freealg 0.7.9__py3-none-any.whl → 0.7.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- freealg/__version__.py +1 -1
- freealg/_algebraic_form/_branch_points.py +288 -0
- freealg/_algebraic_form/_continuation_algebraic.py +1 -1
- freealg/_algebraic_form/_decompress.py +45 -1
- freealg/_algebraic_form/_homotopy.py +5 -5
- freealg/_algebraic_form/_moments.py +43 -25
- freealg/_algebraic_form/_support.py +309 -0
- freealg/_algebraic_form/algebraic_form.py +120 -46
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/METADATA +1 -1
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/RECORD +14 -13
- freealg/_algebraic_form/_discriminant.py +0 -226
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/WHEEL +0 -0
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/licenses/AUTHORS.txt +0 -0
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/licenses/LICENSE.txt +0 -0
- {freealg-0.7.9.dist-info → freealg-0.7.11.dist-info}/top_level.txt +0 -0
|
@@ -1,226 +0,0 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright 2026, Siavash Ameli <sameli@berkeley.edu>
|
|
2
|
-
# SPDX-License-Identifier: BSD-3-Clause
|
|
3
|
-
# SPDX-FileType: SOURCE
|
|
4
|
-
#
|
|
5
|
-
# This program is free software: you can redistribute it and/or modify it under
|
|
6
|
-
# the terms of the license found in the LICENSE.txt file in the root directory
|
|
7
|
-
# of this source tree.
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
# =======
|
|
11
|
-
# Imports
|
|
12
|
-
# =======
|
|
13
|
-
|
|
14
|
-
import numpy as np
|
|
15
|
-
import numpy.polynomial.polynomial as poly
|
|
16
|
-
|
|
17
|
-
__all__ = ['compute_singular_points']
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
# =========
|
|
21
|
-
# ploy trim
|
|
22
|
-
# =========
|
|
23
|
-
|
|
24
|
-
def _poly_trim(p, tol):
|
|
25
|
-
|
|
26
|
-
p = np.asarray(p, dtype=complex).ravel()
|
|
27
|
-
if p.size == 0:
|
|
28
|
-
return np.zeros(1, dtype=complex)
|
|
29
|
-
k = p.size - 1
|
|
30
|
-
while k > 0 and abs(p[k]) <= tol:
|
|
31
|
-
k -= 1
|
|
32
|
-
return p[:k + 1].copy()
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
# ============
|
|
36
|
-
# poly is zero
|
|
37
|
-
# ============
|
|
38
|
-
|
|
39
|
-
def _poly_is_zero(p, tol):
|
|
40
|
-
|
|
41
|
-
p = _poly_trim(p, tol)
|
|
42
|
-
return (p.size == 1) and (abs(p[0]) <= tol)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
# ========
|
|
46
|
-
# poly add
|
|
47
|
-
# ========
|
|
48
|
-
|
|
49
|
-
def _poly_add(a, b, tol):
|
|
50
|
-
|
|
51
|
-
return _poly_trim(poly.polyadd(a, b), tol)
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
# ========
|
|
55
|
-
# poly sub
|
|
56
|
-
# ========
|
|
57
|
-
|
|
58
|
-
def _poly_sub(a, b, tol):
|
|
59
|
-
|
|
60
|
-
return _poly_trim(poly.polysub(a, b), tol)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
# =======
|
|
64
|
-
# ply mul
|
|
65
|
-
# =======
|
|
66
|
-
|
|
67
|
-
def _poly_mul(a, b, tol):
|
|
68
|
-
|
|
69
|
-
return _poly_trim(poly.polymul(a, b), tol)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
# ==============
|
|
73
|
-
# poly div exact
|
|
74
|
-
# ==============
|
|
75
|
-
|
|
76
|
-
def _poly_div_exact(a, b, tol):
|
|
77
|
-
|
|
78
|
-
a = _poly_trim(a, tol)
|
|
79
|
-
b = _poly_trim(b, tol)
|
|
80
|
-
if _poly_is_zero(b, tol):
|
|
81
|
-
raise ZeroDivisionError("poly division by zero")
|
|
82
|
-
|
|
83
|
-
q, r = poly.polydiv(a, b)
|
|
84
|
-
r = _poly_trim(r, tol)
|
|
85
|
-
|
|
86
|
-
# Bareiss expects exact division; with floats it's only approximate.
|
|
87
|
-
# If the remainder is small, drop it.
|
|
88
|
-
scale = max(1.0, np.linalg.norm(a))
|
|
89
|
-
if np.linalg.norm(r) > 1e3 * tol * scale:
|
|
90
|
-
# Fallback: still drop remainder (keeps algorithm running).
|
|
91
|
-
# This is acceptable because we only need the resultant roots
|
|
92
|
-
# robustly, not exact symbolic coefficients.
|
|
93
|
-
pass
|
|
94
|
-
|
|
95
|
-
return _poly_trim(q, tol)
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
# ================
|
|
99
|
-
# det bareiss poly
|
|
100
|
-
# ================
|
|
101
|
-
|
|
102
|
-
def _det_bareiss_poly(M, tol):
|
|
103
|
-
|
|
104
|
-
n = len(M)
|
|
105
|
-
A = [[_poly_trim(M[i][j], tol) for j in range(n)] for i in range(n)]
|
|
106
|
-
|
|
107
|
-
denom = np.array([1.0], dtype=complex)
|
|
108
|
-
sign = 1.0
|
|
109
|
-
|
|
110
|
-
for k in range(n - 1):
|
|
111
|
-
if _poly_is_zero(A[k][k], tol):
|
|
112
|
-
piv = -1
|
|
113
|
-
for i in range(k + 1, n):
|
|
114
|
-
if not _poly_is_zero(A[i][k], tol):
|
|
115
|
-
piv = i
|
|
116
|
-
break
|
|
117
|
-
if piv == -1:
|
|
118
|
-
return np.array([0.0], dtype=complex)
|
|
119
|
-
A[k], A[piv] = A[piv], A[k]
|
|
120
|
-
sign *= -1.0
|
|
121
|
-
|
|
122
|
-
pivot = A[k][k]
|
|
123
|
-
for i in range(k + 1, n):
|
|
124
|
-
for j in range(k + 1, n):
|
|
125
|
-
num = _poly_sub(_poly_mul(A[i][j], pivot, tol),
|
|
126
|
-
_poly_mul(A[i][k], A[k][j], tol),
|
|
127
|
-
tol)
|
|
128
|
-
if k > 0:
|
|
129
|
-
A[i][j] = _poly_div_exact(num, denom, tol)
|
|
130
|
-
else:
|
|
131
|
-
A[i][j] = _poly_trim(num, tol)
|
|
132
|
-
|
|
133
|
-
denom = pivot
|
|
134
|
-
|
|
135
|
-
return _poly_trim(sign * A[n - 1][n - 1], tol)
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
# ===================
|
|
139
|
-
# cluster real points
|
|
140
|
-
# ===================
|
|
141
|
-
|
|
142
|
-
def _cluster_real_points(x, eps):
|
|
143
|
-
|
|
144
|
-
x = np.asarray(x, dtype=float).ravel()
|
|
145
|
-
if x.size == 0:
|
|
146
|
-
return x
|
|
147
|
-
x = np.sort(x)
|
|
148
|
-
uniq = []
|
|
149
|
-
for v in x:
|
|
150
|
-
if (len(uniq) == 0) or (abs(v - uniq[-1]) > eps):
|
|
151
|
-
uniq.append(float(v))
|
|
152
|
-
else:
|
|
153
|
-
uniq[-1] = 0.5 * (uniq[-1] + float(v))
|
|
154
|
-
return np.asarray(uniq, dtype=float)
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
# =======================
|
|
158
|
-
# compute singular points
|
|
159
|
-
# =======================
|
|
160
|
-
|
|
161
|
-
def compute_singular_points(a_coeffs, tol=1e-12, real_tol=None):
|
|
162
|
-
"""
|
|
163
|
-
a_coeffs[i,j] is coefficient of z^i m^j, shape (deg_z+1, s+1).
|
|
164
|
-
|
|
165
|
-
Returns
|
|
166
|
-
-------
|
|
167
|
-
|
|
168
|
-
z_bp : complex array, roots of Disc_m(P)(z)
|
|
169
|
-
a_s_zero : complex array, roots of leading coefficient a_s(z)
|
|
170
|
-
support : list of (a,b) from real-ish branch points paired consecutively
|
|
171
|
-
"""
|
|
172
|
-
|
|
173
|
-
a_coeffs = np.asarray(a_coeffs)
|
|
174
|
-
s = a_coeffs.shape[1] - 1
|
|
175
|
-
if s < 1:
|
|
176
|
-
return (np.array([], dtype=complex),
|
|
177
|
-
np.array([], dtype=complex),
|
|
178
|
-
[])
|
|
179
|
-
|
|
180
|
-
if real_tol is None:
|
|
181
|
-
real_tol = 1e3 * tol
|
|
182
|
-
|
|
183
|
-
a = [_poly_trim(a_coeffs[:, j], tol) for j in range(s + 1)]
|
|
184
|
-
|
|
185
|
-
a_s = a[s]
|
|
186
|
-
a_s_zero = np.roots(a_s[::-1]) if a_s.size > 1 else \
|
|
187
|
-
np.array([], dtype=complex)
|
|
188
|
-
|
|
189
|
-
b = []
|
|
190
|
-
for j in range(s):
|
|
191
|
-
b.append(_poly_trim((j + 1) * a[j + 1], tol))
|
|
192
|
-
|
|
193
|
-
mdeg = s
|
|
194
|
-
ndeg = s - 1
|
|
195
|
-
N = mdeg + ndeg # 2s-1
|
|
196
|
-
|
|
197
|
-
z0 = np.array([0.0], dtype=complex)
|
|
198
|
-
M = [[z0 for _ in range(N)] for __ in range(N)]
|
|
199
|
-
|
|
200
|
-
for r in range(ndeg):
|
|
201
|
-
for j in range(mdeg + 1):
|
|
202
|
-
M[r][r + j] = a[j]
|
|
203
|
-
|
|
204
|
-
for r in range(mdeg):
|
|
205
|
-
rr = ndeg + r
|
|
206
|
-
for j in range(ndeg + 1):
|
|
207
|
-
M[rr][r + j] = b[j]
|
|
208
|
-
|
|
209
|
-
res = _det_bareiss_poly(M, tol)
|
|
210
|
-
if res.size <= 1:
|
|
211
|
-
z_bp = np.array([], dtype=complex)
|
|
212
|
-
else:
|
|
213
|
-
z_bp = np.roots(res[::-1])
|
|
214
|
-
|
|
215
|
-
support = []
|
|
216
|
-
if z_bp.size > 0:
|
|
217
|
-
zr = z_bp[np.abs(z_bp.imag) <= real_tol].real
|
|
218
|
-
zr = _cluster_real_points(zr, eps=1e2 * real_tol)
|
|
219
|
-
m2 = (zr.size // 2) * 2
|
|
220
|
-
for k in range(0, m2, 2):
|
|
221
|
-
a0 = float(zr[k])
|
|
222
|
-
b0 = float(zr[k + 1])
|
|
223
|
-
if b0 > a0:
|
|
224
|
-
support.append((a0, b0))
|
|
225
|
-
|
|
226
|
-
return z_bp, a_s_zero, support
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|