froog 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- froog/nn.py +3 -3
- froog/ops.py +1 -2
- froog/ops_gpu.py +116 -11
- froog/tensor.py +1 -1
- froog/utils.py +2 -1
- {froog-0.3.1.dist-info → froog-0.4.0.dist-info}/METADATA +12 -20
- froog-0.4.0.dist-info/RECORD +13 -0
- {froog-0.3.1.dist-info → froog-0.4.0.dist-info}/WHEEL +1 -1
- froog-0.3.1.dist-info/RECORD +0 -13
- {froog-0.3.1.dist-info → froog-0.4.0.dist-info}/LICENSE +0 -0
- {froog-0.3.1.dist-info → froog-0.4.0.dist-info}/top_level.txt +0 -0
froog/nn.py
CHANGED
@@ -10,8 +10,8 @@ from froog.tensor import Tensor
|
|
10
10
|
import numpy as np
|
11
11
|
|
12
12
|
def Linear(*x):
|
13
|
-
#
|
14
|
-
ret = np.random.uniform(-1., 1., size=x)/np.sqrt(np.prod(x))
|
13
|
+
# random Glorot initialization
|
14
|
+
ret = np.random.uniform(-1., 1., size=x)/np.sqrt(np.prod(x))
|
15
15
|
return ret.astype(np.float32)
|
16
16
|
|
17
17
|
def swish(x):
|
@@ -55,6 +55,6 @@ class BatchNorm2D:
|
|
55
55
|
def __call__(self, x):
|
56
56
|
x = x.sub(self.running_mean.reshape(shape=[1, -1, 1, 1]))
|
57
57
|
x = x.mul(self.weight.reshape(shape=[1, -1, 1, 1]))
|
58
|
-
x = x.div(self.running_var.add(Tensor([self.eps], gpu=x.gpu)).reshape(shape=[1, -1, 1, 1]).sqrt())
|
58
|
+
x = x.div(self.running_var.add(Tensor([self.eps], gpu=x.gpu)).reshape(shape=[1, -1, 1, 1]).sqrt())
|
59
59
|
x = x.add(self.bias.reshape(shape=[1, -1, 1, 1]))
|
60
60
|
return x
|
froog/ops.py
CHANGED
@@ -340,7 +340,6 @@ class MaxPool2D(Function):
|
|
340
340
|
*ctx.kernel_size)
|
341
341
|
register('max_pool2d', MaxPool2D)
|
342
342
|
|
343
|
-
|
344
343
|
class AvgPool2D(Function):
|
345
344
|
@staticmethod
|
346
345
|
def forward(ctx, x, kernel_size=(2,2)):
|
@@ -351,7 +350,7 @@ class AvgPool2D(Function):
|
|
351
350
|
@staticmethod
|
352
351
|
def backward(ctx, grad_output):
|
353
352
|
s, = ctx.saved_tensors
|
354
|
-
py, px = ctx.kernel_size #
|
353
|
+
py, px = ctx.kernel_size # kernel_size passed from forward context
|
355
354
|
my, mx = (s[2]//py)*py, (s[3]//px)*px
|
356
355
|
ret = np.zeros(s, dtype=grad_output.dtype)
|
357
356
|
for Y in range(py):
|
froog/ops_gpu.py
CHANGED
@@ -5,6 +5,8 @@
|
|
5
5
|
# | ___|| __ || |_| || |_| || || |
|
6
6
|
# | | | | | || || || |_| |
|
7
7
|
# |___| |___| |_||_______||_______||_______|
|
8
|
+
#
|
9
|
+
# OpenCL kernels
|
8
10
|
|
9
11
|
import numpy as np
|
10
12
|
from .tensor import Function, register
|
@@ -71,7 +73,6 @@ def unary_op(ctx, code, x):
|
|
71
73
|
prg.unop(ctx.cl_queue, [np.prod(ret.shape)], None, x, ret)
|
72
74
|
return ret
|
73
75
|
|
74
|
-
# ???
|
75
76
|
@functools.lru_cache
|
76
77
|
def cl_pooling_krnl_build(cl_ctx, iter_op, result_op, init_val=0):
|
77
78
|
prg = """
|
@@ -302,23 +303,42 @@ register('relu', ReLU, gpu=True)
|
|
302
303
|
class LogSoftmax(Function):
|
303
304
|
@staticmethod
|
304
305
|
def forward(ctx, input):
|
306
|
+
# first find max values for numerical stability
|
307
|
+
max_vals = buffer_new(ctx, (input.shape[0],))
|
308
|
+
prg = clbuild(ctx.cl_ctx, """
|
309
|
+
__kernel void max_vals(
|
310
|
+
__global const float *a_g, int sz, __global float *res_g)
|
311
|
+
{
|
312
|
+
int gid = get_global_id(0);
|
313
|
+
int gidsz = gid*sz;
|
314
|
+
float max_val = -INFINITY;
|
315
|
+
for (int x = 0; x < sz; x++) {
|
316
|
+
max_val = max(max_val, a_g[gidsz+x]);
|
317
|
+
}
|
318
|
+
res_g[gid] = max_val;
|
319
|
+
}
|
320
|
+
""")
|
321
|
+
prg.max_vals(ctx.cl_queue, [input.shape[0]], None, input, np.int32(input.shape[1]), max_vals)
|
322
|
+
|
323
|
+
# compute exp(x - max) and sum
|
305
324
|
lsum = buffer_new(ctx, (input.shape[0],))
|
306
325
|
prg = clbuild(ctx.cl_ctx, """
|
307
326
|
__kernel void logsoftmax(
|
308
|
-
__global const float *a_g, int sz, __global float *res_g)
|
327
|
+
__global const float *a_g, __global const float *max_vals, int sz, __global float *res_g)
|
309
328
|
{
|
310
329
|
int gid = get_global_id(0);
|
311
330
|
int gidsz = gid*sz;
|
312
|
-
|
331
|
+
float max_val = max_vals[gid];
|
313
332
|
float out = 0.0;
|
314
333
|
for (int x = 0; x < sz; x++) {
|
315
|
-
out += exp(a_g[gidsz+x]);
|
334
|
+
out += exp(a_g[gidsz+x] - max_val);
|
316
335
|
}
|
317
|
-
res_g[gid] = log(out);
|
336
|
+
res_g[gid] = log(out) + max_val;
|
318
337
|
}
|
319
338
|
""")
|
320
|
-
prg.logsoftmax(ctx.cl_queue, [input.shape[0]], None, input, np.int32(input.shape[1]), lsum)
|
339
|
+
prg.logsoftmax(ctx.cl_queue, [input.shape[0]], None, input, max_vals, np.int32(input.shape[1]), lsum)
|
321
340
|
|
341
|
+
# compute final output
|
322
342
|
output = buffer_like(ctx, input)
|
323
343
|
prg = clbuild(ctx.cl_ctx, """
|
324
344
|
__kernel void lsmsub(
|
@@ -474,8 +494,38 @@ class AvgPool2D(Function):
|
|
474
494
|
|
475
495
|
@staticmethod
|
476
496
|
def backward(ctx, grad_output):
|
477
|
-
#
|
478
|
-
|
497
|
+
# for average pooling, we need to distribute the gradient evenly across all elements in the pooling window
|
498
|
+
input_shape = ctx.data.shape
|
499
|
+
N, C, Y, X = input_shape
|
500
|
+
py, px = ctx.kernel_size
|
501
|
+
ret = buffer_zeros(ctx, input_shape)
|
502
|
+
|
503
|
+
prg = clbuild(ctx.cl_ctx, """
|
504
|
+
__kernel void avgpool_backward(
|
505
|
+
__global float *grad_input, __global const float *grad_output,
|
506
|
+
uint2 osize, uint2 isize, uint2 kernel_size, int nelem
|
507
|
+
) {
|
508
|
+
int3 gid = (int3)(get_global_id(2), get_global_id(1), get_global_id(0));
|
509
|
+
int oid = gid.x + osize.x*(gid.y + osize.y*gid.z);
|
510
|
+
float grad = grad_output[oid] / (kernel_size.x * kernel_size.y);
|
511
|
+
|
512
|
+
for (uint j=0; j<kernel_size.y; ++j) {
|
513
|
+
for (uint i=0; i<kernel_size.x; ++i) {
|
514
|
+
int iid = (gid.x*kernel_size.x+i) + isize.x*((gid.y*kernel_size.y+j) + isize.y*gid.z);
|
515
|
+
if (iid < nelem)
|
516
|
+
grad_input[iid] += grad;
|
517
|
+
}
|
518
|
+
}
|
519
|
+
}
|
520
|
+
""")
|
521
|
+
|
522
|
+
osize = np.array((X//px, Y//py), dtype=cl.cltypes.uint2)
|
523
|
+
isize = np.array((X, Y), dtype=cl.cltypes.uint2)
|
524
|
+
ksize = np.array((px,py), dtype=cl.cltypes.uint2)
|
525
|
+
|
526
|
+
prg.avgpool_backward(ctx.cl_queue, (N*C, Y//py, X//px), None, ret, grad_output, osize, isize, ksize, np.int32(input_shape.size))
|
527
|
+
|
528
|
+
return ret
|
479
529
|
register('avg_pool2d', AvgPool2D, gpu=True)
|
480
530
|
|
481
531
|
class MaxPool2D(Function):
|
@@ -484,10 +534,65 @@ class MaxPool2D(Function):
|
|
484
534
|
init_val = "FLT_MIN"
|
485
535
|
iter_op = "group_res = max(group_res, input[iid])"
|
486
536
|
result_op = "group_res"
|
487
|
-
|
537
|
+
ret = pooling_op(ctx, input, kernel_size, iter_op, result_op, init_val=init_val)
|
538
|
+
|
539
|
+
# save indices of max elements for backward pass
|
540
|
+
indices = buffer_new(ctx, ret.shape)
|
541
|
+
prg = clbuild(ctx.cl_ctx, """
|
542
|
+
__kernel void maxpool_indices(
|
543
|
+
__global const float *input, __global float *output, __global int *indices,
|
544
|
+
uint2 osize, uint2 isize, uint2 kernel_size, int nelem
|
545
|
+
) {
|
546
|
+
int3 gid = (int3)(get_global_id(2), get_global_id(1), get_global_id(0));
|
547
|
+
int oid = gid.x + osize.x*(gid.y + osize.y*gid.z);
|
548
|
+
float max_val = -INFINITY;
|
549
|
+
int max_idx = 0;
|
550
|
+
|
551
|
+
for (uint j=0; j<kernel_size.y; ++j) {
|
552
|
+
for (uint i=0; i<kernel_size.x; ++i) {
|
553
|
+
int iid = (gid.x*kernel_size.x+i) + isize.x*((gid.y*kernel_size.y+j) + isize.y*gid.z);
|
554
|
+
if (iid < nelem) {
|
555
|
+
float val = input[iid];
|
556
|
+
if (val > max_val) {
|
557
|
+
max_val = val;
|
558
|
+
max_idx = iid;
|
559
|
+
}
|
560
|
+
}
|
561
|
+
}
|
562
|
+
}
|
563
|
+
indices[oid] = max_idx;
|
564
|
+
}
|
565
|
+
""")
|
566
|
+
|
567
|
+
N, C, Y, X = input.shape
|
568
|
+
py, px = kernel_size
|
569
|
+
osize = np.array((X//px, Y//py), dtype=cl.cltypes.uint2)
|
570
|
+
isize = np.array((X, Y), dtype=cl.cltypes.uint2)
|
571
|
+
ksize = np.array((px,py), dtype=cl.cltypes.uint2)
|
572
|
+
|
573
|
+
prg.maxpool_indices(ctx.cl_queue, (N*C, Y//py, X//px), None, input, ret, indices, osize, isize, ksize, np.int32(input.size))
|
574
|
+
|
575
|
+
ctx.save_for_backward(indices)
|
576
|
+
return ret
|
488
577
|
|
489
578
|
@staticmethod
|
490
579
|
def backward(ctx, grad_output):
|
491
|
-
|
492
|
-
|
580
|
+
indices, = ctx.saved_tensors
|
581
|
+
input_shape = ctx.data.shape
|
582
|
+
ret = buffer_zeros(ctx, input_shape)
|
583
|
+
prg = clbuild(ctx.cl_ctx, """
|
584
|
+
__kernel void maxpool_backward(
|
585
|
+
__global float *grad_input, __global const float *grad_output,
|
586
|
+
__global const int *indices, int nelem
|
587
|
+
) {
|
588
|
+
int gid = get_global_id(0);
|
589
|
+
if (gid < nelem) {
|
590
|
+
int idx = indices[gid];
|
591
|
+
grad_input[idx] += grad_output[gid];
|
592
|
+
}
|
593
|
+
}
|
594
|
+
""")
|
595
|
+
|
596
|
+
prg.maxpool_backward(ctx.cl_queue, [np.prod(grad_output.shape)], None, ret, grad_output, indices, np.int32(grad_output.size))
|
597
|
+
return ret
|
493
598
|
register('max_pool2d', MaxPool2D, gpu=True)
|
froog/tensor.py
CHANGED
froog/utils.py
CHANGED
@@ -67,7 +67,8 @@ def im2col(x, H, W):
|
|
67
67
|
tx = x.reshape(bs, -1)[:, idx]
|
68
68
|
|
69
69
|
# all the time is spent here
|
70
|
-
|
70
|
+
# np.ravel() flattens the array into a 1-dimensional shape
|
71
|
+
tx = tx.ravel()
|
71
72
|
return tx.reshape(-1, cin*W*H)
|
72
73
|
|
73
74
|
def col2im(tx, H, W, OY, OX):
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: froog
|
3
|
-
Version: 0.
|
4
|
-
Summary: a
|
3
|
+
Version: 0.4.0
|
4
|
+
Summary: a toy tensor library with opencl support
|
5
5
|
Author: Kevin Buhler
|
6
6
|
License: MIT
|
7
7
|
Classifier: Programming Language :: Python :: 3
|
@@ -12,7 +12,6 @@ License-File: LICENSE
|
|
12
12
|
Requires-Dist: numpy
|
13
13
|
Requires-Dist: requests
|
14
14
|
Requires-Dist: matplotlib
|
15
|
-
Requires-Dist: urllib
|
16
15
|
|
17
16
|
# froog <img src="https://github.com/kevbuh/froog/actions/workflows/test.yml/badge.svg" alt="unit test badge" > <img src="https://static.pepy.tech/badge/froog" alt="num downloads badge">
|
18
17
|
<div align="center" >
|
@@ -27,7 +26,7 @@ Requires-Dist: urllib
|
|
27
26
|
<br/>
|
28
27
|
</div>
|
29
28
|
|
30
|
-
```froog``` is an easy-to-read tensor library (<a href="https://www.pepy.tech/projects/froog">
|
29
|
+
```froog``` is an easy-to-read tensor library (<a href="https://www.pepy.tech/projects/froog">25k pip installs!</a>) meant for those looking to get into machine learning and who want to understand how the underlying machine learning framework's code works before they are ultra-optimized (which all modern ml libraries are).
|
31
30
|
|
32
31
|
```froog``` encapsulates everything from <a href="https://github.com/kevbuh/froog/blob/main/models/linear_regression.py">linear regression</a> to <a href="https://github.com/kevbuh/froog/blob/main/models/efficientnet.py">convolutional neural networks </a> in under 1000 lines.
|
33
32
|
|
@@ -85,7 +84,7 @@ from froog.tensor import Tensor
|
|
85
84
|
my_tensor = Tensor([1,2,3])
|
86
85
|
```
|
87
86
|
|
88
|
-
Notice how we had to import
|
87
|
+
Notice how we had to import NumPy. If you want to create a Tensor manually, make sure that it is a NumPy array!
|
89
88
|
|
90
89
|
<!-- Learn more about ```froog``` Tensors <a href="https://github.com/kevbuh/froog/blob/main/docs/tensors.md">here</a>. -->
|
91
90
|
|
@@ -95,13 +94,10 @@ Tensors are the fundamental datatype in froog, and one of the two main classes.
|
|
95
94
|
|
96
95
|
- ```def __init__(self, data)```:
|
97
96
|
|
98
|
-
- Tensor takes in one param, which is the data. Since froog has a
|
99
|
-
|
97
|
+
- Tensor takes in one param, which is the data. Since ```froog``` has a NumPy backend, the input data into tensors has to be a NumPy array.
|
100
98
|
- Tensor has a ```self.data``` state that it holds. this contains the data inside of the tensor.
|
101
|
-
|
102
99
|
- In addition, it has ```self.grad```. this is to hold what the gradients of the tensor is.
|
103
|
-
|
104
|
-
- Lastly, it has ```self._ctx```. theser are the internal vairables used for autograd graph construction. put more simply, this is where the backward gradient computations are saved.
|
100
|
+
- Lastly, it has ```self._ctx```. These are the internal variables used for autograd graph construction. This is where the backward gradient computations are saved.
|
105
101
|
|
106
102
|
*Properties*
|
107
103
|
|
@@ -109,38 +105,34 @@ Tensors are the fundamental datatype in froog, and one of the two main classes.
|
|
109
105
|
|
110
106
|
*Methods*
|
111
107
|
- ```def zeros(*shape)```: this returns a tensor full of zeros with any shape that you pass in. Defaults to np.float32
|
112
|
-
|
113
108
|
- ```def ones(*shape)```: this returns a tensor full of ones with any shape that you pass in. Defaults to np.float32
|
114
|
-
|
115
109
|
- ```def randn(*shape):```: this returns a randomly initialized Tensor of *shape
|
116
110
|
|
117
111
|
*Gradient calculations*
|
118
112
|
|
119
|
-
- ```froog``` computes gradients automatically through a process called automatic differentiation. it has a variable ```_ctx```, which stores the chain of operations.
|
113
|
+
- ```froog``` computes gradients automatically through a process called automatic differentiation. it has a variable ```_ctx```, which stores the chain of operations. It will take the current operation, let's say a dot product, and go to the dot product definition in ```froog/ops.py```, which contains a backward pass specifically for dot products. all methods, from add to 2x2 maxpools, have this backward pass implemented.
|
120
114
|
|
121
115
|
*Functions*
|
122
116
|
|
123
117
|
The other base class in froog is the class ```Function```. It keeps track of input tensors and tensors that need to be saved for backward passes
|
124
118
|
|
125
119
|
- ```def __init__(self, *tensors)```: takes in an argument of tensors, which are then saved.
|
126
|
-
|
127
120
|
- ```def save_for_backward(self, *x)```: saves Tensors that are necessary to compute for the computation of gradients in the backward pass.
|
128
|
-
|
129
|
-
- ```def apply(self, arg, *x)```: This is what makes everything work. The apply() method takes care of the forward pass, applying the operation to the inputs.
|
121
|
+
- ```def apply(self, arg, *x)```: takes care of the forward pass, applying the operation to the inputs.
|
130
122
|
|
131
123
|
*Register*
|
132
124
|
|
133
|
-
```def register(name, fxn)```:
|
125
|
+
- ```def register(name, fxn)```: allows you to add a method to a Tensor. This allows you to chain any operations, e.g. x.dot(w).relu(), where w is a tensor
|
134
126
|
|
135
127
|
# Creating a model
|
136
128
|
|
137
129
|
Okay cool, so now you know that ```froog```'s main datatype is a Tensor and uses NumPy in the background. How do I actually build a model?
|
138
130
|
|
139
|
-
Here's an example of how to create an MNIST multi-layer perceptron (MLP). We wanted to make it as simple as possible for you to do so
|
131
|
+
Here's an example of how to create an MNIST multi-layer perceptron (MLP). We wanted to make it as simple as possible for you to do so it resembles very basic Python concepts like classes. There are really only two methods you need to define:
|
140
132
|
1. ```__init__``` that defines layers of the model (here we use ```Linear```)
|
141
133
|
2. ```forward``` which defines how the input should flow through your model. We use a simple dot product with a ```Linear``` layer with a <a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">```ReLU```</a> activation.
|
142
134
|
|
143
|
-
|
135
|
+
To create an instance of the ```mnistMLP``` model, do the same as you would in Python: ```model = mnistMLP()```.
|
144
136
|
|
145
137
|
We support a few different optimizers, <a href="https://github.com/kevbuh/froog/blob/main/froog/optim.py">here</a> which include:
|
146
138
|
- <a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent">Stochastic Gradient Descent (SGD)</a>
|
@@ -201,7 +193,7 @@ So there are two quick examples to get you up and running. You might have notice
|
|
201
193
|
|
202
194
|
## GPU Support
|
203
195
|
|
204
|
-
Have a GPU and need a speedup? You're in good luck because we have GPU support from for our operations defined in <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">```ops_gpu.py```</a>. In order to do this we have a backend built on <a href="https://en.wikipedia.org/wiki/
|
196
|
+
Have a GPU and need a speedup? You're in good luck because we have GPU support from for our operations defined in <a href="https://github.com/kevbuh/froog/blob/main/froog/ops_gpu.py">```ops_gpu.py```</a>. In order to do this we have a backend built on <a href="https://en.wikipedia.org/wiki/OpenCL">OpenCL</a> that invokes kernel functions that work on the GPU.
|
205
197
|
|
206
198
|
Here's how you can send data to the GPU during a forward pass and bring it back to the CPU.
|
207
199
|
|
@@ -0,0 +1,13 @@
|
|
1
|
+
froog/__init__.py,sha256=Mzxgj9bA2G4kcmbmY8fY0KCKgimPucn3hTVRWBJ-5_Q,57
|
2
|
+
froog/gradcheck.py,sha256=HlA0VDKE-c44o0E73QsUTIVoNs-w_C9FyKFlHfoagIQ,2415
|
3
|
+
froog/nn.py,sha256=_5dzIoxz1L4yEnYfONVc8xIs8vqRpUBBwZwHLvBu9yY,2023
|
4
|
+
froog/ops.py,sha256=t0P0OzzlhYBgAhM3urLsXLl9LJNff_7Yiyc_pYgP5B4,14388
|
5
|
+
froog/ops_gpu.py,sha256=ANDJiWS0e1ehcGCSDo_ZOOowaEPZrz2__FkX5z5uYf4,19367
|
6
|
+
froog/optim.py,sha256=m8Q1xe3WwU41obGSMVjRMIs3rWqfqRWfhlbhF9oJyWA,2450
|
7
|
+
froog/tensor.py,sha256=Wix4pE5-OIY8Pvv3bqNCSU_-c_wZV2HrmAtBwMPmAfE,7636
|
8
|
+
froog/utils.py,sha256=vs9bmBOyfy0_NR8jPl2DMWBCAqIacJ6a75Lbso2MAKs,3347
|
9
|
+
froog-0.4.0.dist-info/LICENSE,sha256=k_856uNmcNUoLC_HkI18c1WomqvQ1Ioqk6gwYfWQiaM,31
|
10
|
+
froog-0.4.0.dist-info/METADATA,sha256=R87af4vXl_1TInaB-6XXD6y0b_OQPbZHBmgREJSc_RA,13782
|
11
|
+
froog-0.4.0.dist-info/WHEEL,sha256=AtBG6SXL3KF_v0NxLf0ehyVOh0cold-JbJYXNGorC6Q,92
|
12
|
+
froog-0.4.0.dist-info/top_level.txt,sha256=XPz35C_JWu20LlsVxIMdMZn8DD58Ak78LwgWFBGYZwY,6
|
13
|
+
froog-0.4.0.dist-info/RECORD,,
|
froog-0.3.1.dist-info/RECORD
DELETED
@@ -1,13 +0,0 @@
|
|
1
|
-
froog/__init__.py,sha256=Mzxgj9bA2G4kcmbmY8fY0KCKgimPucn3hTVRWBJ-5_Q,57
|
2
|
-
froog/gradcheck.py,sha256=HlA0VDKE-c44o0E73QsUTIVoNs-w_C9FyKFlHfoagIQ,2415
|
3
|
-
froog/nn.py,sha256=VeUpmjrv1XrH786GEOc9ruzDAHULiVHKpDtn187EQgI,2076
|
4
|
-
froog/ops.py,sha256=PEXZb3lNeYwFpRfcEvEs-KLB4rQqHHUdraR1qOgw5Zs,14389
|
5
|
-
froog/ops_gpu.py,sha256=bQ2bzMqmvY2xLEaTjOIXN3KOb-7yZEDjmliV8tWlC6g,15469
|
6
|
-
froog/optim.py,sha256=m8Q1xe3WwU41obGSMVjRMIs3rWqfqRWfhlbhF9oJyWA,2450
|
7
|
-
froog/tensor.py,sha256=Dacd2UQVfl7RsjADjrhBO1rMVcDVaeJuI55sFfxonhk,7685
|
8
|
-
froog/utils.py,sha256=zWquIwvOUBfCzaoA7eAOov7C5NbGxus5RXx9JPM1jeg,3325
|
9
|
-
froog-0.3.1.dist-info/LICENSE,sha256=k_856uNmcNUoLC_HkI18c1WomqvQ1Ioqk6gwYfWQiaM,31
|
10
|
-
froog-0.3.1.dist-info/METADATA,sha256=3whhO1sbqWZQpXBywz9ypN7iLpR-n82qpZPEjv0of_s,13898
|
11
|
-
froog-0.3.1.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
12
|
-
froog-0.3.1.dist-info/top_level.txt,sha256=XPz35C_JWu20LlsVxIMdMZn8DD58Ak78LwgWFBGYZwY,6
|
13
|
-
froog-0.3.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|