
|
|
1379
|
+
input_array[up_slice, :] = up_vals - transition_function[::-1][:, None] * (
|
|
1380
|
+
up_vals - value_target
|
|
1381
|
+
)
|
|
1382
|
+
|
|
1383
|
+
# bottom transition (forward transition function)
|
|
1384
|
+
input_array[down_slice, :] = down_vals - transition_function[:, None] * (
|
|
1385
|
+
down_vals - value_target
|
|
1386
|
+
)
|
|
1387
|
+
elif axis == 1:
|
|
1388
|
+
input_array[:, : self.m_spatial_order + layer_offset + layer_thickness] = value_target
|
|
1389
|
+
input_array[
|
|
1390
|
+
:,
|
|
1391
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset :,
|
|
1392
|
+
] = value_target
|
|
1393
|
+
if is_3d:
|
|
1394
|
+
up_start = self.m_spatial_order + layer_offset - 1
|
|
1395
|
+
up_end = self.m_spatial_order + layer_offset + layer_thickness
|
|
1396
|
+
up_slice = slice(up_start, up_end)
|
|
1397
|
+
|
|
1398
|
+
down_start = (
|
|
1399
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset - 1
|
|
1400
|
+
)
|
|
1401
|
+
down_end = n_axis_extended - self.m_spatial_order - layer_offset
|
|
1402
|
+
down_slice = slice(down_start, down_end)
|
|
1403
|
+
|
|
1404
|
+
# fetch the "mid" and "down" face values and expand dims for broadcasting
|
|
1405
|
+
up_vals = input_array[:, up_end, :][:, None, :]
|
|
1406
|
+
down_vals = input_array[:, down_start, :][:, None, :]
|
|
1407
|
+
|
|
1408
|
+
# top transition (use reversed transition function)
|
|
1409
|
+
input_array[:, up_slice, :] = up_vals - transition_function[::-1][
|
|
1410
|
+
None,
|
|
1411
|
+
:,
|
|
1412
|
+
None,
|
|
1413
|
+
] * (up_vals - value_target)
|
|
1414
|
+
|
|
1415
|
+
# bottom transition (forward transition function)
|
|
1416
|
+
input_array[:, down_slice, :] = down_vals - transition_function[None, :, None] * (
|
|
1417
|
+
down_vals - value_target
|
|
1418
|
+
)
|
|
1419
|
+
else:
|
|
1420
|
+
up_start = self.m_spatial_order + layer_offset - 1
|
|
1421
|
+
up_end = self.m_spatial_order + layer_offset + layer_thickness
|
|
1422
|
+
up_slice = slice(up_start, up_end)
|
|
1423
|
+
|
|
1424
|
+
down_start = (
|
|
1425
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset - 1
|
|
1426
|
+
)
|
|
1427
|
+
down_end = n_axis_extended - self.m_spatial_order - layer_offset
|
|
1428
|
+
down_slice = slice(down_start, down_end)
|
|
1429
|
+
|
|
1430
|
+
# fetch the "mid" and "down" face values and expand dims for broadcasting
|
|
1431
|
+
up_vals = input_array[:, up_end][:, None]
|
|
1432
|
+
down_vals = input_array[:, down_start][:, None]
|
|
1433
|
+
|
|
1434
|
+
# top transition (use reversed transition function)
|
|
1435
|
+
input_array[:, up_slice] = up_vals - transition_function[::-1][None, :] * (
|
|
1436
|
+
up_vals - value_target
|
|
1437
|
+
)
|
|
1438
|
+
|
|
1439
|
+
# bottom transition (forward transition function)
|
|
1440
|
+
input_array[:, down_slice] = down_vals - transition_function[None, :] * (
|
|
1441
|
+
down_vals - value_target
|
|
1442
|
+
)
|
|
1443
|
+
elif axis == 2:
|
|
1444
|
+
input_array[:, :, : self.m_spatial_order + layer_offset + layer_thickness] = (
|
|
1445
|
+
value_target
|
|
1446
|
+
)
|
|
1447
|
+
input_array[
|
|
1448
|
+
:,
|
|
1449
|
+
:,
|
|
1450
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset :,
|
|
1451
|
+
] = value_target
|
|
1452
|
+
if is_3d:
|
|
1453
|
+
up_start = self.m_spatial_order + layer_offset - 1
|
|
1454
|
+
up_end = self.m_spatial_order + layer_offset + layer_thickness
|
|
1455
|
+
up_slice = slice(up_start, up_end)
|
|
1456
|
+
|
|
1457
|
+
down_start = (
|
|
1458
|
+
n_axis_extended - self.m_spatial_order - layer_thickness - layer_offset - 1
|
|
1459
|
+
)
|
|
1460
|
+
down_end = n_axis_extended - self.m_spatial_order - layer_offset
|
|
1461
|
+
down_slice = slice(down_start, down_end)
|
|
1462
|
+
|
|
1463
|
+
# fetch the “mid” and “down” face values and expand dims for broadcasting
|
|
1464
|
+
up_vals = input_array[:, :, up_end][..., None]
|
|
1465
|
+
down_vals = input_array[:, :, down_start][..., None]
|
|
1466
|
+
|
|
1467
|
+
# top transition (use reversed transition function)
|
|
1468
|
+
input_array[:, :, up_slice] = up_vals - transition_function[::-1][
|
|
1469
|
+
None,
|
|
1470
|
+
None,
|
|
1471
|
+
:,
|
|
1472
|
+
] * (up_vals - value_target)
|
|
1473
|
+
|
|
1474
|
+
# bottom transition (forward transition function)
|
|
1475
|
+
input_array[:, :, down_slice] = down_vals - transition_function[None, None, :] * (
|
|
1476
|
+
down_vals - value_target
|
|
1477
|
+
)
|
|
1478
|
+
else:
|
|
1479
|
+
error_msg = (
|
|
1480
|
+
"axis=2 is not supported for 2D cases. Please set is_3d=True to use axis=2."
|
|
1481
|
+
)
|
|
1482
|
+
raise ValueError(error_msg)
|
|
1483
|
+
else:
|
|
1484
|
+
error_msg = f"Invalid axis value. Expected 0, 1, but got {axis}."
|
|
1485
|
+
raise ValueError(error_msg)
|
|
1486
|
+
return input_array
|
|
1487
|
+
|
|
1488
|
+
@staticmethod
|
|
1489
|
+
def _calc_time_constants(
|
|
1490
|
+
dx: NDArray[np.float64],
|
|
1491
|
+
kappa: NDArray[np.float64],
|
|
1492
|
+
alpha: NDArray[np.float64],
|
|
1493
|
+
) -> NDArray[np.float64]:
|
|
1494
|
+
return dx / kappa + alpha
|
|
1495
|
+
|
|
1496
|
+
def _sort_relaxation_param_dict(
|
|
1497
|
+
self,
|
|
1498
|
+
relaxation_param_dict: dict[str, NDArray[np.float64]],
|
|
1499
|
+
relaxation_param_updates: dict[str, NDArray[np.float64]],
|
|
1500
|
+
n_relaxation_mechanisms: int,
|
|
1501
|
+
) -> dict:
|
|
1502
|
+
kappa_x1 = relaxation_param_updates["kappa_x1"]
|
|
1503
|
+
kappa_x2 = relaxation_param_updates["kappa_x2"]
|
|
1504
|
+
|
|
1505
|
+
d_x1 = []
|
|
1506
|
+
alpha_x1 = []
|
|
1507
|
+
d_x2 = []
|
|
1508
|
+
alpha_x2 = []
|
|
1509
|
+
time_const_x1 = []
|
|
1510
|
+
time_const_x2 = []
|
|
1511
|
+
for nu in range(1, n_relaxation_mechanisms + 1):
|
|
1512
|
+
d_x1_nu = relaxation_param_updates[f"d_x1_nu{nu}"]
|
|
1513
|
+
alpha_x1_nu = relaxation_param_updates[f"alpha_x1_nu{nu}"]
|
|
1514
|
+
d_x2_nu = relaxation_param_updates[f"d_x2_nu{nu}"]
|
|
1515
|
+
alpha_x2_nu = relaxation_param_updates[f"alpha_x2_nu{nu}"]
|
|
1516
|
+
|
|
1517
|
+
d_x1.append(d_x1_nu)
|
|
1518
|
+
alpha_x1.append(alpha_x1_nu)
|
|
1519
|
+
d_x2.append(d_x2_nu)
|
|
1520
|
+
alpha_x2.append(alpha_x2_nu)
|
|
1521
|
+
|
|
1522
|
+
time_const_x1_nu = self._calc_time_constants(
|
|
1523
|
+
dx=d_x1_nu,
|
|
1524
|
+
kappa=kappa_x1,
|
|
1525
|
+
alpha=alpha_x1_nu,
|
|
1526
|
+
)
|
|
1527
|
+
time_const_x2_nu = self._calc_time_constants(
|
|
1528
|
+
dx=d_x2_nu,
|
|
1529
|
+
kappa=kappa_x2,
|
|
1530
|
+
alpha=alpha_x2_nu,
|
|
1531
|
+
)
|
|
1532
|
+
time_const_x1.append(time_const_x1_nu)
|
|
1533
|
+
time_const_x2.append(time_const_x2_nu)
|
|
1534
|
+
|
|
1535
|
+
time_const_x1 = np.stack(time_const_x1, axis=-1)
|
|
1536
|
+
time_const_x2 = np.stack(time_const_x2, axis=-1)
|
|
1537
|
+
d_x1 = np.stack(d_x1, axis=-1)
|
|
1538
|
+
alpha_x1 = np.stack(alpha_x1, axis=-1)
|
|
1539
|
+
d_x2 = np.stack(d_x2, axis=-1)
|
|
1540
|
+
alpha_x2 = np.stack(alpha_x2, axis=-1)
|
|
1541
|
+
|
|
1542
|
+
# sort the nu values based on the time constants
|
|
1543
|
+
sorted_indices_x1 = np.argsort(time_const_x1, axis=-1)
|
|
1544
|
+
sorted_indices_x2 = np.argsort(time_const_x2, axis=-1)
|
|
1545
|
+
relaxation_param_dict["kappa_x1"] = np.atleast_2d(kappa_x1)
|
|
1546
|
+
relaxation_param_dict["kappa_x2"] = np.atleast_2d(kappa_x2)
|
|
1547
|
+
|
|
1548
|
+
for nu in range(1, n_relaxation_mechanisms + 1):
|
|
1549
|
+
relaxation_param_dict[f"d_x1_nu{nu}"] = np.atleast_2d(
|
|
1550
|
+
np.take_along_axis(
|
|
1551
|
+
d_x1,
|
|
1552
|
+
np.expand_dims(sorted_indices_x1[..., nu - 1], axis=-1),
|
|
1553
|
+
axis=-1,
|
|
1554
|
+
).squeeze(-1),
|
|
1555
|
+
)
|
|
1556
|
+
relaxation_param_dict[f"alpha_x1_nu{nu}"] = np.atleast_2d(
|
|
1557
|
+
np.take_along_axis(
|
|
1558
|
+
alpha_x1,
|
|
1559
|
+
np.expand_dims(sorted_indices_x1[..., nu - 1], axis=-1),
|
|
1560
|
+
axis=-1,
|
|
1561
|
+
).squeeze(-1),
|
|
1562
|
+
)
|
|
1563
|
+
relaxation_param_dict[f"d_x2_nu{nu}"] = np.atleast_2d(
|
|
1564
|
+
np.take_along_axis(
|
|
1565
|
+
d_x2,
|
|
1566
|
+
np.expand_dims(sorted_indices_x2[..., nu - 1], axis=-1),
|
|
1567
|
+
axis=-1,
|
|
1568
|
+
).squeeze(-1),
|
|
1569
|
+
)
|
|
1570
|
+
relaxation_param_dict[f"alpha_x2_nu{nu}"] = np.atleast_2d(
|
|
1571
|
+
np.take_along_axis(
|
|
1572
|
+
alpha_x2,
|
|
1573
|
+
np.expand_dims(sorted_indices_x2[..., nu - 1], axis=-1),
|
|
1574
|
+
axis=-1,
|
|
1575
|
+
).squeeze(-1),
|
|
1576
|
+
)
|
|
1577
|
+
return relaxation_param_dict
|
|
1578
|
+
|
|
1579
|
+
def plot(
|
|
1580
|
+
self,
|
|
1581
|
+
export_path: Path | str | None = Path("./temp/temp.png"),
|
|
1582
|
+
*,
|
|
1583
|
+
show: bool = False,
|
|
1584
|
+
) -> None:
|
|
1585
|
+
"""Plot the medium fields using matplotlib."""
|
|
1586
|
+
relaxation_param_dict_keys = initialize_relaxation_param_dict().keys()
|
|
1587
|
+
|
|
1588
|
+
target_map_dict: OrderedDict = OrderedDict(
|
|
1589
|
+
[
|
|
1590
|
+
("Sound speed", self.extended_medium.sound_speed),
|
|
1591
|
+
("Density", self.extended_medium.density),
|
|
1592
|
+
("Beta", self.extended_medium.beta),
|
|
1593
|
+
("Air map", self.extended_medium.air_map),
|
|
1594
|
+
],
|
|
1595
|
+
)
|
|
1596
|
+
for key in relaxation_param_dict_keys:
|
|
1597
|
+
target_map_dict[key] = self.extended_medium.relaxation_param_dict[key]
|
|
1598
|
+
|
|
1599
|
+
target_map_dict.update(
|
|
1600
|
+
[
|
|
1601
|
+
("PML mask x", self.pml_mask_x),
|
|
1602
|
+
("PML mask y", self.pml_mask_y),
|
|
1603
|
+
("Source mask", self.extended_source.mask),
|
|
1604
|
+
("Sensor mask", self.extended_sensor.mask),
|
|
1605
|
+
],
|
|
1606
|
+
)
|
|
1607
|
+
|
|
1608
|
+
num_plots = len(target_map_dict)
|
|
1609
|
+
# calculate subplot shape to make a square
|
|
1610
|
+
n_rows = int(np.sqrt(num_plots))
|
|
1611
|
+
n_cols = int(np.ceil(num_plots / n_rows))
|
|
1612
|
+
# adjust the fig size
|
|
1613
|
+
fig_size = (n_cols * 5, n_rows * 5)
|
|
1614
|
+
|
|
1615
|
+
plt.close("all")
|
|
1616
|
+
_, axes = plt.subplots(n_rows, n_cols, figsize=fig_size)
|
|
1617
|
+
|
|
1618
|
+
for ax, (title, map_data) in zip(
|
|
1619
|
+
axes.flatten(),
|
|
1620
|
+
target_map_dict.items(),
|
|
1621
|
+
strict=False,
|
|
1622
|
+
):
|
|
1623
|
+
plot_utils.plot_array_on_ax(
|
|
1624
|
+
ax,
|
|
1625
|
+
map_data,
|
|
1626
|
+
title=title,
|
|
1627
|
+
xlim=(-5, self.extended_grid.ny + 5),
|
|
1628
|
+
ylim=(-5, self.extended_grid.nx + 5),
|
|
1629
|
+
reverse_y_axis=True,
|
|
1630
|
+
)
|
|
1631
|
+
plt.tight_layout()
|
|
1632
|
+
|
|
1633
|
+
if export_path is not None:
|
|
1634
|
+
plt.savefig(export_path, dpi=300)
|
|
1635
|
+
if show:
|
|
1636
|
+
plt.show()
|
|
1637
|
+
plt.close("all")
|
|
1638
|
+
|
|
1639
|
+
|
|
1640
|
+
@dataclass
|
|
1641
|
+
class PMLBuilderExponentialAttenuation(PMLBuilder):
|
|
1642
|
+
"""A class to set up PML for exponential attenuation media."""
|
|
1643
|
+
|
|
1644
|
+
def __init__(
|
|
1645
|
+
self,
|
|
1646
|
+
grid: fullwave.Grid,
|
|
1647
|
+
medium: fullwave.Medium,
|
|
1648
|
+
source: fullwave.Source,
|
|
1649
|
+
sensor: fullwave.Sensor,
|
|
1650
|
+
*,
|
|
1651
|
+
m_spatial_order: int = 8,
|
|
1652
|
+
n_pml_layer: int = 40,
|
|
1653
|
+
# n_transition_layer: int = 40,
|
|
1654
|
+
# pml_alpha_target: float = 1.1,
|
|
1655
|
+
# pml_alpha_power_target: float = 1.6,
|
|
1656
|
+
# pml_strength_factor: float = 2.0,
|
|
1657
|
+
# use_2_relax_mechanisms: bool = False,
|
|
1658
|
+
) -> None:
|
|
1659
|
+
"""Initialize the PMLSetup with the given medium, source, sensor, and PML parameters.
|
|
1660
|
+
|
|
1661
|
+
Parameters
|
|
1662
|
+
----------
|
|
1663
|
+
grid: fullwave.Grid
|
|
1664
|
+
The grid configuration.
|
|
1665
|
+
medium : fullwave.Medium)
|
|
1666
|
+
The medium relaxation maps.
|
|
1667
|
+
source : fullwave.Source
|
|
1668
|
+
The source configuration.
|
|
1669
|
+
sensor : fullwave.Sensor
|
|
1670
|
+
The sensor configuration.
|
|
1671
|
+
m_spatial_order : int, optional
|
|
1672
|
+
fullwave simulation's spatial order (default is 8).
|
|
1673
|
+
It depends on the fullwave simulation binary version.
|
|
1674
|
+
Fullwave simulation has 2M th order spatial accuracy and fourth order accuracy in time.
|
|
1675
|
+
see Pinton, G. (2021) http://arxiv.org/abs/2106.11476 for more detail.
|
|
1676
|
+
n_pml_layer : int, optional
|
|
1677
|
+
PML layer thickness (default is 40).
|
|
1678
|
+
n_transition_layer : int, optional
|
|
1679
|
+
Number of transition layers (default is 40).
|
|
1680
|
+
pml_alpha_target : float, optional
|
|
1681
|
+
Target alpha value for PML (default is 0.5).
|
|
1682
|
+
This value is used to calculate the transition layer values.
|
|
1683
|
+
pml_alpha_power_target : float, optional
|
|
1684
|
+
Target alpha power value for PML (default is 1.0).
|
|
1685
|
+
This value is used to calculate the transition layer values.
|
|
1686
|
+
pml_strength_factor : float, optional
|
|
1687
|
+
Strength factor for PML (default is 2.0).
|
|
1688
|
+
This value is used to calculate the PML target values.
|
|
1689
|
+
use_2_relax_mechanisms : bool, optional
|
|
1690
|
+
If True, use 2 relaxation mechanisms for PML for stability (default is False).
|
|
1691
|
+
if True, pml_alpha_target, pml_alpha_power_target, and pml_strength_factor are ignored.
|
|
1692
|
+
|
|
1693
|
+
"""
|
|
1694
|
+
check_functions.check_instance(
|
|
1695
|
+
grid,
|
|
1696
|
+
fullwave.Grid,
|
|
1697
|
+
)
|
|
1698
|
+
check_functions.check_instance(
|
|
1699
|
+
medium,
|
|
1700
|
+
fullwave.Medium,
|
|
1701
|
+
)
|
|
1702
|
+
check_functions.check_instance(
|
|
1703
|
+
source,
|
|
1704
|
+
fullwave.Source,
|
|
1705
|
+
)
|
|
1706
|
+
check_functions.check_instance(
|
|
1707
|
+
sensor,
|
|
1708
|
+
fullwave.Sensor,
|
|
1709
|
+
)
|
|
1710
|
+
|
|
1711
|
+
self.grid_org = grid
|
|
1712
|
+
self.medium_org = medium
|
|
1713
|
+
self.source_org = source
|
|
1714
|
+
self.sensor_org = sensor
|
|
1715
|
+
self.is_3d = grid.is_3d
|
|
1716
|
+
|
|
1717
|
+
self.m_spatial_order = m_spatial_order
|
|
1718
|
+
self.n_pml_layer = n_pml_layer
|
|
1719
|
+
# self.n_transition_layer = n_transition_layer
|
|
1720
|
+
# self.pml_alpha_target = pml_alpha_target
|
|
1721
|
+
# self.pml_alpha_power_target = pml_alpha_power_target
|
|
1722
|
+
# self.pml_strength_factor = pml_strength_factor
|
|
1723
|
+
# self.use_2_relax_mechanisms = use_2_relax_mechanisms
|
|
1724
|
+
|
|
1725
|
+
domain_size: tuple[float, ...]
|
|
1726
|
+
if self.is_3d:
|
|
1727
|
+
domain_size = (
|
|
1728
|
+
(self.medium_org.sound_speed.shape[0] + 2 * self.num_boundary_points)
|
|
1729
|
+
* self.grid_org.dx,
|
|
1730
|
+
(self.medium_org.sound_speed.shape[1] + 2 * self.num_boundary_points)
|
|
1731
|
+
* self.grid_org.dy,
|
|
1732
|
+
(self.medium_org.sound_speed.shape[2] + 2 * self.num_boundary_points)
|
|
1733
|
+
* self.grid_org.dz,
|
|
1734
|
+
)
|
|
1735
|
+
else:
|
|
1736
|
+
domain_size = (
|
|
1737
|
+
(self.medium_org.sound_speed.shape[0] + 2 * self.num_boundary_points)
|
|
1738
|
+
* self.grid_org.dx,
|
|
1739
|
+
(self.medium_org.sound_speed.shape[1] + 2 * self.num_boundary_points)
|
|
1740
|
+
* self.grid_org.dy,
|
|
1741
|
+
)
|
|
1742
|
+
self.extended_grid = fullwave.Grid(
|
|
1743
|
+
domain_size=domain_size,
|
|
1744
|
+
f0=self.grid_org.f0,
|
|
1745
|
+
duration=self.grid_org.duration,
|
|
1746
|
+
c0=self.grid_org.c0,
|
|
1747
|
+
ppw=self.grid_org.ppw,
|
|
1748
|
+
cfl=self.grid_org.cfl,
|
|
1749
|
+
)
|
|
1750
|
+
|
|
1751
|
+
self.extended_medium = fullwave.Medium(
|
|
1752
|
+
grid=self.extended_grid,
|
|
1753
|
+
sound_speed=self._extend_map_for_pml(self.medium_org.sound_speed),
|
|
1754
|
+
density=self._extend_map_for_pml(self.medium_org.density),
|
|
1755
|
+
beta=self._extend_map_for_pml(self.medium_org.beta),
|
|
1756
|
+
alpha_coeff=self._extend_map_for_pml(self.medium_org.alpha_coeff),
|
|
1757
|
+
alpha_power=self._extend_map_for_pml(self.medium_org.alpha_power),
|
|
1758
|
+
air_map=self._extend_map_for_pml(self.medium_org.air_map),
|
|
1759
|
+
n_relaxation_mechanisms=self.medium_org.n_relaxation_mechanisms,
|
|
1760
|
+
path_relaxation_parameters_database=self.medium_org.path_relaxation_parameters_database,
|
|
1761
|
+
attenuation_builder=self.medium_org.attenuation_builder,
|
|
1762
|
+
)
|
|
1763
|
+
|
|
1764
|
+
self.extended_source = fullwave.Source(
|
|
1765
|
+
p0=self.source_org.p0,
|
|
1766
|
+
mask=self._extend_map_for_pml(self.source_org.mask, fill_edge=False),
|
|
1767
|
+
)
|
|
1768
|
+
self.extended_sensor = fullwave.Sensor(
|
|
1769
|
+
mask=self._extend_map_for_pml(self.sensor_org.mask, fill_edge=False),
|
|
1770
|
+
sampling_modulus_time=self.sensor_org.sampling_modulus_time,
|
|
1771
|
+
)
|
|
1772
|
+
if self.is_3d:
|
|
1773
|
+
self.pml_mask_x, self.pml_mask_y, self.pml_mask_z = self._localize_pml_region()
|
|
1774
|
+
else:
|
|
1775
|
+
self.pml_mask_x, self.pml_mask_y = self._localize_pml_region()
|
|
1776
|
+
|
|
1777
|
+
self.pml_layer_m = self.extended_grid.dx * self.n_pml_layer
|
|
1778
|
+
# self.transition_layer_m = self.extended_grid.dx * self.n_transition_layer
|
|
1779
|
+
|
|
1780
|
+
self.n_polynomial = 2
|
|
1781
|
+
self.theoritical_reflection_coefficient = 10 ** (-30)
|
|
1782
|
+
|
|
1783
|
+
if self.n_pml_layer == 0:
|
|
1784
|
+
self.n_transition_layer = 0
|
|
1785
|
+
|
|
1786
|
+
@cached_property
|
|
1787
|
+
def num_boundary_points(self) -> int:
|
|
1788
|
+
"""Returns the number of the boundary points.
|
|
1789
|
+
|
|
1790
|
+
Number of PML layer and ghost cells.
|
|
1791
|
+
"""
|
|
1792
|
+
return self.n_pml_layer + self.m_spatial_order
|
|
1793
|
+
|
|
1794
|
+
def run(self, *, use_pml: bool = True) -> fullwave.MediumExponentialAttenuation:
|
|
1795
|
+
"""Generate perfect matched layer (PML) relaxation parameters.
|
|
1796
|
+
|
|
1797
|
+
It generates the relaxation parameters
|
|
1798
|
+
for the PML region considering the given medium and PML parameters.
|
|
1799
|
+
|
|
1800
|
+
Returns
|
|
1801
|
+
-------
|
|
1802
|
+
Medium
|
|
1803
|
+
A Medium instance with the constructed domain properties.
|
|
1804
|
+
|
|
1805
|
+
"""
|
|
1806
|
+
if use_pml:
|
|
1807
|
+
extended_medium: fullwave.MediumExponentialAttenuation = (
|
|
1808
|
+
self.extended_medium.build_exponential()
|
|
1809
|
+
)
|
|
1810
|
+
if self.is_3d:
|
|
1811
|
+
return self._apply_pml_3d(
|
|
1812
|
+
extended_medium=extended_medium,
|
|
1813
|
+
)
|
|
1814
|
+
|
|
1815
|
+
return self._apply_pml_2d(
|
|
1816
|
+
extended_medium=extended_medium,
|
|
1817
|
+
)
|
|
1818
|
+
|
|
1819
|
+
extended_medium: fullwave.MediumExponentialAttenuation = (
|
|
1820
|
+
self.extended_medium.build_exponential()
|
|
1821
|
+
)
|
|
1822
|
+
return extended_medium
|
|
1823
|
+
|
|
1824
|
+
@staticmethod
|
|
1825
|
+
def _mask_body_2d(nx: int, ny: int, n_body: int) -> NDArray[np.float64]:
|
|
1826
|
+
"""Create a mask for the PML region.
|
|
1827
|
+
|
|
1828
|
+
Parameters
|
|
1829
|
+
----------
|
|
1830
|
+
nx : int
|
|
1831
|
+
Number of grid points in the x-direction.
|
|
1832
|
+
ny : int
|
|
1833
|
+
Number of grid points in the y-direction.
|
|
1834
|
+
n_body : int
|
|
1835
|
+
Thickness of the body region (non-PML region).
|
|
1836
|
+
|
|
1837
|
+
Returns
|
|
1838
|
+
-------
|
|
1839
|
+
NDArray[np.float64]
|
|
1840
|
+
A 3D numpy array representing the PML mask.
|
|
1841
|
+
|
|
1842
|
+
"""
|
|
1843
|
+
# Create coordinate grids (1-based indices like MATLAB)
|
|
1844
|
+
x = np.arange(1, nx + 1)[:, None]
|
|
1845
|
+
y = np.arange(1, ny + 1)[None, :]
|
|
1846
|
+
|
|
1847
|
+
# Distances from each side boundary
|
|
1848
|
+
ri = np.where(x <= n_body, n_body - x + 1, np.where(x > nx - n_body, x - (nx - n_body), 0))
|
|
1849
|
+
rj = np.where(y <= n_body, n_body - y + 1, np.where(y > ny - n_body, y - (ny - n_body), 0))
|
|
1850
|
+
|
|
1851
|
+
# Compute mask
|
|
1852
|
+
mask = np.sqrt(ri**2 + rj**2)
|
|
1853
|
+
|
|
1854
|
+
# Normalize
|
|
1855
|
+
if mask.max() > 0:
|
|
1856
|
+
mask /= mask.max()
|
|
1857
|
+
|
|
1858
|
+
return mask
|
|
1859
|
+
|
|
1860
|
+
@staticmethod
|
|
1861
|
+
def _mask_body_3d(nx: int, ny: int, nz: int, n_body: int) -> NDArray[np.float64]:
|
|
1862
|
+
"""Create a mask for the PML region.
|
|
1863
|
+
|
|
1864
|
+
Parameters
|
|
1865
|
+
----------
|
|
1866
|
+
nx : int
|
|
1867
|
+
Number of grid points in the x-direction.
|
|
1868
|
+
ny : int
|
|
1869
|
+
Number of grid points in the y-direction.
|
|
1870
|
+
nz : int
|
|
1871
|
+
Number of grid points in the z-direction.
|
|
1872
|
+
n_body : int
|
|
1873
|
+
Thickness of the body region (non-PML region).
|
|
1874
|
+
|
|
1875
|
+
Returns
|
|
1876
|
+
-------
|
|
1877
|
+
NDArray[np.float64]
|
|
1878
|
+
A 3D numpy array representing the PML mask.
|
|
1879
|
+
|
|
1880
|
+
"""
|
|
1881
|
+
# Create coordinate grids (1-based indices like MATLAB)
|
|
1882
|
+
x = np.arange(1, nx + 1)[:, None, None]
|
|
1883
|
+
y = np.arange(1, ny + 1)[None, :, None]
|
|
1884
|
+
z = np.arange(1, nz + 1)[None, None, :]
|
|
1885
|
+
|
|
1886
|
+
# Distances from each side boundary
|
|
1887
|
+
ri = np.where(x <= n_body, n_body - x + 1, np.where(x > nx - n_body, x - (nx - n_body), 0))
|
|
1888
|
+
rj = np.where(y <= n_body, n_body - y + 1, np.where(y > ny - n_body, y - (ny - n_body), 0))
|
|
1889
|
+
rk = np.where(z <= n_body, n_body - z + 1, np.where(z > nz - n_body, z - (nz - n_body), 0))
|
|
1890
|
+
|
|
1891
|
+
# Compute mask
|
|
1892
|
+
mask = np.sqrt(ri**2 + rj**2 + rk**2)
|
|
1893
|
+
|
|
1894
|
+
# Normalize
|
|
1895
|
+
if mask.max() > 0:
|
|
1896
|
+
mask /= mask.max()
|
|
1897
|
+
|
|
1898
|
+
return mask
|
|
1899
|
+
|
|
1900
|
+
def _apply_pml_3d(
|
|
1901
|
+
self,
|
|
1902
|
+
extended_medium: fullwave.MediumExponentialAttenuation,
|
|
1903
|
+
) -> fullwave.MediumExponentialAttenuation:
|
|
1904
|
+
a_mask = self._mask_body_3d(
|
|
1905
|
+
nx=extended_medium.alpha_exp.shape[0],
|
|
1906
|
+
ny=extended_medium.alpha_exp.shape[1],
|
|
1907
|
+
nz=extended_medium.alpha_exp.shape[2],
|
|
1908
|
+
n_body=self.num_boundary_points,
|
|
1909
|
+
)
|
|
1910
|
+
extended_medium.alpha_exp *= 1 - a_mask
|
|
1911
|
+
return extended_medium
|
|
1912
|
+
|
|
1913
|
+
def _apply_pml_2d(
|
|
1914
|
+
self,
|
|
1915
|
+
extended_medium: fullwave.MediumExponentialAttenuation,
|
|
1916
|
+
) -> fullwave.MediumExponentialAttenuation:
|
|
1917
|
+
a_mask = self._mask_body_2d(
|
|
1918
|
+
nx=extended_medium.alpha_exp.shape[0],
|
|
1919
|
+
ny=extended_medium.alpha_exp.shape[1],
|
|
1920
|
+
n_body=self.num_boundary_points,
|
|
1921
|
+
)
|
|
1922
|
+
extended_medium.alpha_exp *= 1 - a_mask
|
|
1923
|
+
return extended_medium
|