froog 0.4.2__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- froog/__init__.py +34 -1
- froog/{gradcheck.py → gradient.py} +4 -11
- froog/ops.py +307 -114
- froog/optim.py +104 -32
- froog/tensor.py +219 -219
- froog/utils.py +8 -7
- froog-0.5.0.dist-info/METADATA +205 -0
- froog-0.5.0.dist-info/RECORD +10 -0
- froog/nn.py +0 -60
- froog/ops_gpu.py +0 -598
- froog-0.4.2.dist-info/LICENSE +0 -1
- froog-0.4.2.dist-info/METADATA +0 -233
- froog-0.4.2.dist-info/RECORD +0 -13
- {froog-0.4.2.dist-info → froog-0.5.0.dist-info}/WHEEL +0 -0
- {froog-0.4.2.dist-info → froog-0.5.0.dist-info}/top_level.txt +0 -0
froog/__init__.py
CHANGED
@@ -1,3 +1,36 @@
|
|
1
1
|
import froog.optim
|
2
2
|
import froog.tensor
|
3
|
-
import froog.utils
|
3
|
+
import froog.utils
|
4
|
+
|
5
|
+
# Import GPU packages
|
6
|
+
import froog.gpu.cl.cl_utils
|
7
|
+
|
8
|
+
# Try to import Metal utils if available
|
9
|
+
try:
|
10
|
+
import froog.gpu.metal.metal_utils
|
11
|
+
except ImportError:
|
12
|
+
pass
|
13
|
+
|
14
|
+
# Import device management functions
|
15
|
+
from froog.gpu import (
|
16
|
+
Device, OpenCLDevice, get_device, set_device,
|
17
|
+
upload_tensor, download_tensor, is_buffer,
|
18
|
+
allocate_buffer, synchronize, get_available_devices
|
19
|
+
)
|
20
|
+
|
21
|
+
# Try to import Metal device if available
|
22
|
+
try:
|
23
|
+
from froog.gpu.metal import MetalDevice
|
24
|
+
__all__ = [
|
25
|
+
'Device', 'OpenCLDevice', 'MetalDevice',
|
26
|
+
'get_device', 'set_device', 'upload_tensor',
|
27
|
+
'download_tensor', 'is_buffer',
|
28
|
+
'allocate_buffer', 'synchronize', 'get_available_devices'
|
29
|
+
]
|
30
|
+
except ImportError:
|
31
|
+
__all__ = [
|
32
|
+
'Device', 'OpenCLDevice',
|
33
|
+
'get_device', 'set_device', 'upload_tensor',
|
34
|
+
'download_tensor', 'is_buffer',
|
35
|
+
'allocate_buffer', 'synchronize', 'get_available_devices'
|
36
|
+
]
|
@@ -7,16 +7,15 @@
|
|
7
7
|
# |___| |___| |_||_______||_______||_______|
|
8
8
|
|
9
9
|
import numpy as np
|
10
|
+
from typing import Callable, Union, Any, Tuple
|
10
11
|
from froog.tensor import Tensor
|
11
12
|
from froog.utils import mask_like
|
12
13
|
|
13
|
-
def jacobian(model, input):
|
14
|
+
def jacobian(model: Callable[[Tensor], Tensor], input: Tensor) -> np.ndarray:
|
14
15
|
output = model(input)
|
15
|
-
|
16
16
|
ji = input.data.reshape(-1).shape[-1] # jacobian of input
|
17
17
|
jo = output.data.reshape(-1).shape[-1] # jacobian of output
|
18
18
|
J = np.zeros((jo, ji), dtype=np.float32)
|
19
|
-
|
20
19
|
for o in range(jo):
|
21
20
|
o_scalar = Tensor(mask_like(output.data, o, 1.)).mul(output).sum()
|
22
21
|
o_scalar.backward()
|
@@ -24,7 +23,7 @@ def jacobian(model, input):
|
|
24
23
|
J[o,i] = grad
|
25
24
|
return J
|
26
25
|
|
27
|
-
def numerical_jacobian(model, input, eps = 1e-6):
|
26
|
+
def numerical_jacobian(model: Callable[[Tensor], Tensor], input: Tensor, eps: float = 1e-6) -> np.ndarray:
|
28
27
|
# """
|
29
28
|
# https://timvieira.github.io/blog/post/2017/04/21/how-to-test-gradient-implementations/
|
30
29
|
# Computes :
|
@@ -37,24 +36,18 @@ def numerical_jacobian(model, input, eps = 1e-6):
|
|
37
36
|
# NJ : an approx. of the Jacobian
|
38
37
|
# """
|
39
38
|
output = model(input)
|
40
|
-
|
41
39
|
ji = input.data.reshape(-1).shape[-1]
|
42
40
|
jo = output.data.reshape(-1).shape[-1]
|
43
41
|
NJ = np.zeros((jo, ji), dtype=np.float32)
|
44
|
-
|
45
42
|
for i in range(ji):
|
46
43
|
eps_perturb = mask_like(input.data, i, mask_value = eps)
|
47
|
-
|
48
44
|
output_perturb_add = model(Tensor(input.data + eps_perturb)).data.reshape(-1)
|
49
45
|
output_perturb_sub = model(Tensor(input.data - eps_perturb)).data.reshape(-1)
|
50
|
-
|
51
46
|
grad_approx = ((output_perturb_add) - (output_perturb_sub)) / (2*eps) # CDM: (f(x + h) - f(x - h)) / (2 * h)
|
52
|
-
|
53
47
|
NJ[:,i] = grad_approx
|
54
|
-
|
55
48
|
return NJ
|
56
49
|
|
57
|
-
def gradcheck(model, input, eps = 1e-06, atol = 1e-5, rtol = 0.001):
|
50
|
+
def gradcheck(model: Callable[[Tensor], Tensor], input: Tensor, eps: float = 1e-06, atol: float = 1e-5, rtol: float = 0.001) -> bool:
|
58
51
|
"""
|
59
52
|
Checks whether computed gradient is close to numerical approximation of the Jacobian
|
60
53
|
Params:
|