freealg 0.7.16__py3-none-any.whl → 0.7.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- freealg/__init__.py +8 -6
- freealg/__version__.py +1 -1
- freealg/_algebraic_form/_branch_points.py +18 -18
- freealg/_algebraic_form/_continuation_algebraic.py +13 -13
- freealg/_algebraic_form/_cusp.py +15 -15
- freealg/_algebraic_form/_cusp_wrap.py +6 -6
- freealg/_algebraic_form/_decompress.py +16 -16
- freealg/_algebraic_form/_decompress4.py +31 -31
- freealg/_algebraic_form/_decompress5.py +23 -23
- freealg/_algebraic_form/_decompress6.py +13 -13
- freealg/_algebraic_form/_decompress7.py +15 -15
- freealg/_algebraic_form/_decompress8.py +17 -17
- freealg/_algebraic_form/_decompress9.py +18 -18
- freealg/_algebraic_form/_decompress_new.py +17 -17
- freealg/_algebraic_form/_decompress_new_2.py +57 -57
- freealg/_algebraic_form/_decompress_util.py +10 -10
- freealg/_algebraic_form/_decompressible.py +292 -0
- freealg/_algebraic_form/_edge.py +10 -10
- freealg/_algebraic_form/_homotopy4.py +9 -9
- freealg/_algebraic_form/_homotopy5.py +9 -9
- freealg/_algebraic_form/_support.py +19 -19
- freealg/_algebraic_form/algebraic_form.py +262 -468
- freealg/_base_form.py +401 -0
- freealg/_free_form/__init__.py +1 -4
- freealg/_free_form/_density_util.py +1 -1
- freealg/_free_form/_plot_util.py +3 -511
- freealg/_free_form/free_form.py +8 -367
- freealg/_util.py +59 -11
- freealg/distributions/__init__.py +2 -1
- freealg/distributions/_base_distribution.py +163 -0
- freealg/distributions/_chiral_block.py +137 -11
- freealg/distributions/_compound_poisson.py +168 -64
- freealg/distributions/_deformed_marchenko_pastur.py +137 -88
- freealg/distributions/_deformed_wigner.py +92 -40
- freealg/distributions/_fuss_catalan.py +269 -0
- freealg/distributions/_kesten_mckay.py +4 -130
- freealg/distributions/_marchenko_pastur.py +8 -196
- freealg/distributions/_meixner.py +4 -130
- freealg/distributions/_wachter.py +4 -130
- freealg/distributions/_wigner.py +10 -127
- freealg/visualization/__init__.py +2 -2
- freealg/visualization/{_rgb_hsv.py → _domain_coloring.py} +37 -29
- freealg/visualization/_plot_util.py +513 -0
- {freealg-0.7.16.dist-info → freealg-0.7.18.dist-info}/METADATA +1 -1
- freealg-0.7.18.dist-info/RECORD +74 -0
- freealg-0.7.16.dist-info/RECORD +0 -69
- /freealg/{_free_form/_sample.py → _sample.py} +0 -0
- /freealg/{_free_form/_support.py → _support.py} +0 -0
- {freealg-0.7.16.dist-info → freealg-0.7.18.dist-info}/WHEEL +0 -0
- {freealg-0.7.16.dist-info → freealg-0.7.18.dist-info}/licenses/AUTHORS.txt +0 -0
- {freealg-0.7.16.dist-info → freealg-0.7.18.dist-info}/licenses/LICENSE.txt +0 -0
- {freealg-0.7.16.dist-info → freealg-0.7.18.dist-info}/top_level.txt +0 -0
|
@@ -22,14 +22,14 @@ __all__ = ['decompress_newton']
|
|
|
22
22
|
# eval P partials
|
|
23
23
|
# ===============
|
|
24
24
|
|
|
25
|
-
def eval_P_partials(z, m,
|
|
25
|
+
def eval_P_partials(z, m, coeffs):
|
|
26
26
|
"""
|
|
27
27
|
Evaluate P(z,m) and its partial derivatives dP/dz and dP/dm.
|
|
28
28
|
|
|
29
|
-
This assumes P is represented by `
|
|
29
|
+
This assumes P is represented by `coeffs` in the monomial basis
|
|
30
30
|
|
|
31
31
|
P(z, m) = sum_{j=0..s} a_j(z) * m^j,
|
|
32
|
-
a_j(z) = sum_{i=0..deg_z}
|
|
32
|
+
a_j(z) = sum_{i=0..deg_z} coeffs[i, j] * z^i.
|
|
33
33
|
|
|
34
34
|
The function returns P, dP/dz, dP/dm with broadcasting over z and m.
|
|
35
35
|
|
|
@@ -39,7 +39,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
39
39
|
First argument to P.
|
|
40
40
|
m : complex or array_like of complex
|
|
41
41
|
Second argument to P. Must be broadcast-compatible with `z`.
|
|
42
|
-
|
|
42
|
+
coeffs : ndarray, shape (deg_z+1, s+1)
|
|
43
43
|
Coefficient matrix for P in the monomial basis.
|
|
44
44
|
|
|
45
45
|
Returns
|
|
@@ -61,14 +61,14 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
61
61
|
--------
|
|
62
62
|
.. code-block:: python
|
|
63
63
|
|
|
64
|
-
P, Pz, Pm = eval_P_partials(1.0 + 1j, 0.2 + 0.3j,
|
|
64
|
+
P, Pz, Pm = eval_P_partials(1.0 + 1j, 0.2 + 0.3j, coeffs)
|
|
65
65
|
"""
|
|
66
66
|
|
|
67
67
|
z = numpy.asarray(z, dtype=complex)
|
|
68
68
|
m = numpy.asarray(m, dtype=complex)
|
|
69
69
|
|
|
70
|
-
deg_z = int(
|
|
71
|
-
s = int(
|
|
70
|
+
deg_z = int(coeffs.shape[0] - 1)
|
|
71
|
+
s = int(coeffs.shape[1] - 1)
|
|
72
72
|
|
|
73
73
|
if (z.ndim == 0) and (m.ndim == 0):
|
|
74
74
|
zz = complex(z)
|
|
@@ -78,7 +78,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
78
78
|
ap = numpy.empty(s + 1, dtype=complex)
|
|
79
79
|
|
|
80
80
|
for j in range(s + 1):
|
|
81
|
-
c =
|
|
81
|
+
c = coeffs[:, j]
|
|
82
82
|
|
|
83
83
|
val = 0.0 + 0.0j
|
|
84
84
|
for i in range(deg_z, -1, -1):
|
|
@@ -118,10 +118,10 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
118
118
|
Pm = numpy.zeros(zz.size, dtype=complex)
|
|
119
119
|
|
|
120
120
|
for j in range(s + 1):
|
|
121
|
-
aj = zp @
|
|
121
|
+
aj = zp @ coeffs[:, j]
|
|
122
122
|
P += aj * mp[:, j]
|
|
123
123
|
|
|
124
|
-
ajp = dzp @
|
|
124
|
+
ajp = dzp @ coeffs[:, j]
|
|
125
125
|
Pz += ajp * mp[:, j]
|
|
126
126
|
|
|
127
127
|
if j >= 1:
|
|
@@ -134,7 +134,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
134
134
|
# fd solve w
|
|
135
135
|
# ==========
|
|
136
136
|
|
|
137
|
-
# def fd_solve_w(z, t,
|
|
137
|
+
# def fd_solve_w(z, t, coeffs, w_init, max_iter=50, tol=1e-12,
|
|
138
138
|
# armijo=1e-4, min_lam=1e-6, w_min=1e-14):
|
|
139
139
|
# """
|
|
140
140
|
# Solve for w = m(t,z) from the implicit FD equation using damped Newton.
|
|
@@ -155,7 +155,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
155
155
|
# Query point in the complex plane.
|
|
156
156
|
# t : float
|
|
157
157
|
# Time parameter (tau = exp(t)).
|
|
158
|
-
#
|
|
158
|
+
# coeffs : ndarray
|
|
159
159
|
# Coefficients defining P(zeta,y) in the monomial basis.
|
|
160
160
|
# w_init : complex
|
|
161
161
|
# Initial guess for w.
|
|
@@ -189,7 +189,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
189
189
|
# .. code-block:: python
|
|
190
190
|
#
|
|
191
191
|
# w, ok = fd_solve_w(
|
|
192
|
-
# z=0.5 + 1e-6j, t=2.0,
|
|
192
|
+
# z=0.5 + 1e-6j, t=2.0, coeffs=coeffs, w_init=m1_fn(0.5 + 1e-6j),
|
|
193
193
|
# max_iter=50, tol=1e-12
|
|
194
194
|
# )
|
|
195
195
|
# """
|
|
@@ -213,7 +213,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
213
213
|
# zeta = z + alpha / w
|
|
214
214
|
# y = tau * w
|
|
215
215
|
#
|
|
216
|
-
# F, Pz, Py = eval_P_partials(zeta, y,
|
|
216
|
+
# F, Pz, Py = eval_P_partials(zeta, y, coeffs)
|
|
217
217
|
# F = complex(F)
|
|
218
218
|
# Pz = complex(Pz)
|
|
219
219
|
# Py = complex(Py)
|
|
@@ -243,7 +243,7 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
243
243
|
# zeta_new = z + alpha / w_new
|
|
244
244
|
# y_new = tau * w_new
|
|
245
245
|
#
|
|
246
|
-
# F_new = eval_P_partials(zeta_new, y_new,
|
|
246
|
+
# F_new = eval_P_partials(zeta_new, y_new, coeffs)[0]
|
|
247
247
|
# F_new = complex(F_new)
|
|
248
248
|
#
|
|
249
249
|
# if abs(F_new) <= (1.0 - armijo * lam) * F_abs:
|
|
@@ -256,10 +256,10 @@ def eval_P_partials(z, m, a_coeffs):
|
|
|
256
256
|
# if not ok:
|
|
257
257
|
# return w, False
|
|
258
258
|
#
|
|
259
|
-
# F_end = eval_P_partials(z + alpha / w, tau * w,
|
|
259
|
+
# F_end = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
260
260
|
# return w, (abs(F_end) <= 10.0 * tol)
|
|
261
261
|
|
|
262
|
-
def fd_solve_w(z, t,
|
|
262
|
+
def fd_solve_w(z, t, coeffs, w_init, max_iter=50, tol=1e-12,
|
|
263
263
|
armijo=1e-4, min_lam=1e-6, w_min=1e-14):
|
|
264
264
|
"""
|
|
265
265
|
Solve for w = m(t,z) from the implicit FD equation using damped Newton.
|
|
@@ -280,7 +280,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
280
280
|
Query point in the complex plane.
|
|
281
281
|
t : float
|
|
282
282
|
Time parameter (tau = exp(t)).
|
|
283
|
-
|
|
283
|
+
coeffs : ndarray
|
|
284
284
|
Coefficients defining P(zeta,y) in the monomial basis.
|
|
285
285
|
w_init : complex
|
|
286
286
|
Initial guess for w.
|
|
@@ -314,7 +314,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
314
314
|
.. code-block:: python
|
|
315
315
|
|
|
316
316
|
w, ok = fd_solve_w(
|
|
317
|
-
z=0.5 + 1e-6j, t=2.0,
|
|
317
|
+
z=0.5 + 1e-6j, t=2.0, coeffs=coeffs, w_init=m1_fn(0.5 + 1e-6j),
|
|
318
318
|
max_iter=50, tol=1e-12
|
|
319
319
|
)
|
|
320
320
|
"""
|
|
@@ -341,7 +341,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
341
341
|
# zeta = z + alpha / w
|
|
342
342
|
# y = tau * w
|
|
343
343
|
#
|
|
344
|
-
# F, Pz, Py = eval_P_partials(zeta, y,
|
|
344
|
+
# F, Pz, Py = eval_P_partials(zeta, y, coeffs)
|
|
345
345
|
# F = complex(F)
|
|
346
346
|
# Pz = complex(Pz)
|
|
347
347
|
# Py = complex(Py)
|
|
@@ -371,7 +371,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
371
371
|
# zeta_new = z + alpha / w_new
|
|
372
372
|
# y_new = tau * w_new
|
|
373
373
|
#
|
|
374
|
-
# F_new = eval_P_partials(zeta_new, y_new,
|
|
374
|
+
# F_new = eval_P_partials(zeta_new, y_new, coeffs)[0]
|
|
375
375
|
# F_new = complex(F_new)
|
|
376
376
|
#
|
|
377
377
|
# if abs(F_new) <= (1.0 - armijo * lam) * F_abs:
|
|
@@ -397,7 +397,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
397
397
|
# P(z + beta/y, y) = 0, beta = tau - 1.
|
|
398
398
|
# Multiply by y^deg_z to clear denominators and get a polynomial in y.
|
|
399
399
|
|
|
400
|
-
a = numpy.asarray(
|
|
400
|
+
a = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
401
401
|
deg_z = a.shape[0] - 1
|
|
402
402
|
deg_m = a.shape[1] - 1
|
|
403
403
|
|
|
@@ -460,13 +460,13 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
460
460
|
w = complex(best)
|
|
461
461
|
|
|
462
462
|
# final residual check
|
|
463
|
-
F_end = eval_P_partials(z + alpha / w, tau * w,
|
|
463
|
+
F_end = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
464
464
|
return w, (abs(F_end) <= 1e3 * tol)
|
|
465
465
|
|
|
466
466
|
# -------------------
|
|
467
467
|
|
|
468
468
|
|
|
469
|
-
F_end = eval_P_partials(z + alpha / w, tau * w,
|
|
469
|
+
F_end = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
470
470
|
return w, (abs(F_end) <= 10.0 * tol)
|
|
471
471
|
|
|
472
472
|
|
|
@@ -474,7 +474,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
474
474
|
# NEW FUNCTION
|
|
475
475
|
# ============
|
|
476
476
|
|
|
477
|
-
def fd_candidates_w(z, t,
|
|
477
|
+
def fd_candidates_w(z, t, coeffs, w_min=1e-14):
|
|
478
478
|
"""
|
|
479
479
|
Return candidate roots w solving P(z + alpha/w, tau*w)=0 with Im(w)>0 (if Im(z)>0).
|
|
480
480
|
"""
|
|
@@ -483,7 +483,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
483
483
|
alpha = 1.0 - 1.0 / tau
|
|
484
484
|
want_pos_imag = (z.imag > 0.0)
|
|
485
485
|
|
|
486
|
-
a = numpy.asarray(
|
|
486
|
+
a = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
487
487
|
deg_z = a.shape[0] - 1
|
|
488
488
|
deg_m = a.shape[1] - 1
|
|
489
489
|
|
|
@@ -521,7 +521,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
521
521
|
# residual filter (optional but helps)
|
|
522
522
|
# -------------
|
|
523
523
|
# TEST
|
|
524
|
-
# F = eval_P_partials(z + alpha / w, tau * w,
|
|
524
|
+
# F = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
525
525
|
# if abs(F) < 1e-6:
|
|
526
526
|
# cands.append(complex(w))
|
|
527
527
|
# ---------------
|
|
@@ -536,7 +536,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
536
536
|
# decompress newton
|
|
537
537
|
# =================
|
|
538
538
|
|
|
539
|
-
def decompress_newton(z_list, t_grid,
|
|
539
|
+
def decompress_newton(z_list, t_grid, coeffs, w0_list=None,
|
|
540
540
|
dt_max=0.1, sweep=True, time_rel_tol=5.0,
|
|
541
541
|
active_imag_eps=None, sweep_pad=20,
|
|
542
542
|
max_iter=50, tol=1e-12, armijo=1e-4,
|
|
@@ -556,7 +556,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
556
556
|
Query points z (typically x + 1j*eta with eta > 0), ordered along x.
|
|
557
557
|
t_grid : array_like of float
|
|
558
558
|
Strictly increasing time grid.
|
|
559
|
-
|
|
559
|
+
coeffs : ndarray
|
|
560
560
|
Coefficients defining P(z,m) in the monomial basis.
|
|
561
561
|
w0_list : array_like of complex
|
|
562
562
|
Initial values w(t0,z) at t_grid[0].
|
|
@@ -616,7 +616,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
616
616
|
# -----------------
|
|
617
617
|
|
|
618
618
|
def _candidates(iz, t):
|
|
619
|
-
cands = fd_candidates_w(z_list[iz], t,
|
|
619
|
+
cands = fd_candidates_w(z_list[iz], t, coeffs, w_min=w_min)
|
|
620
620
|
if len(cands) == 0:
|
|
621
621
|
# fallback: carry previous value as a candidate
|
|
622
622
|
return [complex(w_prev[iz])]
|
|
@@ -724,7 +724,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
724
724
|
if refine_newton:
|
|
725
725
|
for iz in range(nz):
|
|
726
726
|
w_sol, success = fd_solve_w(
|
|
727
|
-
z_list[iz], t,
|
|
727
|
+
z_list[iz], t, coeffs, w_row[iz],
|
|
728
728
|
max_iter=max_iter, tol=tol, armijo=armijo,
|
|
729
729
|
min_lam=min_lam, w_min=w_min)
|
|
730
730
|
w_row[iz] = w_sol
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
#
|
|
7
7
|
# Public API (used by AlgebraicForm.decompress):
|
|
8
8
|
# build_time_grid(size, n0, min_n_times=0) -> (t_all, idx_req)
|
|
9
|
-
# decompress_newton(z_list, t_grid,
|
|
9
|
+
# decompress_newton(z_list, t_grid, coeffs, w0_list=None, **opts) -> (W, ok)
|
|
10
10
|
#
|
|
11
11
|
# Core equation (FD):
|
|
12
12
|
# tau = exp(t) - 1
|
|
@@ -102,13 +102,13 @@ def build_time_grid(size, n0, min_n_times=0):
|
|
|
102
102
|
# Polynomial utilities
|
|
103
103
|
# ===================
|
|
104
104
|
|
|
105
|
-
def _poly_coef_in_w(z,
|
|
105
|
+
def _poly_coef_in_w(z, coeffs):
|
|
106
106
|
"""
|
|
107
107
|
For fixed z, return coefficients c[j] so that P(z,w)=sum_j c[j] w^j.
|
|
108
|
-
|
|
108
|
+
coeffs[i,j] corresponds to z^i w^j.
|
|
109
109
|
"""
|
|
110
110
|
z = complex(z)
|
|
111
|
-
a = np.asarray(
|
|
111
|
+
a = np.asarray(coeffs, dtype=np.complex128)
|
|
112
112
|
deg_z = int(a.shape[0] - 1)
|
|
113
113
|
# Horner in z for each j
|
|
114
114
|
zp = 1.0 + 0.0j
|
|
@@ -119,8 +119,8 @@ def _poly_coef_in_w(z, a_coeffs):
|
|
|
119
119
|
return c # shape (s+1,)
|
|
120
120
|
|
|
121
121
|
|
|
122
|
-
def _eval_P(z, w,
|
|
123
|
-
c = _poly_coef_in_w(z,
|
|
122
|
+
def _eval_P(z, w, coeffs):
|
|
123
|
+
c = _poly_coef_in_w(z, coeffs)
|
|
124
124
|
# Horner in w
|
|
125
125
|
ww = complex(w)
|
|
126
126
|
out = 0.0 + 0.0j
|
|
@@ -129,11 +129,11 @@ def _eval_P(z, w, a_coeffs):
|
|
|
129
129
|
return out
|
|
130
130
|
|
|
131
131
|
|
|
132
|
-
def _eval_dP_dw(z, w,
|
|
132
|
+
def _eval_dP_dw(z, w, coeffs):
|
|
133
133
|
"""
|
|
134
134
|
d/dw P(z,w)
|
|
135
135
|
"""
|
|
136
|
-
c = _poly_coef_in_w(z,
|
|
136
|
+
c = _poly_coef_in_w(z, coeffs) # c[j] w^j
|
|
137
137
|
ww = complex(w)
|
|
138
138
|
# derivative coefficients: j*c[j]
|
|
139
139
|
out = 0.0 + 0.0j
|
|
@@ -142,13 +142,13 @@ def _eval_dP_dw(z, w, a_coeffs):
|
|
|
142
142
|
return out
|
|
143
143
|
|
|
144
144
|
|
|
145
|
-
def _eval_dP_dz(z, w,
|
|
145
|
+
def _eval_dP_dz(z, w, coeffs):
|
|
146
146
|
"""
|
|
147
147
|
d/dz P(z,w)
|
|
148
148
|
"""
|
|
149
149
|
z = complex(z)
|
|
150
150
|
w = complex(w)
|
|
151
|
-
a = np.asarray(
|
|
151
|
+
a = np.asarray(coeffs, dtype=np.complex128)
|
|
152
152
|
deg_z = int(a.shape[0] - 1)
|
|
153
153
|
# compute b[j] = sum_{i>=1} i*a[i,j]*z^{i-1}
|
|
154
154
|
if deg_z <= 0:
|
|
@@ -165,15 +165,15 @@ def _eval_dP_dz(z, w, a_coeffs):
|
|
|
165
165
|
return out
|
|
166
166
|
|
|
167
167
|
|
|
168
|
-
def _fd_F_and_dF(w, z, tau,
|
|
168
|
+
def _fd_F_and_dF(w, z, tau, coeffs):
|
|
169
169
|
"""
|
|
170
170
|
F(w) = P(z - tau*w, w).
|
|
171
171
|
dF/dw = dP/dz * (-tau) + dP/dw evaluated at (zeta, w).
|
|
172
172
|
"""
|
|
173
173
|
zeta = z - tau * w
|
|
174
|
-
F = _eval_P(zeta, w,
|
|
175
|
-
dPdw = _eval_dP_dw(zeta, w,
|
|
176
|
-
dPdz = _eval_dP_dz(zeta, w,
|
|
174
|
+
F = _eval_P(zeta, w, coeffs)
|
|
175
|
+
dPdw = _eval_dP_dw(zeta, w, coeffs)
|
|
176
|
+
dPdz = _eval_dP_dz(zeta, w, coeffs)
|
|
177
177
|
dF = dPdw - tau * dPdz
|
|
178
178
|
return F, dF
|
|
179
179
|
|
|
@@ -185,7 +185,7 @@ def _fd_F_and_dF(w, z, tau, a_coeffs):
|
|
|
185
185
|
def _newton_fd_scalar(
|
|
186
186
|
z,
|
|
187
187
|
t,
|
|
188
|
-
|
|
188
|
+
coeffs,
|
|
189
189
|
w_init,
|
|
190
190
|
*,
|
|
191
191
|
max_iter=60,
|
|
@@ -212,7 +212,7 @@ def _newton_fd_scalar(
|
|
|
212
212
|
w = complex(w.real, w_min)
|
|
213
213
|
|
|
214
214
|
# initial
|
|
215
|
-
F, dF = _fd_F_and_dF(w, z, tau,
|
|
215
|
+
F, dF = _fd_F_and_dF(w, z, tau, coeffs)
|
|
216
216
|
res0 = abs(F)
|
|
217
217
|
if not np.isfinite(res0):
|
|
218
218
|
return complex(np.nan, np.nan), False, 0, np.inf
|
|
@@ -239,7 +239,7 @@ def _newton_fd_scalar(
|
|
|
239
239
|
w_new = w + lam * step
|
|
240
240
|
if w_min > 0.0 and w_new.imag < w_min:
|
|
241
241
|
w_new = complex(w_new.real, w_min)
|
|
242
|
-
F_new, dF_new = _fd_F_and_dF(w_new, z, tau,
|
|
242
|
+
F_new, dF_new = _fd_F_and_dF(w_new, z, tau, coeffs)
|
|
243
243
|
f1 = abs(F_new)
|
|
244
244
|
if np.isfinite(f1) and (f1 <= (1.0 - 1e-4 * lam) * f0):
|
|
245
245
|
w, F, dF = w_new, F_new, dF_new
|
|
@@ -252,10 +252,10 @@ def _newton_fd_scalar(
|
|
|
252
252
|
w = w + step
|
|
253
253
|
if w_min > 0.0 and w.imag < w_min:
|
|
254
254
|
w = complex(w.real, w_min)
|
|
255
|
-
F, dF = _fd_F_and_dF(w, z, tau,
|
|
255
|
+
F, dF = _fd_F_and_dF(w, z, tau, coeffs)
|
|
256
256
|
|
|
257
257
|
# final
|
|
258
|
-
F, _ = _fd_F_and_dF(w, z, tau,
|
|
258
|
+
F, _ = _fd_F_and_dF(w, z, tau, coeffs)
|
|
259
259
|
ok = np.isfinite(F.real) and np.isfinite(F.imag) and (abs(F) <= 1e3 * tol * (1.0 + res0))
|
|
260
260
|
return w, bool(ok), max_iter, abs(F)
|
|
261
261
|
|
|
@@ -294,7 +294,7 @@ def _dedup_cands(cands, tol=1e-10):
|
|
|
294
294
|
def _fd_candidates(
|
|
295
295
|
z,
|
|
296
296
|
t,
|
|
297
|
-
|
|
297
|
+
coeffs,
|
|
298
298
|
seeds,
|
|
299
299
|
*,
|
|
300
300
|
max_iter=60,
|
|
@@ -313,7 +313,7 @@ def _fd_candidates(
|
|
|
313
313
|
ress = []
|
|
314
314
|
for s in seeds:
|
|
315
315
|
w, ok, _, res = _newton_fd_scalar(
|
|
316
|
-
z, t,
|
|
316
|
+
z, t, coeffs, s,
|
|
317
317
|
max_iter=max_iter, tol=tol,
|
|
318
318
|
armijo=armijo, min_lam=min_lam, w_min=w_min
|
|
319
319
|
)
|
|
@@ -525,7 +525,7 @@ def _renormalize_density(z_list, w_path, target_mass=1.0):
|
|
|
525
525
|
def decompress_newton(
|
|
526
526
|
z_list: np.ndarray,
|
|
527
527
|
t_grid: np.ndarray,
|
|
528
|
-
|
|
528
|
+
coeffs: np.ndarray,
|
|
529
529
|
w0_list: np.ndarray | None = None,
|
|
530
530
|
*,
|
|
531
531
|
dt_max: float = 0.05,
|
|
@@ -633,7 +633,7 @@ def decompress_newton(
|
|
|
633
633
|
seeds.append(complex(-1.0 / (z_list[iz] - tau * w_prev[iz] + 1e-30)))
|
|
634
634
|
|
|
635
635
|
cands, oks, ress = _fd_candidates(
|
|
636
|
-
z_list[iz], float(t_sub),
|
|
636
|
+
z_list[iz], float(t_sub), coeffs, seeds,
|
|
637
637
|
max_iter=max_iter, tol=tol,
|
|
638
638
|
armijo=armijo, min_lam=min_lam, w_min=w_min,
|
|
639
639
|
keep_best=keep_best,
|
|
@@ -6,7 +6,7 @@ FD decompression with correct characteristic map + robust root selection.
|
|
|
6
6
|
|
|
7
7
|
Keeps public API:
|
|
8
8
|
- build_time_grid(size, n0, min_n_times=..., include_t0=True) -> (t_all, idx_req)
|
|
9
|
-
- decompress_newton(z_list, t_grid,
|
|
9
|
+
- decompress_newton(z_list, t_grid, coeffs, w0_list=None, **newton_opt) -> (W, ok)
|
|
10
10
|
|
|
11
11
|
IMPORTANT: This implements the characteristic transform consistent with:
|
|
12
12
|
τ(t)=e^t, α(t)=1-τ^{-1},
|
|
@@ -83,13 +83,13 @@ def build_time_grid(size, n0, min_n_times=0, include_t0=True):
|
|
|
83
83
|
# Polynomial curve utilities
|
|
84
84
|
# ===========================
|
|
85
85
|
|
|
86
|
-
def _poly_w_coeffs(z: complex, t: float,
|
|
86
|
+
def _poly_w_coeffs(z: complex, t: float, coeffs: np.ndarray) -> np.ndarray:
|
|
87
87
|
"""
|
|
88
88
|
Build Q(w) coeffs (descending) for:
|
|
89
89
|
Q(w) = w^{deg_z} * P(z + α/w, τ w)
|
|
90
90
|
where τ=e^t, α=1-1/τ.
|
|
91
91
|
"""
|
|
92
|
-
a = np.asarray(
|
|
92
|
+
a = np.asarray(coeffs, dtype=np.complex128)
|
|
93
93
|
deg_z = a.shape[0] - 1
|
|
94
94
|
deg_m = a.shape[1] - 1
|
|
95
95
|
|
|
@@ -169,8 +169,8 @@ def _newton_poly_root(coeff_desc: np.ndarray, w0: complex, max_iter: int, tol: f
|
|
|
169
169
|
return w, bool(np.isfinite(f) and abs(f) <= float(tol) * (1.0 + abs(w)))
|
|
170
170
|
|
|
171
171
|
|
|
172
|
-
def _roots_of_Q(z: complex, t: float,
|
|
173
|
-
coeff_desc = _poly_w_coeffs(z, t,
|
|
172
|
+
def _roots_of_Q(z: complex, t: float, coeffs: np.ndarray):
|
|
173
|
+
coeff_desc = _poly_w_coeffs(z, t, coeffs)
|
|
174
174
|
if coeff_desc.size <= 1:
|
|
175
175
|
return coeff_desc, np.empty((0,), np.complex128)
|
|
176
176
|
r = np.roots(coeff_desc)
|
|
@@ -178,7 +178,7 @@ def _roots_of_Q(z: complex, t: float, a_coeffs: np.ndarray):
|
|
|
178
178
|
return coeff_desc, r.astype(np.complex128, copy=False)
|
|
179
179
|
|
|
180
180
|
|
|
181
|
-
def _physical_anchor_for_x(x: float, t: float,
|
|
181
|
+
def _physical_anchor_for_x(x: float, t: float, coeffs: np.ndarray,
|
|
182
182
|
eta_hi: float, eta_lo: float, n_eta: int,
|
|
183
183
|
herglotz_tol: float,
|
|
184
184
|
max_iter: int, tol: float,
|
|
@@ -186,7 +186,7 @@ def _physical_anchor_for_x(x: float, t: float, a_coeffs: np.ndarray,
|
|
|
186
186
|
etas = np.linspace(float(eta_hi), float(eta_lo), int(n_eta))
|
|
187
187
|
z0 = complex(x, etas[0])
|
|
188
188
|
|
|
189
|
-
coeff0, roots0 = _roots_of_Q(z0, t,
|
|
189
|
+
coeff0, roots0 = _roots_of_Q(z0, t, coeffs)
|
|
190
190
|
if roots0.size == 0:
|
|
191
191
|
return -1.0 / z0, False
|
|
192
192
|
|
|
@@ -203,10 +203,10 @@ def _physical_anchor_for_x(x: float, t: float, a_coeffs: np.ndarray,
|
|
|
203
203
|
|
|
204
204
|
for eta in etas[1:]:
|
|
205
205
|
z = complex(x, eta)
|
|
206
|
-
coeff, _ = _roots_of_Q(z, t,
|
|
206
|
+
coeff, _ = _roots_of_Q(z, t, coeffs)
|
|
207
207
|
w, ok2 = _newton_poly_root(coeff, w, max_iter=max_iter, tol=tol, armijo=armijo, min_lam=min_lam)
|
|
208
208
|
if not ok2:
|
|
209
|
-
_coeff, roots = _roots_of_Q(z, t,
|
|
209
|
+
_coeff, roots = _roots_of_Q(z, t, coeffs)
|
|
210
210
|
if roots.size == 0:
|
|
211
211
|
return w, False
|
|
212
212
|
roots = np.asarray(roots, dtype=np.complex128)
|
|
@@ -328,7 +328,7 @@ def _viterbi_path(cand_list, z_list, w_prev,
|
|
|
328
328
|
def decompress_newton(
|
|
329
329
|
z_list,
|
|
330
330
|
t_grid,
|
|
331
|
-
|
|
331
|
+
coeffs,
|
|
332
332
|
w0_list=None,
|
|
333
333
|
*,
|
|
334
334
|
dt_max=0.05,
|
|
@@ -375,7 +375,7 @@ def decompress_newton(
|
|
|
375
375
|
from ._edge import evolve_edges, merge_edges
|
|
376
376
|
if edge_support is None:
|
|
377
377
|
raise ValueError("edge_support must be provided when edge_use=True")
|
|
378
|
-
complex_edges = evolve_edges(t_grid,
|
|
378
|
+
complex_edges = evolve_edges(t_grid, coeffs, support=edge_support)
|
|
379
379
|
# merge_edges in your package expects edges array (nt, 2k) and returns (real_merged_edges, active_k)
|
|
380
380
|
real_edges, _active_k = merge_edges(complex_edges, t_grid)
|
|
381
381
|
except Exception:
|
|
@@ -414,7 +414,7 @@ def decompress_newton(
|
|
|
414
414
|
anchor_ok = np.ones((nz,), dtype=bool)
|
|
415
415
|
for iz in range(nz):
|
|
416
416
|
w_a, ok_a = _physical_anchor_for_x(
|
|
417
|
-
float(x[iz]), float(t_sub),
|
|
417
|
+
float(x[iz]), float(t_sub), coeffs,
|
|
418
418
|
eta_hi=float(eta_hi), eta_lo=float(eta_lo),
|
|
419
419
|
n_eta=int(n_eta),
|
|
420
420
|
herglotz_tol=float(herglotz_tol),
|
|
@@ -427,7 +427,7 @@ def decompress_newton(
|
|
|
427
427
|
cand_list = []
|
|
428
428
|
for iz in range(nz):
|
|
429
429
|
z = z_list[iz]
|
|
430
|
-
coeff, roots = _roots_of_Q(z, float(t_sub),
|
|
430
|
+
coeff, roots = _roots_of_Q(z, float(t_sub), coeffs)
|
|
431
431
|
|
|
432
432
|
anc = anchors[iz]
|
|
433
433
|
im_floor = None
|
|
@@ -32,21 +32,21 @@ __all__ = ['decompress_newton']
|
|
|
32
32
|
# scalar poly evaluation
|
|
33
33
|
# =====================
|
|
34
34
|
|
|
35
|
-
def _eval_a_and_da(z: complex,
|
|
35
|
+
def _eval_a_and_da(z: complex, coeffs: numpy.ndarray) -> tuple[numpy.ndarray, numpy.ndarray]:
|
|
36
36
|
"""Evaluate a_j(z) and a'_j(z) for j=0..s where P(z,y)=sum_j a_j(z) y^j.
|
|
37
37
|
|
|
38
|
-
|
|
39
|
-
|
|
38
|
+
coeffs has shape (deg_z+1, s+1) storing coefficients in z ascending:
|
|
39
|
+
coeffs[i,j] = coeff of z^i in a_j(z).
|
|
40
40
|
"""
|
|
41
|
-
deg_z =
|
|
42
|
-
s =
|
|
41
|
+
deg_z = coeffs.shape[0] - 1
|
|
42
|
+
s = coeffs.shape[1] - 1
|
|
43
43
|
|
|
44
44
|
a = numpy.empty(s + 1, dtype=numpy.complex128)
|
|
45
45
|
da = numpy.empty(s + 1, dtype=numpy.complex128)
|
|
46
46
|
|
|
47
47
|
# Horner for each column j
|
|
48
48
|
for j in range(s + 1):
|
|
49
|
-
col =
|
|
49
|
+
col = coeffs[:, j]
|
|
50
50
|
# a_j(z)
|
|
51
51
|
v = complex(col[deg_z])
|
|
52
52
|
for i in range(deg_z - 1, -1, -1):
|
|
@@ -65,10 +65,10 @@ def _eval_a_and_da(z: complex, a_coeffs: numpy.ndarray) -> tuple[numpy.ndarray,
|
|
|
65
65
|
return a, da
|
|
66
66
|
|
|
67
67
|
|
|
68
|
-
def _eval_P_Pz_Py(z: complex, y: complex,
|
|
68
|
+
def _eval_P_Pz_Py(z: complex, y: complex, coeffs: numpy.ndarray) -> tuple[complex, complex, complex]:
|
|
69
69
|
"""Return P(z,y), Pz(z,y)=\partial_z P, Py(z,y)=\partial_y P (scalars)."""
|
|
70
|
-
a, da = _eval_a_and_da(z,
|
|
71
|
-
s =
|
|
70
|
+
a, da = _eval_a_and_da(z, coeffs)
|
|
71
|
+
s = coeffs.shape[1] - 1
|
|
72
72
|
|
|
73
73
|
# Build powers of y incrementally (cheap; s is small)
|
|
74
74
|
ypow = 1.0 + 0.0j
|
|
@@ -100,7 +100,7 @@ def _newton_2x2(
|
|
|
100
100
|
tau: float,
|
|
101
101
|
zeta0: complex,
|
|
102
102
|
y0: complex,
|
|
103
|
-
|
|
103
|
+
coeffs: numpy.ndarray,
|
|
104
104
|
*,
|
|
105
105
|
max_iter: int,
|
|
106
106
|
tol: float,
|
|
@@ -120,7 +120,7 @@ def _newton_2x2(
|
|
|
120
120
|
y = (w_min + 0.0j)
|
|
121
121
|
|
|
122
122
|
for it in range(max_iter):
|
|
123
|
-
P, Pz, Py = _eval_P_Pz_Py(zeta, y,
|
|
123
|
+
P, Pz, Py = _eval_P_Pz_Py(zeta, y, coeffs)
|
|
124
124
|
F1 = P
|
|
125
125
|
F2 = z - zeta + tau_m1 / y
|
|
126
126
|
|
|
@@ -198,7 +198,7 @@ def _newton_2x2(
|
|
|
198
198
|
def decompress_newton(
|
|
199
199
|
z_query,
|
|
200
200
|
t_all,
|
|
201
|
-
|
|
201
|
+
coeffs,
|
|
202
202
|
*,
|
|
203
203
|
w0_list=None,
|
|
204
204
|
max_iter: int = 40,
|
|
@@ -298,7 +298,7 @@ def decompress_newton(
|
|
|
298
298
|
zeta0 = zeta_seed[j]
|
|
299
299
|
|
|
300
300
|
zeta, y, okj, nit = _newton_2x2(
|
|
301
|
-
z, tau, zeta0, y0,
|
|
301
|
+
z, tau, zeta0, y0, coeffs,
|
|
302
302
|
max_iter=max_iter, tol=tol,
|
|
303
303
|
damping=damping, step_clip=step_clip,
|
|
304
304
|
w_min=w_min, require_imw_pos=require_imw_pos,
|
|
@@ -311,7 +311,7 @@ def decompress_newton(
|
|
|
311
311
|
for k in range(1, int(max_split) + 1):
|
|
312
312
|
tau_mid = tau_prev + (tau - tau_prev) * (k / float(max_split))
|
|
313
313
|
zeta_mid, y_mid, ok_mid, _ = _newton_2x2(
|
|
314
|
-
z, tau_mid, zeta0, y0,
|
|
314
|
+
z, tau_mid, zeta0, y0, coeffs,
|
|
315
315
|
max_iter=max_iter, tol=tol,
|
|
316
316
|
damping=damping, step_clip=step_clip,
|
|
317
317
|
w_min=w_min, require_imw_pos=require_imw_pos,
|
|
@@ -322,7 +322,7 @@ def decompress_newton(
|
|
|
322
322
|
zeta0b = zeta_mid
|
|
323
323
|
y0b = y_mid
|
|
324
324
|
zeta, y, okj, nit = _newton_2x2(
|
|
325
|
-
z, tau, zeta0b, y0b,
|
|
325
|
+
z, tau, zeta0b, y0b, coeffs,
|
|
326
326
|
max_iter=max_iter, tol=tol,
|
|
327
327
|
damping=damping, step_clip=step_clip,
|
|
328
328
|
w_min=w_min, require_imw_pos=require_imw_pos,
|