frontveg 0.3.4__py3-none-any.whl → 0.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
frontveg/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.3.4'
21
- __version_tuple__ = version_tuple = (0, 3, 4)
20
+ __version__ = version = '0.3.5'
21
+ __version_tuple__ = version_tuple = (0, 3, 5)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: frontveg
3
- Version: 0.3.4
3
+ Version: 0.3.5
4
4
  Summary: Segmentation of vegetation located to close to camera
5
5
  Author: Herearii Metuarea
6
6
  Author-email: herearii.metuarea@univ-angers.fr
@@ -111,12 +111,16 @@ You can install `frontveg` via [pip]:
111
111
 
112
112
  pip install frontveg
113
113
 
114
-
115
-
116
114
  To install latest development version :
117
115
 
118
116
  pip install git+https://github.com/hereariim/frontveg.git
119
117
 
118
+ GPU is mandatory for time processing and models running (especially Grounding-DINO). Please visit the official PyTorch website to get the appropriate installation command: 👉 https://pytorch.org/get-started/locally
119
+
120
+ **Exemple : GPU (CUDA 12.1)**
121
+
122
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
123
+
120
124
  ## Description
121
125
 
122
126
  This plugin is a tool to perform image inference. This plugin contained two steps of image processing. First, from RGB image, a depth map is estimated and then thresholded based on the estimated depth histogram modes to detect foreground and background regions in image. Second, a Grounding DINO model detects foliage in the foreground. The output is a binary mask where white colour are associated to foliage in the foreground.
@@ -1,13 +1,13 @@
1
1
  frontveg/__init__.py,sha256=SMjZ6NE7A_L_kvRcBpXyhEk699XQmyxj-ObW7aTbykM,170
2
- frontveg/_version.py,sha256=Mxups7YfGBY2vvCok_hLJKCtU6O1WHQJfsMY-bAJ0Yg,511
2
+ frontveg/_version.py,sha256=qmTn4w-xTKk8dVv-032b430C-ilxMTkr9Q0HieU18N8,511
3
3
  frontveg/_widget.py,sha256=dFxQ8sq3-a4uY6qiwQagn-ap5KAO8uSzFMHLEcflhe8,5243
4
4
  frontveg/napari.yaml,sha256=OkN3aOH_hk_7t1tGwFRIpD27JevP9aVZi5hwzV-T_ks,497
5
5
  frontveg/utils.py,sha256=Xd0aSe7b611q-bnUC610PT66mBbR6Chqmbdm4Wfx8iA,3139
6
6
  frontveg/_tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  frontveg/_tests/test_widget.py,sha256=a17ZZ2qGykvJH25OFr8dFVbL9mqlxRFj9O_7HCviLFw,2199
8
- frontveg-0.3.4.dist-info/licenses/LICENSE,sha256=0lkjW6HrdHzd-N8u7gPsFwCQUO8tfNuAQRj95e2bgyE,1492
9
- frontveg-0.3.4.dist-info/METADATA,sha256=MhCW4z4j987xMY0PYUqpDn-vmHhtayghQF16pDVV_Ao,8194
10
- frontveg-0.3.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
11
- frontveg-0.3.4.dist-info/entry_points.txt,sha256=VMaRha_yYtIcJAdA0suCmR0of0MZJfUaUn2aKSYtR0I,50
12
- frontveg-0.3.4.dist-info/top_level.txt,sha256=skkajXDCaVFNYqsXXqsUv6fqlA6Pl-2cLwKJO52ldBI,9
13
- frontveg-0.3.4.dist-info/RECORD,,
8
+ frontveg-0.3.5.dist-info/licenses/LICENSE,sha256=0lkjW6HrdHzd-N8u7gPsFwCQUO8tfNuAQRj95e2bgyE,1492
9
+ frontveg-0.3.5.dist-info/METADATA,sha256=gkfci-_z940K9Mowo6ypNvZwhOF6tHB4NCZnA3ilpAs,8538
10
+ frontveg-0.3.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
11
+ frontveg-0.3.5.dist-info/entry_points.txt,sha256=VMaRha_yYtIcJAdA0suCmR0of0MZJfUaUn2aKSYtR0I,50
12
+ frontveg-0.3.5.dist-info/top_level.txt,sha256=skkajXDCaVFNYqsXXqsUv6fqlA6Pl-2cLwKJO52ldBI,9
13
+ frontveg-0.3.5.dist-info/RECORD,,