frontveg 0.3.3__py3-none-any.whl → 0.3.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- frontveg/_version.py +2 -2
- frontveg/utils.py +17 -17
- {frontveg-0.3.3.dist-info → frontveg-0.3.5.dist-info}/METADATA +10 -5
- frontveg-0.3.5.dist-info/RECORD +13 -0
- frontveg-0.3.3.dist-info/RECORD +0 -13
- {frontveg-0.3.3.dist-info → frontveg-0.3.5.dist-info}/WHEEL +0 -0
- {frontveg-0.3.3.dist-info → frontveg-0.3.5.dist-info}/entry_points.txt +0 -0
- {frontveg-0.3.3.dist-info → frontveg-0.3.5.dist-info}/licenses/LICENSE +0 -0
- {frontveg-0.3.3.dist-info → frontveg-0.3.5.dist-info}/top_level.txt +0 -0
frontveg/_version.py
CHANGED
frontveg/utils.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
import os
|
2
2
|
from collections import Counter
|
3
3
|
|
4
|
-
import matplotlib.pyplot as plt
|
4
|
+
# import matplotlib.pyplot as plt
|
5
5
|
import numpy as np
|
6
6
|
from scipy.signal import find_peaks
|
7
7
|
from tqdm import tqdm
|
@@ -73,22 +73,22 @@ def minimum_betw_max(dico_, visua=False):
|
|
73
73
|
x_min = x_min_range[min_index]
|
74
74
|
y_min = y_min_range[min_index]
|
75
75
|
|
76
|
-
if visua:
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
76
|
+
# if visua:
|
77
|
+
# # Tracé
|
78
|
+
# plt.scatter(x, y, color="blue")
|
79
|
+
# plt.plot(x_fit, y_fit, color="red", label="Polynomial regression")
|
80
|
+
# plt.scatter(
|
81
|
+
# x_fit[top_two_peaks],
|
82
|
+
# y_fit[top_two_peaks],
|
83
|
+
# color="green",
|
84
|
+
# label="Local maximum",
|
85
|
+
# )
|
86
|
+
# plt.scatter(x_min, y_min, color="orange", s=100, label="Local minimum")
|
87
|
+
# plt.legend()
|
88
|
+
# plt.xlabel("Depth pixel")
|
89
|
+
# plt.ylabel("Count")
|
90
|
+
# # plt.title('Approximation et détection des points maximum')
|
91
|
+
# plt.show()
|
92
92
|
return x_min, y_min
|
93
93
|
|
94
94
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: frontveg
|
3
|
-
Version: 0.3.
|
3
|
+
Version: 0.3.5
|
4
4
|
Summary: Segmentation of vegetation located to close to camera
|
5
5
|
Author: Herearii Metuarea
|
6
6
|
Author-email: herearii.metuarea@univ-angers.fr
|
@@ -63,6 +63,7 @@ Requires-Dist: torchvision>=0.18.1
|
|
63
63
|
Requires-Dist: hydra-core==1.3.2
|
64
64
|
Requires-Dist: iopath>=0.1.10
|
65
65
|
Requires-Dist: pillow>=9.4.0
|
66
|
+
Requires-Dist: sam2==1.1.0
|
66
67
|
Provides-Extra: testing
|
67
68
|
Requires-Dist: tox; extra == "testing"
|
68
69
|
Requires-Dist: pytest; extra == "testing"
|
@@ -87,7 +88,7 @@ A plugin for foreground vegetation segmentation, tailored for trellised vegetati
|
|
87
88
|
|
88
89
|
----------------------------------
|
89
90
|
|
90
|
-
The method was developped by Herearii Metuarea, PHENET PhD at LARIS (French laboratory located in Angers, France) and Abdoul
|
91
|
+
The method was developped by Herearii Metuarea, PHENET PhD at LARIS (French laboratory located in Angers, France) and Abdoul Djalil Ousseini Hamza, AgroEcoPhen Engineer at IRHS (French Institute located in INRAe Angers, France) in Imhorphen team (bioimaging research group lead) under the supervision of Eric Duchêne (Research Engineer), Morgane Roth (Research Engineer) and David Rousseau (Full professor). This plugin was written by Herearii Metuarea and was designed in the context of the european project PHENET.
|
91
92
|
|
92
93
|

|
93
94
|
|
@@ -110,12 +111,16 @@ You can install `frontveg` via [pip]:
|
|
110
111
|
|
111
112
|
pip install frontveg
|
112
113
|
|
113
|
-
|
114
|
-
|
115
114
|
To install latest development version :
|
116
115
|
|
117
116
|
pip install git+https://github.com/hereariim/frontveg.git
|
118
117
|
|
118
|
+
GPU is mandatory for time processing and models running (especially Grounding-DINO). Please visit the official PyTorch website to get the appropriate installation command: 👉 https://pytorch.org/get-started/locally
|
119
|
+
|
120
|
+
**Exemple : GPU (CUDA 12.1)**
|
121
|
+
|
122
|
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
123
|
+
|
119
124
|
## Description
|
120
125
|
|
121
126
|
This plugin is a tool to perform image inference. This plugin contained two steps of image processing. First, from RGB image, a depth map is estimated and then thresholded based on the estimated depth histogram modes to detect foreground and background regions in image. Second, a Grounding DINO model detects foliage in the foreground. The output is a binary mask where white colour are associated to foliage in the foreground.
|
@@ -131,7 +136,7 @@ Imhorphen team, bioimaging research group
|
|
131
136
|
42 rue George Morel, Angers, France
|
132
137
|
|
133
138
|
- Pr David Rousseau, david.rousseau@univ-angers.fr
|
134
|
-
- Abdoul
|
139
|
+
- Abdoul Djalil Ousseini Hamza, abdoul-djalil.ousseini-hamza@inrae.fr
|
135
140
|
- Herearii Metuarea, herearii.metuarea@univ-angers.fr
|
136
141
|
|
137
142
|
## Contributing
|
@@ -0,0 +1,13 @@
|
|
1
|
+
frontveg/__init__.py,sha256=SMjZ6NE7A_L_kvRcBpXyhEk699XQmyxj-ObW7aTbykM,170
|
2
|
+
frontveg/_version.py,sha256=qmTn4w-xTKk8dVv-032b430C-ilxMTkr9Q0HieU18N8,511
|
3
|
+
frontveg/_widget.py,sha256=dFxQ8sq3-a4uY6qiwQagn-ap5KAO8uSzFMHLEcflhe8,5243
|
4
|
+
frontveg/napari.yaml,sha256=OkN3aOH_hk_7t1tGwFRIpD27JevP9aVZi5hwzV-T_ks,497
|
5
|
+
frontveg/utils.py,sha256=Xd0aSe7b611q-bnUC610PT66mBbR6Chqmbdm4Wfx8iA,3139
|
6
|
+
frontveg/_tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
+
frontveg/_tests/test_widget.py,sha256=a17ZZ2qGykvJH25OFr8dFVbL9mqlxRFj9O_7HCviLFw,2199
|
8
|
+
frontveg-0.3.5.dist-info/licenses/LICENSE,sha256=0lkjW6HrdHzd-N8u7gPsFwCQUO8tfNuAQRj95e2bgyE,1492
|
9
|
+
frontveg-0.3.5.dist-info/METADATA,sha256=gkfci-_z940K9Mowo6ypNvZwhOF6tHB4NCZnA3ilpAs,8538
|
10
|
+
frontveg-0.3.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
11
|
+
frontveg-0.3.5.dist-info/entry_points.txt,sha256=VMaRha_yYtIcJAdA0suCmR0of0MZJfUaUn2aKSYtR0I,50
|
12
|
+
frontveg-0.3.5.dist-info/top_level.txt,sha256=skkajXDCaVFNYqsXXqsUv6fqlA6Pl-2cLwKJO52ldBI,9
|
13
|
+
frontveg-0.3.5.dist-info/RECORD,,
|
frontveg-0.3.3.dist-info/RECORD
DELETED
@@ -1,13 +0,0 @@
|
|
1
|
-
frontveg/__init__.py,sha256=SMjZ6NE7A_L_kvRcBpXyhEk699XQmyxj-ObW7aTbykM,170
|
2
|
-
frontveg/_version.py,sha256=cRYgYV4ttw-FMlrA4-5pzcSpTjS7X8uVa-nRTEADKW4,511
|
3
|
-
frontveg/_widget.py,sha256=dFxQ8sq3-a4uY6qiwQagn-ap5KAO8uSzFMHLEcflhe8,5243
|
4
|
-
frontveg/napari.yaml,sha256=OkN3aOH_hk_7t1tGwFRIpD27JevP9aVZi5hwzV-T_ks,497
|
5
|
-
frontveg/utils.py,sha256=CE0hijfr46-BhNvAE7i5OG2zRdtS1haiOle4HpbmoAw,3105
|
6
|
-
frontveg/_tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
-
frontveg/_tests/test_widget.py,sha256=a17ZZ2qGykvJH25OFr8dFVbL9mqlxRFj9O_7HCviLFw,2199
|
8
|
-
frontveg-0.3.3.dist-info/licenses/LICENSE,sha256=0lkjW6HrdHzd-N8u7gPsFwCQUO8tfNuAQRj95e2bgyE,1492
|
9
|
-
frontveg-0.3.3.dist-info/METADATA,sha256=8kYOph2jnnZTJfZkqNnIm9ft4ULLnpFkjev7Pp2kRQc,8167
|
10
|
-
frontveg-0.3.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
11
|
-
frontveg-0.3.3.dist-info/entry_points.txt,sha256=VMaRha_yYtIcJAdA0suCmR0of0MZJfUaUn2aKSYtR0I,50
|
12
|
-
frontveg-0.3.3.dist-info/top_level.txt,sha256=skkajXDCaVFNYqsXXqsUv6fqlA6Pl-2cLwKJO52ldBI,9
|
13
|
-
frontveg-0.3.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|