frontveg 0.1.dev1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- frontveg/__init__.py +11 -0
- frontveg/_tests/__init__.py +0 -0
- frontveg/_tests/test_widget.py +66 -0
- frontveg/_version.py +21 -0
- frontveg/_widget.py +132 -0
- frontveg/napari.yaml +14 -0
- frontveg/utils.py +95 -0
- frontveg-0.1.dev1.dist-info/METADATA +143 -0
- frontveg-0.1.dev1.dist-info/RECORD +44 -0
- frontveg-0.1.dev1.dist-info/WHEEL +5 -0
- frontveg-0.1.dev1.dist-info/entry_points.txt +2 -0
- frontveg-0.1.dev1.dist-info/licenses/LICENSE +28 -0
- frontveg-0.1.dev1.dist-info/top_level.txt +2 -0
- sam2/__init__.py +11 -0
- sam2/automatic_mask_generator.py +454 -0
- sam2/build_sam.py +167 -0
- sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
- sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
- sam2/configs/sam2/sam2_hiera_s.yaml +116 -0
- sam2/configs/sam2/sam2_hiera_t.yaml +118 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/hieradet.py +317 -0
- sam2/modeling/backbones/image_encoder.py +134 -0
- sam2/modeling/backbones/utils.py +95 -0
- sam2/modeling/memory_attention.py +169 -0
- sam2/modeling/memory_encoder.py +181 -0
- sam2/modeling/position_encoding.py +221 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/mask_decoder.py +295 -0
- sam2/modeling/sam/prompt_encoder.py +182 -0
- sam2/modeling/sam/transformer.py +360 -0
- sam2/modeling/sam2_base.py +907 -0
- sam2/modeling/sam2_utils.py +323 -0
- sam2/sam2_hiera_b+.yaml +1 -0
- sam2/sam2_hiera_l.yaml +1 -0
- sam2/sam2_hiera_s.yaml +1 -0
- sam2/sam2_hiera_t.yaml +1 -0
- sam2/sam2_image_predictor.py +466 -0
- sam2/sam2_video_predictor.py +1172 -0
- sam2/utils/__init__.py +5 -0
- sam2/utils/amg.py +348 -0
- sam2/utils/misc.py +349 -0
- sam2/utils/transforms.py +118 -0
sam2/utils/__init__.py
ADDED
sam2/utils/amg.py
ADDED
@@ -0,0 +1,348 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
|
4
|
+
# This source code is licensed under the license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
import math
|
8
|
+
from copy import deepcopy
|
9
|
+
from itertools import product
|
10
|
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
11
|
+
|
12
|
+
import numpy as np
|
13
|
+
import torch
|
14
|
+
|
15
|
+
# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
|
16
|
+
|
17
|
+
|
18
|
+
class MaskData:
|
19
|
+
"""
|
20
|
+
A structure for storing masks and their related data in batched format.
|
21
|
+
Implements basic filtering and concatenation.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def __init__(self, **kwargs) -> None:
|
25
|
+
for v in kwargs.values():
|
26
|
+
assert isinstance(
|
27
|
+
v, (list, np.ndarray, torch.Tensor)
|
28
|
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
29
|
+
self._stats = dict(**kwargs)
|
30
|
+
|
31
|
+
def __setitem__(self, key: str, item: Any) -> None:
|
32
|
+
assert isinstance(
|
33
|
+
item, (list, np.ndarray, torch.Tensor)
|
34
|
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
35
|
+
self._stats[key] = item
|
36
|
+
|
37
|
+
def __delitem__(self, key: str) -> None:
|
38
|
+
del self._stats[key]
|
39
|
+
|
40
|
+
def __getitem__(self, key: str) -> Any:
|
41
|
+
return self._stats[key]
|
42
|
+
|
43
|
+
def items(self) -> ItemsView[str, Any]:
|
44
|
+
return self._stats.items()
|
45
|
+
|
46
|
+
def filter(self, keep: torch.Tensor) -> None:
|
47
|
+
for k, v in self._stats.items():
|
48
|
+
if v is None:
|
49
|
+
self._stats[k] = None
|
50
|
+
elif isinstance(v, torch.Tensor):
|
51
|
+
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
52
|
+
elif isinstance(v, np.ndarray):
|
53
|
+
self._stats[k] = v[keep.detach().cpu().numpy()]
|
54
|
+
elif isinstance(v, list) and keep.dtype == torch.bool:
|
55
|
+
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
56
|
+
elif isinstance(v, list):
|
57
|
+
self._stats[k] = [v[i] for i in keep]
|
58
|
+
else:
|
59
|
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
60
|
+
|
61
|
+
def cat(self, new_stats: "MaskData") -> None:
|
62
|
+
for k, v in new_stats.items():
|
63
|
+
if k not in self._stats or self._stats[k] is None:
|
64
|
+
self._stats[k] = deepcopy(v)
|
65
|
+
elif isinstance(v, torch.Tensor):
|
66
|
+
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
67
|
+
elif isinstance(v, np.ndarray):
|
68
|
+
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
69
|
+
elif isinstance(v, list):
|
70
|
+
self._stats[k] = self._stats[k] + deepcopy(v)
|
71
|
+
else:
|
72
|
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
73
|
+
|
74
|
+
def to_numpy(self) -> None:
|
75
|
+
for k, v in self._stats.items():
|
76
|
+
if isinstance(v, torch.Tensor):
|
77
|
+
self._stats[k] = v.float().detach().cpu().numpy()
|
78
|
+
|
79
|
+
|
80
|
+
def is_box_near_crop_edge(
|
81
|
+
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
82
|
+
) -> torch.Tensor:
|
83
|
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
84
|
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
85
|
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
86
|
+
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
87
|
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
88
|
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
89
|
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
90
|
+
return torch.any(near_crop_edge, dim=1)
|
91
|
+
|
92
|
+
|
93
|
+
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
94
|
+
box_xywh = deepcopy(box_xyxy)
|
95
|
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
96
|
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
97
|
+
return box_xywh
|
98
|
+
|
99
|
+
|
100
|
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
101
|
+
assert len(args) > 0 and all(
|
102
|
+
len(a) == len(args[0]) for a in args
|
103
|
+
), "Batched iteration must have inputs of all the same size."
|
104
|
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
105
|
+
for b in range(n_batches):
|
106
|
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
107
|
+
|
108
|
+
|
109
|
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
110
|
+
"""
|
111
|
+
Encodes masks to an uncompressed RLE, in the format expected by
|
112
|
+
pycoco tools.
|
113
|
+
"""
|
114
|
+
# Put in fortran order and flatten h,w
|
115
|
+
b, h, w = tensor.shape
|
116
|
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
117
|
+
|
118
|
+
# Compute change indices
|
119
|
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
120
|
+
change_indices = diff.nonzero()
|
121
|
+
|
122
|
+
# Encode run length
|
123
|
+
out = []
|
124
|
+
for i in range(b):
|
125
|
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
126
|
+
cur_idxs = torch.cat(
|
127
|
+
[
|
128
|
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
129
|
+
cur_idxs + 1,
|
130
|
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
131
|
+
]
|
132
|
+
)
|
133
|
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
134
|
+
counts = [] if tensor[i, 0] == 0 else [0]
|
135
|
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
136
|
+
out.append({"size": [h, w], "counts": counts})
|
137
|
+
return out
|
138
|
+
|
139
|
+
|
140
|
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
141
|
+
"""Compute a binary mask from an uncompressed RLE."""
|
142
|
+
h, w = rle["size"]
|
143
|
+
mask = np.empty(h * w, dtype=bool)
|
144
|
+
idx = 0
|
145
|
+
parity = False
|
146
|
+
for count in rle["counts"]:
|
147
|
+
mask[idx : idx + count] = parity
|
148
|
+
idx += count
|
149
|
+
parity ^= True
|
150
|
+
mask = mask.reshape(w, h)
|
151
|
+
return mask.transpose() # Put in C order
|
152
|
+
|
153
|
+
|
154
|
+
def area_from_rle(rle: Dict[str, Any]) -> int:
|
155
|
+
return sum(rle["counts"][1::2])
|
156
|
+
|
157
|
+
|
158
|
+
def calculate_stability_score(
|
159
|
+
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
160
|
+
) -> torch.Tensor:
|
161
|
+
"""
|
162
|
+
Computes the stability score for a batch of masks. The stability
|
163
|
+
score is the IoU between the binary masks obtained by thresholding
|
164
|
+
the predicted mask logits at high and low values.
|
165
|
+
"""
|
166
|
+
# One mask is always contained inside the other.
|
167
|
+
# Save memory by preventing unnecessary cast to torch.int64
|
168
|
+
intersections = (
|
169
|
+
(masks > (mask_threshold + threshold_offset))
|
170
|
+
.sum(-1, dtype=torch.int16)
|
171
|
+
.sum(-1, dtype=torch.int32)
|
172
|
+
)
|
173
|
+
unions = (
|
174
|
+
(masks > (mask_threshold - threshold_offset))
|
175
|
+
.sum(-1, dtype=torch.int16)
|
176
|
+
.sum(-1, dtype=torch.int32)
|
177
|
+
)
|
178
|
+
return intersections / unions
|
179
|
+
|
180
|
+
|
181
|
+
def build_point_grid(n_per_side: int) -> np.ndarray:
|
182
|
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
183
|
+
offset = 1 / (2 * n_per_side)
|
184
|
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
185
|
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
186
|
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
187
|
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
188
|
+
return points
|
189
|
+
|
190
|
+
|
191
|
+
def build_all_layer_point_grids(
|
192
|
+
n_per_side: int, n_layers: int, scale_per_layer: int
|
193
|
+
) -> List[np.ndarray]:
|
194
|
+
"""Generates point grids for all crop layers."""
|
195
|
+
points_by_layer = []
|
196
|
+
for i in range(n_layers + 1):
|
197
|
+
n_points = int(n_per_side / (scale_per_layer**i))
|
198
|
+
points_by_layer.append(build_point_grid(n_points))
|
199
|
+
return points_by_layer
|
200
|
+
|
201
|
+
|
202
|
+
def generate_crop_boxes(
|
203
|
+
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
204
|
+
) -> Tuple[List[List[int]], List[int]]:
|
205
|
+
"""
|
206
|
+
Generates a list of crop boxes of different sizes. Each layer
|
207
|
+
has (2**i)**2 boxes for the ith layer.
|
208
|
+
"""
|
209
|
+
crop_boxes, layer_idxs = [], []
|
210
|
+
im_h, im_w = im_size
|
211
|
+
short_side = min(im_h, im_w)
|
212
|
+
|
213
|
+
# Original image
|
214
|
+
crop_boxes.append([0, 0, im_w, im_h])
|
215
|
+
layer_idxs.append(0)
|
216
|
+
|
217
|
+
def crop_len(orig_len, n_crops, overlap):
|
218
|
+
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
219
|
+
|
220
|
+
for i_layer in range(n_layers):
|
221
|
+
n_crops_per_side = 2 ** (i_layer + 1)
|
222
|
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
223
|
+
|
224
|
+
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
225
|
+
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
226
|
+
|
227
|
+
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
228
|
+
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
229
|
+
|
230
|
+
# Crops in XYWH format
|
231
|
+
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
232
|
+
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
233
|
+
crop_boxes.append(box)
|
234
|
+
layer_idxs.append(i_layer + 1)
|
235
|
+
|
236
|
+
return crop_boxes, layer_idxs
|
237
|
+
|
238
|
+
|
239
|
+
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
240
|
+
x0, y0, _, _ = crop_box
|
241
|
+
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
242
|
+
# Check if boxes has a channel dimension
|
243
|
+
if len(boxes.shape) == 3:
|
244
|
+
offset = offset.unsqueeze(1)
|
245
|
+
return boxes + offset
|
246
|
+
|
247
|
+
|
248
|
+
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
249
|
+
x0, y0, _, _ = crop_box
|
250
|
+
offset = torch.tensor([[x0, y0]], device=points.device)
|
251
|
+
# Check if points has a channel dimension
|
252
|
+
if len(points.shape) == 3:
|
253
|
+
offset = offset.unsqueeze(1)
|
254
|
+
return points + offset
|
255
|
+
|
256
|
+
|
257
|
+
def uncrop_masks(
|
258
|
+
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
259
|
+
) -> torch.Tensor:
|
260
|
+
x0, y0, x1, y1 = crop_box
|
261
|
+
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
262
|
+
return masks
|
263
|
+
# Coordinate transform masks
|
264
|
+
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
265
|
+
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
266
|
+
return torch.nn.functional.pad(masks, pad, value=0)
|
267
|
+
|
268
|
+
|
269
|
+
def remove_small_regions(
|
270
|
+
mask: np.ndarray, area_thresh: float, mode: str
|
271
|
+
) -> Tuple[np.ndarray, bool]:
|
272
|
+
"""
|
273
|
+
Removes small disconnected regions and holes in a mask. Returns the
|
274
|
+
mask and an indicator of if the mask has been modified.
|
275
|
+
"""
|
276
|
+
import cv2 # type: ignore
|
277
|
+
|
278
|
+
assert mode in ["holes", "islands"]
|
279
|
+
correct_holes = mode == "holes"
|
280
|
+
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
281
|
+
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
282
|
+
sizes = stats[:, -1][1:] # Row 0 is background label
|
283
|
+
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
284
|
+
if len(small_regions) == 0:
|
285
|
+
return mask, False
|
286
|
+
fill_labels = [0] + small_regions
|
287
|
+
if not correct_holes:
|
288
|
+
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
289
|
+
# If every region is below threshold, keep largest
|
290
|
+
if len(fill_labels) == 0:
|
291
|
+
fill_labels = [int(np.argmax(sizes)) + 1]
|
292
|
+
mask = np.isin(regions, fill_labels)
|
293
|
+
return mask, True
|
294
|
+
|
295
|
+
|
296
|
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
297
|
+
from pycocotools import mask as mask_utils # type: ignore
|
298
|
+
|
299
|
+
h, w = uncompressed_rle["size"]
|
300
|
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
301
|
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
302
|
+
return rle
|
303
|
+
|
304
|
+
|
305
|
+
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
306
|
+
"""
|
307
|
+
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
308
|
+
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
309
|
+
"""
|
310
|
+
# torch.max below raises an error on empty inputs, just skip in this case
|
311
|
+
if torch.numel(masks) == 0:
|
312
|
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
313
|
+
|
314
|
+
# Normalize shape to CxHxW
|
315
|
+
shape = masks.shape
|
316
|
+
h, w = shape[-2:]
|
317
|
+
if len(shape) > 2:
|
318
|
+
masks = masks.flatten(0, -3)
|
319
|
+
else:
|
320
|
+
masks = masks.unsqueeze(0)
|
321
|
+
|
322
|
+
# Get top and bottom edges
|
323
|
+
in_height, _ = torch.max(masks, dim=-1)
|
324
|
+
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
325
|
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
326
|
+
in_height_coords = in_height_coords + h * (~in_height)
|
327
|
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
328
|
+
|
329
|
+
# Get left and right edges
|
330
|
+
in_width, _ = torch.max(masks, dim=-2)
|
331
|
+
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
332
|
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
333
|
+
in_width_coords = in_width_coords + w * (~in_width)
|
334
|
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
335
|
+
|
336
|
+
# If the mask is empty the right edge will be to the left of the left edge.
|
337
|
+
# Replace these boxes with [0, 0, 0, 0]
|
338
|
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
339
|
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
340
|
+
out = out * (~empty_filter).unsqueeze(-1)
|
341
|
+
|
342
|
+
# Return to original shape
|
343
|
+
if len(shape) > 2:
|
344
|
+
out = out.reshape(*shape[:-2], 4)
|
345
|
+
else:
|
346
|
+
out = out[0]
|
347
|
+
|
348
|
+
return out
|
sam2/utils/misc.py
ADDED
@@ -0,0 +1,349 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
|
4
|
+
# This source code is licensed under the license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
import os
|
8
|
+
import warnings
|
9
|
+
from threading import Thread
|
10
|
+
|
11
|
+
import numpy as np
|
12
|
+
import torch
|
13
|
+
from PIL import Image
|
14
|
+
from tqdm import tqdm
|
15
|
+
|
16
|
+
|
17
|
+
def get_sdpa_settings():
|
18
|
+
if torch.cuda.is_available():
|
19
|
+
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
20
|
+
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
21
|
+
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
22
|
+
if not use_flash_attn:
|
23
|
+
warnings.warn(
|
24
|
+
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
25
|
+
category=UserWarning,
|
26
|
+
stacklevel=2,
|
27
|
+
)
|
28
|
+
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
29
|
+
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
30
|
+
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
31
|
+
if pytorch_version < (2, 2):
|
32
|
+
warnings.warn(
|
33
|
+
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
34
|
+
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
35
|
+
category=UserWarning,
|
36
|
+
stacklevel=2,
|
37
|
+
)
|
38
|
+
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
39
|
+
else:
|
40
|
+
old_gpu = True
|
41
|
+
use_flash_attn = False
|
42
|
+
math_kernel_on = True
|
43
|
+
|
44
|
+
return old_gpu, use_flash_attn, math_kernel_on
|
45
|
+
|
46
|
+
|
47
|
+
def get_connected_components(mask):
|
48
|
+
"""
|
49
|
+
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
50
|
+
|
51
|
+
Inputs:
|
52
|
+
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
53
|
+
background.
|
54
|
+
|
55
|
+
Outputs:
|
56
|
+
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
57
|
+
for foreground pixels and 0 for background pixels.
|
58
|
+
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
59
|
+
components for foreground pixels and 0 for background pixels.
|
60
|
+
"""
|
61
|
+
from sam2 import _C
|
62
|
+
|
63
|
+
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
64
|
+
|
65
|
+
|
66
|
+
def mask_to_box(masks: torch.Tensor):
|
67
|
+
"""
|
68
|
+
compute bounding box given an input mask
|
69
|
+
|
70
|
+
Inputs:
|
71
|
+
- masks: [B, 1, H, W] masks, dtype=torch.Tensor
|
72
|
+
|
73
|
+
Returns:
|
74
|
+
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
75
|
+
"""
|
76
|
+
B, _, h, w = masks.shape
|
77
|
+
device = masks.device
|
78
|
+
xs = torch.arange(w, device=device, dtype=torch.int32)
|
79
|
+
ys = torch.arange(h, device=device, dtype=torch.int32)
|
80
|
+
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
81
|
+
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
82
|
+
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
83
|
+
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
84
|
+
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
85
|
+
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
86
|
+
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
87
|
+
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
88
|
+
|
89
|
+
return bbox_coords
|
90
|
+
|
91
|
+
|
92
|
+
def _load_img_as_tensor(img_path, image_size):
|
93
|
+
img_pil = Image.open(img_path)
|
94
|
+
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
95
|
+
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
96
|
+
img_np = img_np / 255.0
|
97
|
+
else:
|
98
|
+
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
99
|
+
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
100
|
+
video_width, video_height = img_pil.size # the original video size
|
101
|
+
return img, video_height, video_width
|
102
|
+
|
103
|
+
|
104
|
+
class AsyncVideoFrameLoader:
|
105
|
+
"""
|
106
|
+
A list of video frames to be load asynchronously without blocking session start.
|
107
|
+
"""
|
108
|
+
|
109
|
+
def __init__(
|
110
|
+
self,
|
111
|
+
img_paths,
|
112
|
+
image_size,
|
113
|
+
offload_video_to_cpu,
|
114
|
+
img_mean,
|
115
|
+
img_std,
|
116
|
+
compute_device,
|
117
|
+
):
|
118
|
+
self.img_paths = img_paths
|
119
|
+
self.image_size = image_size
|
120
|
+
self.offload_video_to_cpu = offload_video_to_cpu
|
121
|
+
self.img_mean = img_mean
|
122
|
+
self.img_std = img_std
|
123
|
+
# items in `self.images` will be loaded asynchronously
|
124
|
+
self.images = [None] * len(img_paths)
|
125
|
+
# catch and raise any exceptions in the async loading thread
|
126
|
+
self.exception = None
|
127
|
+
# video_height and video_width be filled when loading the first image
|
128
|
+
self.video_height = None
|
129
|
+
self.video_width = None
|
130
|
+
self.compute_device = compute_device
|
131
|
+
|
132
|
+
# load the first frame to fill video_height and video_width and also
|
133
|
+
# to cache it (since it's most likely where the user will click)
|
134
|
+
self.__getitem__(0)
|
135
|
+
|
136
|
+
# load the rest of frames asynchronously without blocking the session start
|
137
|
+
def _load_frames():
|
138
|
+
try:
|
139
|
+
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
140
|
+
self.__getitem__(n)
|
141
|
+
except Exception as e:
|
142
|
+
self.exception = e
|
143
|
+
|
144
|
+
self.thread = Thread(target=_load_frames, daemon=True)
|
145
|
+
self.thread.start()
|
146
|
+
|
147
|
+
def __getitem__(self, index):
|
148
|
+
if self.exception is not None:
|
149
|
+
raise RuntimeError("Failure in frame loading thread") from self.exception
|
150
|
+
|
151
|
+
img = self.images[index]
|
152
|
+
if img is not None:
|
153
|
+
return img
|
154
|
+
|
155
|
+
img, video_height, video_width = _load_img_as_tensor(
|
156
|
+
self.img_paths[index], self.image_size
|
157
|
+
)
|
158
|
+
self.video_height = video_height
|
159
|
+
self.video_width = video_width
|
160
|
+
# normalize by mean and std
|
161
|
+
img -= self.img_mean
|
162
|
+
img /= self.img_std
|
163
|
+
if not self.offload_video_to_cpu:
|
164
|
+
img = img.to(self.compute_device, non_blocking=True)
|
165
|
+
self.images[index] = img
|
166
|
+
return img
|
167
|
+
|
168
|
+
def __len__(self):
|
169
|
+
return len(self.images)
|
170
|
+
|
171
|
+
|
172
|
+
def load_video_frames(
|
173
|
+
video_path,
|
174
|
+
image_size,
|
175
|
+
offload_video_to_cpu,
|
176
|
+
img_mean=(0.485, 0.456, 0.406),
|
177
|
+
img_std=(0.229, 0.224, 0.225),
|
178
|
+
async_loading_frames=False,
|
179
|
+
compute_device=torch.device("cuda"),
|
180
|
+
):
|
181
|
+
"""
|
182
|
+
Load the video frames from video_path. The frames are resized to image_size as in
|
183
|
+
the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
|
184
|
+
"""
|
185
|
+
is_bytes = isinstance(video_path, bytes)
|
186
|
+
is_str = isinstance(video_path, str)
|
187
|
+
is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
|
188
|
+
if is_bytes or is_mp4_path:
|
189
|
+
return load_video_frames_from_video_file(
|
190
|
+
video_path=video_path,
|
191
|
+
image_size=image_size,
|
192
|
+
offload_video_to_cpu=offload_video_to_cpu,
|
193
|
+
img_mean=img_mean,
|
194
|
+
img_std=img_std,
|
195
|
+
compute_device=compute_device,
|
196
|
+
)
|
197
|
+
elif is_str and os.path.isdir(video_path):
|
198
|
+
return load_video_frames_from_jpg_images(
|
199
|
+
video_path=video_path,
|
200
|
+
image_size=image_size,
|
201
|
+
offload_video_to_cpu=offload_video_to_cpu,
|
202
|
+
img_mean=img_mean,
|
203
|
+
img_std=img_std,
|
204
|
+
async_loading_frames=async_loading_frames,
|
205
|
+
compute_device=compute_device,
|
206
|
+
)
|
207
|
+
else:
|
208
|
+
raise NotImplementedError(
|
209
|
+
"Only MP4 video and JPEG folder are supported at this moment"
|
210
|
+
)
|
211
|
+
|
212
|
+
|
213
|
+
def load_video_frames_from_jpg_images(
|
214
|
+
video_path,
|
215
|
+
image_size,
|
216
|
+
offload_video_to_cpu,
|
217
|
+
img_mean=(0.485, 0.456, 0.406),
|
218
|
+
img_std=(0.229, 0.224, 0.225),
|
219
|
+
async_loading_frames=False,
|
220
|
+
compute_device=torch.device("cuda"),
|
221
|
+
):
|
222
|
+
"""
|
223
|
+
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
224
|
+
|
225
|
+
The frames are resized to image_size x image_size and are loaded to GPU if
|
226
|
+
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
227
|
+
|
228
|
+
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
229
|
+
"""
|
230
|
+
if isinstance(video_path, str) and os.path.isdir(video_path):
|
231
|
+
jpg_folder = video_path
|
232
|
+
else:
|
233
|
+
raise NotImplementedError(
|
234
|
+
"Only JPEG frames are supported at this moment. For video files, you may use "
|
235
|
+
"ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
|
236
|
+
"```\n"
|
237
|
+
"ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
|
238
|
+
"```\n"
|
239
|
+
"where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
|
240
|
+
"ffmpeg to start the JPEG file from 00000.jpg."
|
241
|
+
)
|
242
|
+
|
243
|
+
frame_names = [
|
244
|
+
p
|
245
|
+
for p in os.listdir(jpg_folder)
|
246
|
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
247
|
+
]
|
248
|
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
249
|
+
num_frames = len(frame_names)
|
250
|
+
if num_frames == 0:
|
251
|
+
raise RuntimeError(f"no images found in {jpg_folder}")
|
252
|
+
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
253
|
+
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
254
|
+
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
255
|
+
|
256
|
+
if async_loading_frames:
|
257
|
+
lazy_images = AsyncVideoFrameLoader(
|
258
|
+
img_paths,
|
259
|
+
image_size,
|
260
|
+
offload_video_to_cpu,
|
261
|
+
img_mean,
|
262
|
+
img_std,
|
263
|
+
compute_device,
|
264
|
+
)
|
265
|
+
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
266
|
+
|
267
|
+
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
268
|
+
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
269
|
+
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
270
|
+
if not offload_video_to_cpu:
|
271
|
+
images = images.to(compute_device)
|
272
|
+
img_mean = img_mean.to(compute_device)
|
273
|
+
img_std = img_std.to(compute_device)
|
274
|
+
# normalize by mean and std
|
275
|
+
images -= img_mean
|
276
|
+
images /= img_std
|
277
|
+
return images, video_height, video_width
|
278
|
+
|
279
|
+
|
280
|
+
def load_video_frames_from_video_file(
|
281
|
+
video_path,
|
282
|
+
image_size,
|
283
|
+
offload_video_to_cpu,
|
284
|
+
img_mean=(0.485, 0.456, 0.406),
|
285
|
+
img_std=(0.229, 0.224, 0.225),
|
286
|
+
compute_device=torch.device("cuda"),
|
287
|
+
):
|
288
|
+
"""Load the video frames from a video file."""
|
289
|
+
import decord
|
290
|
+
|
291
|
+
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
292
|
+
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
293
|
+
# Get the original video height and width
|
294
|
+
decord.bridge.set_bridge("torch")
|
295
|
+
video_height, video_width, _ = decord.VideoReader(video_path).next().shape
|
296
|
+
# Iterate over all frames in the video
|
297
|
+
images = []
|
298
|
+
for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
|
299
|
+
images.append(frame.permute(2, 0, 1))
|
300
|
+
|
301
|
+
images = torch.stack(images, dim=0).float() / 255.0
|
302
|
+
if not offload_video_to_cpu:
|
303
|
+
images = images.to(compute_device)
|
304
|
+
img_mean = img_mean.to(compute_device)
|
305
|
+
img_std = img_std.to(compute_device)
|
306
|
+
# normalize by mean and std
|
307
|
+
images -= img_mean
|
308
|
+
images /= img_std
|
309
|
+
return images, video_height, video_width
|
310
|
+
|
311
|
+
|
312
|
+
def fill_holes_in_mask_scores(mask, max_area):
|
313
|
+
"""
|
314
|
+
A post processor to fill small holes in mask scores with area under `max_area`.
|
315
|
+
"""
|
316
|
+
# Holes are those connected components in background with area <= self.max_area
|
317
|
+
# (background regions are those with mask scores <= 0)
|
318
|
+
assert max_area > 0, "max_area must be positive"
|
319
|
+
|
320
|
+
input_mask = mask
|
321
|
+
try:
|
322
|
+
labels, areas = get_connected_components(mask <= 0)
|
323
|
+
is_hole = (labels > 0) & (areas <= max_area)
|
324
|
+
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
325
|
+
mask = torch.where(is_hole, 0.1, mask)
|
326
|
+
except Exception as e:
|
327
|
+
# Skip the post-processing step on removing small holes if the CUDA kernel fails
|
328
|
+
warnings.warn(
|
329
|
+
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
330
|
+
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
331
|
+
"functionality may be limited (which doesn't affect the results in most cases; see "
|
332
|
+
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
333
|
+
category=UserWarning,
|
334
|
+
stacklevel=2,
|
335
|
+
)
|
336
|
+
mask = input_mask
|
337
|
+
|
338
|
+
return mask
|
339
|
+
|
340
|
+
|
341
|
+
def concat_points(old_point_inputs, new_points, new_labels):
|
342
|
+
"""Add new points and labels to previous point inputs (add at the end)."""
|
343
|
+
if old_point_inputs is None:
|
344
|
+
points, labels = new_points, new_labels
|
345
|
+
else:
|
346
|
+
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
347
|
+
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
348
|
+
|
349
|
+
return {"point_coords": points, "point_labels": labels}
|